

CCD

Imager Sizes	Formats (Type)	~Diag.	Uses
	1/7" - 1.85 x 1.39mm	2.3	Cell phones, web cams, etc
	1/6" - 2.15 x 1.61mm	2.7	Cell phones, web cams, etc
	1/5" - 2.55 x 1.91mm	3.2	Cell phones, web cams, etc
	1/4" - 3.2 x 2.4mm	4.0	Cell phones, web cams, etc
	1/3.6" - 4.0 x 3.0mm	5.0	P&S DSC
	1/3.2" - 4.536 x 3.416mm	5.678	P&S DSC
	1/3" - 4.8 x 3.6mm	6.0	Casio QV-8000SX (1.2MP), Epson PhotoPC 700 (1.2MP)
	1/2.7" - 5.27 x 3.96mm	6.592	Canon PowerShot A20 (1.92MP), HP PhotoSmart C618 (1.92)
	1/2" - 6.4 x 4.8mm	8.0	Olympus C-2100Z (1.92MP), Epson PhotoPC 850Z (1.92)
	1/1.8" - 7.176 x 5.319mm	8.932	Nikon Coolpix 995 (3.14MP), Olympus C-4040Z (3.9MP), Canon PowerShot G2 (3.8MP), Sony DSC-S85 (3.8MP)
	2/3" - 8.8 x 6.6mm	11.0	Nikon Coolpix 5000 (4.92MP), Sony DSC-F707 (4.92MP), Olympus E-10 (3.7MP), Minolta DiMAGE 7 (4.92MP)
	1" - 12.8 x 9.6mm	16.0	Not used in DSCs. Used in some high-end video cameras
	Kodak KAF-5100CE CCD 17.8 x 13.4mm (4/3")	22.28	Olympus announced deveolpment of a new camera and new lenses for this 4/3" size. 2614 x 1966 - 5.1MP - 6.8µm pixel
	Foveon X3 F7-35X3-A25B 20.7 x 13.8mm	24.9	Sigma SD9 (X3) 2268 x 1512 = 3.43MP - 9.12µm pixel 1.74x Focal Length Multiplier (35mm film)

	Canon D30 CMOS 21.8 x 14.5mm	26.2	Canon D30 2160 x 1440 = 3.11MP - 10.1µm pixel 1.65x Focal Length Multiplier (35mm film)
	Canon D60 CMOS 22.7 x 15.1mm	27.3	Canon D60 3072 x 2048 = 6.3MP - 7.4µm pixel 1.59x Focal Length Multiplier (35mm film)
	Nikon D100 CCD Nikon D1x CCD 23.7 x 15.6mm	28.2	Nikon D100 - 3008 x 2000 = 6.1MP - 7.8μm pixel Nikon D1x - 4024 x 1324 = 5.24MP - 5.9 x 11.7μm pixel 1.52x Focal Length Multiplier (35mm film)
	APS Film 25.1 x 16.7mm	30.148	APS cameras 1.44x Focal Length Multiplier (35mm film)
	Canon EOS-1D CCD 27.0 x 17.8mm	32.3	Canon EOS-1D 2464 x 1648 = 4.06MP - 10.8µm pixel 1.34x Folcal Length Multiplier (35mm Film)
	Kodak KAF-6303CE CCD 27.8 x 18.5mm	33.4	Kodak 760 3088 x 2056 = 6.35MP - 9.0µm pixel 1.30x Focal Length Multiplier (35mm film)
	35mm Film Canon 1Ds Kodak 14n 36.0 x 24.0mm	43.27	35mm film cameras Canon 1Ds - 4064 x 2704 = 10.99MP - 8.85µm pixel Kodak DCS Pro 14n - 4536 x 3024 = 13.7MP - 7.94µm pixel

$$\frac{U_{\text{ccd}}}{W_{\text{ccd}}} = \frac{U_{\text{img}} - p_{x}}{W_{\text{img}}}$$

$$\frac{u_{\text{ccd}}}{W_{\text{ccd}}} = \frac{u_{\text{img}} - p_{x}}{W_{\text{img}}} \qquad \frac{v_{\text{ccd}}}{h_{\text{ccd}}} = \frac{v_{\text{img}} - p_{y}}{h_{\text{img}}}$$

$$\frac{u_{\text{ccd}}}{W_{\text{ccd}}} = \frac{u_{\text{img}} - p_{x}}{W_{\text{img}}} \qquad \frac{v_{\text{ccd}}}{h_{\text{ccd}}} = \frac{v_{\text{img}} - p_{y}}{h_{\text{img}}}$$

$$\longrightarrow u_{\text{img}} = u_{\text{ccd}} \frac{w_{\text{img}}}{w_{\text{ccd}}} + p_x \qquad v_{\text{img}} = v_{\text{ccd}} \frac{h_{\text{img}}}{h_{\text{ccd}}} + p_y$$

