

Dynamic scene Scene dynamism

Static scene

Rehg, CVPRI3 Prabhaker, ECCV12 Prabhakar, CVPR12 Patron-Perez, BMVC10

Lan, CVPR12 Ding, ECCV10 Ramanathan, CVPR13 Choi, ECCV12, CVPR14 Antic, ECCV14 Direkoglu, ECCV12

Rodriguez, ICCVIIa, ICCVb Mehran, CVPR09 Alahi, CVPR14

Yang, CVPR12 Hoai, CVPR14

Fathi, CVPR12 Choi, ECCV14 Park, NIPS12, ICCV13

Cristani, BMVCII Park, CVPRI5 Arev, SIGGRAPH14

Wang, ECCVIO Gallagher, CVPR09

Dyadic interaction

Crowd interaction

Number of group members

Scene dynamism

Dynamic scene

Static scene

Rehg, CVPR13 Prabhaker, ECCV12 Prabhakar, CVPR12 Patron-Perez, BMVC10

Lan, CVPR12 Di Ramanathan, CVPR13 Ch Antic, ECCV14 Di

Ding, ECCV10 Choi, ECCV12, CVPR14 Direkoglu, ECCV12

Rodriguez, ICCVIIa, ICCVb Mehran, CVPR09 Alahi, CVPR14

Yang, CVPR12 Hoai, CVPR14

Fathi, CVPR12 Choi, ECCV14 Park, NIPS12, ICCV13

Cristani, BMVC11 Park, CVPR15 Arev, SIGGRAPH14

Wang, ECCV10 Gallagher, CVPR09

Dyadic interaction

Crowd interaction

Number of group members

Gaze Estimation w/o Eye Tracker

Social Signal Perception (Gaze)

[Li ICCVI3]

Input: image or video of first person view

Output: localization of fixation point.

Egocentric Cue I

Eye-in-head Orientation (Center Prior)

Egocentric Cue II

Head Motion

Egocentric Cue II

Head Motion

Egocentric Cue III

Hand Position

Gaze Prediction

Application to Foreground Segmentation

Foreground Object

Social Signal Perception (Gaze)

Eye-in-head Motion

Gaze Distribution

Cone-shaped Gaze Model

Gaze Ray Calibration

Primary gaze ray with respect to the camera pose

Gaze Ray Calibration

Back and forth motion

Side to side motion

Head Detection/Alignment

[Cootes, PAMIO1, Schneiderman, CVPRO0, Viola, IJCVO1, Matthews, IJCVO4, Saragih, ICCVO9, Xiong, CVPR13, Zhu, CVPR12, Marin-Jimenez, IJCV14, ...] Group behavior Input: image or video of third person view Output: to find head / to estimate head direction Social role Individual social signal Measurements

[Schneiderman CVPR00, Xiong CVPR13]

Body Configuration

[Hoai CVPR14]

Input: images of TV shows

Output: to detect social interactions

Characteristics of TV show interactions:

- Important contents mostly stay within frame.
- Particular camera angle is preferred.

Common Configuration of Upper Body Two People

Common Configuration of Upper Body

More than Three People

[Hoai CVPR14]

Input image DPM Dense detection scores at multiple location and scales Output Fast 74 inference Best configuration: Learned configurations + High unary scores + High similarity to a common configuration

[Hoai CVPR14]

Comparison w/ DPM

[Hoai CVPR14]

Joint Attention

Where Do They Look?

MRF Modeling

Top view

MRF Modeling

MRF modeling: unary potential

$$\phi_U(L_{f_i}, P_{f_1}, P_{f_2}, ..., P_{f_N}) = \phi_1(L_{f_i}, P_{f_i}) \times \phi_2(L_{f_i}, P_{f_i}) \times \phi_3(L_{f_i}, P_{f_1}, ..., P_{f_N})$$

 $\setminus L_{f_i}$: location at which f_i is looking (label space)

 $lacksquare P_{f_i}$: position and orientation of f_i

- Head direction is aligned with the point of regard.

$$\phi_1(L_{f_i} = \ell, P_{f_i}) = \frac{1}{\sigma_1 \sqrt{2\pi}} \exp\left\{-\frac{\|V_{f_i} - \overline{(\ell - T_{f_i})}\|^2}{2\sigma_1^2}\right\}$$

- The point of regard cannot be the himself.