 $(u_{\text{ccd}}, v_{\text{ccd}}) = (f_{\text{m}} \frac{X}{Z}, f_{\text{m}} \frac{Y}{Z})$: Metric projection

$$(u_{\text{ccd}}, v_{\text{ccd}}) = (f_{\text{m}} \frac{X}{Z}, f_{\text{m}} \frac{Y}{Z})$$
 : Metric projection

Pixel projection

Pixel projection
$$\longrightarrow u_{\text{img}} = u_{\text{ccd}} \frac{W_{\text{img}}}{W_{\text{ccd}}} + p_x$$

$$v_{\text{img}} = v_{\text{ccd}} \frac{h_{\text{img}}}{h_{\text{ccd}}} + p_y$$

$$(u_{\text{ccd}}, v_{\text{ccd}}) = (f_{\text{m}} \frac{X}{Z}, f_{\text{m}} \frac{Y}{Z})$$
 : Metric projection

Pixel projection

$$\longrightarrow U_{\text{img}} = U_{\text{ccd}} \frac{W_{\text{img}}}{W_{\text{ccd}}} + p_x = f_{\text{m}} \frac{W_{\text{img}}}{W_{\text{ccd}}} \frac{X}{Z} + p_x$$

$$V_{\text{img}} = V_{\text{ccd}} \frac{h_{\text{img}}}{h_{\text{ccd}}} + p_y = f_{\text{m}} \frac{h_{\text{img}}}{h_{\text{ccd}}} \frac{Y}{Z} + p_y$$

$$(u_{\text{ccd}}, v_{\text{ccd}}) = (f_{\text{m}} \frac{X}{Z}, f_{\text{m}} \frac{Y}{Z})$$
 : Metric projection

Pixel projection

$$\longrightarrow U_{\text{img}} = U_{\text{ccd}} \frac{W_{\text{img}}}{W_{\text{ccd}}} + \rho_x = f_{\text{m}} \frac{W_{\text{img}}}{W_{\text{ccd}}} \frac{X}{Z} + \rho_x$$

$$V_{\text{img}} = V_{\text{ccd}} \frac{h_{\text{img}}}{h_{\text{ccd}}} + \rho_y = f_{\text{m}} \frac{h_{\text{img}}}{h_{\text{ccd}}} \frac{Y}{Z} + \rho_y$$

Focal length in pixel

$$(u_{\text{ccd}}, v_{\text{ccd}}) = (f_{\text{m}} \frac{X}{Z}, f_{\text{m}} \frac{Y}{Z})$$
 : Metric projection

Pixel projection

$$\longrightarrow U_{\text{img}} = U_{\text{ccd}} \frac{W_{\text{img}}}{W_{\text{ccd}}} + \rho_{x} = \int_{X} \frac{X}{Z} + \rho_{x}$$

$$V_{\text{img}} = V_{\text{ccd}} \frac{h_{\text{img}}}{h_{\text{ccd}}} + \rho_{y} = \int_{Y} \frac{Y}{Z} + \rho_{y}$$

Focal length in pixel

where
$$f_x = f_m \frac{W_{img}}{W_{ccd}}$$
 $f_y = f_m \frac{h_{img}}{h_{ccd}}$

$$(u_{\text{ccd}}, v_{\text{ccd}}) = (f_{\text{m}} \frac{X}{Z}, f_{\text{m}} \frac{Y}{Z})$$
 : Metric projection

Pixel projection

$$\longrightarrow u_{\text{img}} = u_{\text{ccd}} \frac{W_{\text{img}}}{W_{\text{ccd}}} + p_x = \int \frac{X}{Z} + p_x$$

$$V_{\text{img}} = V_{\text{ccd}} \frac{h_{\text{img}}}{h_{\text{ccd}}} + p_y = \int \frac{Y}{Z} + p_y$$

Focal length in pixel where $f = f_m \frac{W_{img}}{W_{ccd}} = f_m \frac{h_{img}}{h_{ccd}}$ if $\frac{W_{img}}{W_{ccd}} = \frac{h_{img}}{h_{ccd}}$

$$u_{\text{img}} = f \frac{X}{Z} + \rho_{x}$$

$$v_{\text{img}} = f \frac{Y}{Z} + \rho_{y}$$

$$u_{\text{img}} = f \frac{X}{Z} + p_x$$
 \longrightarrow $Zu_{\text{img}} = fX + p_x Z$

$$V_{\text{img}} = f \frac{Y}{Z} + p_y$$
 \longrightarrow $Zv_{\text{img}} = fY + p_y Z$

$$U_{\text{img}} = f \frac{X}{Z} + p_{x} \longrightarrow ZU_{\text{img}} = fX + p_{x}Z$$

$$V_{\text{img}} = f \frac{Y}{Z} + p_{y} \longrightarrow ZV_{\text{img}} = fY + p_{y}Z$$

$$Z \begin{bmatrix} U_{\text{img}} \\ V_{\text{img}} \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_{x} \\ f & p_{y} \\ Y \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

$$U_{\text{img}} = f \frac{X}{Z} + p_{x} \longrightarrow ZU_{\text{img}} = fX + p_{x}Z$$

$$V_{\text{img}} = f \frac{Y}{Z} + p_{y} \longrightarrow ZV_{\text{img}} = fY + p_{y}Z$$

$$\lambda \begin{bmatrix} U_{\text{img}} \\ V_{\text{img}} \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_{x} \\ f & p_{y} \\ 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