$$\phi_2(L_{f_i} = \ell, P_{f_i}) = \frac{1}{1 + \exp\{-(c_2 \cdot ||\ell - P_{f_i}||)\}}$$

- The point of regard is likely to be a face.

$$\phi_3(L_{f_i} = \ell, P_{f_1}, ..., P_{f_N}) = \begin{cases} c_3 & \ell = P_{f_j} \forall j \neq i \\ 1 & otherwise \end{cases}$$

MRF Modeling

[Fathi CVPR12]

MRF modeling: unary potential

$$\phi_U(L_{f_i}, P_{f_1}, P_{f_2}, ..., P_{f_N}) = \phi_1(L_{f_i}, P_{f_i}) \times \phi_2(L_{f_i}, P_{f_i}) \times \phi_3(L_{f_i}, P_{f_1}, ..., P_{f_N})$$

 L_f : location at which f_i is looking (label space)

 $oldsymbol{P}_{f_i}$: position and orientation of f_i

MRF modeling: binary potential

$$\phi_B(L_{f_i} = \ell_1, L_{f_j} = \ell_2) = \begin{cases} c_B & if(\ell_1 = \ell_2) \\ 1 - c_B & if(\ell_1 \neq \ell_2) \end{cases}$$

People engage joint attention.

Where Do They Look?

8 8 9 8 8 8 9 9 8 [Fathi CVPR12] First-Person

Detection of Social Interaction

Joint Attention

[Park NIPS12]

Input: images from first person cameras

Output: to localize joint attention in 3D

3D Camera Pose Estimation (Structure from motion)

Gaze Ray Calibration

Primary gaze ray with respect to the camera pose

3D Gaze Registration

3D Gaze Registration

Social Saliency

Social Saliency

3D Joint Attention via Mode-seeking

Mode-seeking: Gaze Concurrences

Two groups

Multiple groups

3D Joint Attention Reconstruction

1x speed

3D joint attention

[Park NIPS12]

Scene dynamism

Dynamic scene

Static scene

Rehg, CVPR13 Prabhaker, ECCV12 Prabhakar, CVPR12 Patron-Perez, BMVC10

Lan, CVPR12 Ramanathan, CVPR13 Antic, ECCV14

Ding, ECCV10 Choi, ECCV12, CVPR14 Direkoglu, ECCV12

Rodriguez, ICCVIIa, ICCVb Mehran, CVPR09 Alahi, CVPR14

Yang, CVPR12 Hoai, CVPR14

Fathi, CVPR12 Choi, ECCV14 Park, NIPS12, ICCV13

Cristani, BMVC11 Park, CVPR15 Arev, SIGGRAPH14

Wang, ECCV10 Gallagher, CVPR09

Dyadic interaction

Crowd interaction

Number of group members

Applications of Joint Attention

Gaze Prediction

[Park ICCV13]

Input: images of social interactions

Output: to predict gaze direction

Gaze Field

Gaze field
$$\mathbf{G} = \nabla \Phi \left(\bigcirc \right)$$

Social Game Sequence
Anomaly Detection

Video from the green marker (member)

Mafia Game

Mafia Game

Prediction for Missing Data

[Park ICCV13]

Social Footage Editing

[Arev SIGGRAPH14]

Input: videos of social interactions

Output: to edit videos to produce a coherent

story of social events.

Content creation

Content: 3D Joint Attention

Automatic Video Editing

Basketball Scene

Basketball Scene

Scene Summarization

Surprise Party Scene

Our method

Professional Editor

Scene dynamism

Dynamic scene

Static scene

Rehg, CVPR13 Prabhaker, ECCV12 Prabhakar, CVPR12 Patron-Perez, BMVC10

Lan, CVPR12 Di Ramanathan, CVPR13 Ch Antic, ECCV14 Di

Ding, ECCV10 Choi, ECCV12, CVPR14 Direkoglu, ECCV12

Rodriguez, ICCVIIa, ICCVb Mehran, CVPR09 Alahi, CVPR14

Yang, CVPR12 Hoai, CVPR14

Fathi, CVPR12 Choi, ECCV14 Park, NIPS12, ICCV13

Cristani, BMVC11 Park, CVPR15 Arev, SIGGRAPH14

Wang, ECCV10 Gallagher, CVPR09

Dyadic interaction

Crowd interaction

Number of group members