RENDERING

$$u_{\text{img}} = f \frac{X}{Z} + p_{x} \longrightarrow Zu_{\text{img}} = fX + p_{x}Z$$

$$v_{\text{img}} = f \frac{Y}{Z} + p_{y} \longrightarrow Zv_{\text{img}} = fY + p_{y}Z$$

$$\lambda \begin{bmatrix} u_{\text{img}} \\ v_{\text{img}} \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_{x} \\ f & p_{y} \\ 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
Graphics

3D RECONSTRUCTION~INVERSE RENDERING

$$u_{\text{img}} = f \frac{X}{Z} + p_{x} \longrightarrow Zu_{\text{img}} = fX + p_{x}Z$$

$$v_{\text{img}} = f \frac{Y}{Z} + p_{y} \longrightarrow Zv_{\text{img}} = fY + p_{y}Z$$

$$\lambda \begin{bmatrix} u_{\text{img}} \\ v_{\text{img}} \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_{x} \\ f & p_{y} \\ 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
Graphics
Vision

$$u_{\text{img}} = f \frac{X}{Z} + \rho_x$$
 \longrightarrow $Zu_{\text{img}} = fX + \rho_x Z$

$$V_{\text{img}} = f \frac{Y}{Z} + \rho_y$$
 \longrightarrow $ZV_{\text{img}} = fY + \rho_y Z$

Pixel space Metric space
$$\lambda \begin{bmatrix} u_{\text{img}} \\ v_{\text{img}} \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

$$u_{\text{img}} = f \frac{X}{Z} + p_x$$
 \longrightarrow $Zu_{\text{img}} = fX + p_x Z$

$$V_{\text{img}} = f \frac{Y}{Z} + p_y$$
 \longrightarrow $Zv_{\text{img}} = fY + p_y Z$

Pixel space Metric space
$$\lambda \begin{bmatrix} u_{\text{img}} \\ v_{\text{img}} \\ 1 \end{bmatrix} = \begin{bmatrix} f & p_x \\ f & p_y \\ 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Camera intrinsic parameter : metric space to pixel space

$$u_{\text{img}} = f \frac{X}{Z} + p_x$$
 \longrightarrow $Zu_{\text{img}} = fX + p_x Z$

$$v_{\text{img}} = f \frac{Y}{Z} + p_y$$
 \longrightarrow $Zv_{\text{img}} = fY + p_y Z$

Pixel space Metric space
$$\lambda \begin{bmatrix} u_{\text{img}} \\ v_{\text{img}} \\ 1 \end{bmatrix} = \begin{bmatrix} f & \rho_x \\ K & \rho_y \\ 1 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Camera intrinsic parameter : metric space to pixel space

INTRINSIC PARAMETER

Metric space

 $\begin{bmatrix} X \\ Y \end{bmatrix}$

INTRINSIC PARAMETER

Metric space p_x X Y Y Z

INTRINSIC PARAMETER

Pixel space Metric space
$$\lambda \begin{bmatrix} U_{\text{img}} \\ V_{\text{img}} \end{bmatrix} = \begin{bmatrix} f & p_x \\ Y & p_y \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

Pixel space Metric space
$$\lambda \begin{bmatrix} u_{\text{img}} \\ v_{\text{img}} \end{bmatrix} = \begin{bmatrix} f & \rho_x \\ K & \rho_y \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

$$\lambda \mathbf{K}^{-1} \begin{bmatrix} u_{\text{img}} \\ v_{\text{img}} \\ 1 \end{bmatrix}$$
3D ray

Pixel space Metric space
$$\lambda \begin{bmatrix} u_{\text{img}} \\ v_{\text{img}} \end{bmatrix} = \begin{bmatrix} f & \rho_x \\ K & \rho_y \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

$$\lambda \mathbf{K}^{-1} \begin{bmatrix} u_{\text{img}} \\ v_{\text{img}} \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
3D ray

Pixel space Metric space
$$\lambda \begin{bmatrix} U_{\text{img}} \\ V_{\text{img}} \end{bmatrix} = \begin{bmatrix} f & \rho_x \\ K & \rho_y \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

$$\lambda \mathbf{K}^{-1} \begin{bmatrix} u_{\text{img}} \\ v_{\text{img}} \\ 1 \end{bmatrix} = \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
3D ray

The 3D point must lie in

the 3D ray passing through the origin and 2D image point.