

Camera plane

Ground plane

Camera plane

Ground plane

Camera plane

1. Parallel lines in 3D meet at the same vanishing point in image.

- Camera plane

 1. Parallel lines in 3D meet at the same vanishing point in image.
 - 2. The 3D ray passing camera center and the vanishing point is parallel to the lines.

VANISHING POINT

Vanishing point Vanishing point Multiple vanishing point Vanishing point Vanishing line for horizon Vanishing point Vanishing line: Horizon

Parallel 3D planes share the vanishing line.

Different plane produces different vanishing line.

Different plane produces different vanishing line.

How to compute a vanishing point?

Different plane produces different vanishing line.

A 2D line passing through 2D point (u, v): au + bv + c = 0

Line parameter: (a,b,c)

A 2D line passing through 2D point (u, v): au + bv + c = 0

Line parameter: (a,b,c)

$$au + bv + c = 0 \longrightarrow \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \mathbf{I}^{\mathsf{T}} \mathbf{x} = 0$$

A 2D line passing through 2D point (u, v): au + bv + c = 0

Line parameter: (a,b,c)

$$au + bv + c = 0 \longrightarrow \begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \mathbf{I}^{\mathsf{T}} \mathbf{x} = 0$$

where
$$\mathbf{x} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$
 and $\mathbf{I} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

2D point Line parameter

A 2D line passing through two 2D points: $au_1 + bv_1 + c = 0$ $au_2 + bv_2 + c = 0$

A 2D line passing through two 2D points:

$$au_1 + bv_1 + c = 0$$
 $au_2 + bv_2 + c = 0$

$$\mathbf{x}_1^{\mathsf{T}}\mathbf{I} = 0 \qquad \qquad \mathbf{x}_2^{\mathsf{T}}\mathbf{I} = 0$$

where
$$\mathbf{x}_1 = \begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}$$
 $\mathbf{x}_2 = \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix}$ $\mathbf{I} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

A 2D line passing through two 2D points:

$$au_1 + bv_1 + c = 0$$
 $au_2 + bv_2 + c = 0$

$$\mathbf{x}_1^{\mathsf{T}}\mathbf{I} = 0 \qquad \qquad \mathbf{x}_2^{\mathsf{T}}\mathbf{I} = 0$$

where
$$\mathbf{x}_1 = \begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}$$
 $\mathbf{x}_2 = \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix}$ $\mathbf{I} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

$$\longrightarrow \begin{bmatrix} \mathbf{X}_1^{\mathsf{T}} \\ \mathbf{X}_2^{\mathsf{T}} \end{bmatrix} \mathbf{I} = \mathbf{0}$$

A 2D line passing through two 2D points:

$$au_1 + bv_1 + c = 0$$
 $au_2 + bv_2 + c = 0$

$$\mathbf{x}_1^{\mathsf{T}}\mathbf{I} = 0 \qquad \qquad \mathbf{x}_2^{\mathsf{T}}\mathbf{I} = 0$$

where
$$\mathbf{x}_1 = \begin{bmatrix} u_1 \\ v_1 \\ 1 \end{bmatrix}$$
 $\mathbf{x}_2 = \begin{bmatrix} u_2 \\ v_2 \\ 1 \end{bmatrix}$ $\mathbf{I} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

$$\longrightarrow \begin{bmatrix} \mathbf{X}_1^{\mathsf{T}} \\ \mathbf{X}_2^{\mathsf{T}} \end{bmatrix} \mathbf{I} = \mathbf{0}$$

LINE-LINE

Two 2D lines in an image intersect at a 2D point:

$$a_1 u + b_1 v + c_1 = 0$$
 $a_2 u + b_2 v + c_2 = 0$

LINE-LINE

Two 2D lines in an image intersect at a 2D point:

$$a_1 u + b_1 v + c_1 = 0$$
 $a_2 u + b_2 v + c_2 = 0$
 $\mathbf{I}_1^{\mathsf{T}} \mathbf{x} = 0$ $\mathbf{I}_2^{\mathsf{T}} \mathbf{x} = 0$

where
$$\mathbf{x} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$
 $\mathbf{I}_1 = \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix}$ $\mathbf{I}_2 = \begin{bmatrix} a_2 \\ b_2 \\ c_2 \end{bmatrix}$

LINE-LINE

Two 2D lines in an image intersect at a 2D point:

$$a_1 u + b_1 v + c_1 = 0$$
 $a_2 u + b_2 v + c_2 = 0$
 $\mathbf{I}_1^\mathsf{T} \mathbf{x} = 0$ $\mathbf{I}_2^\mathsf{T} \mathbf{x} = 0$

where
$$\mathbf{x} = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$$
 $\mathbf{I}_1 = \begin{bmatrix} a_1 \\ b_1 \\ c_1 \end{bmatrix}$ $\mathbf{I}_2 = \begin{bmatrix} a_2 \\ b_2 \\ c_2 \end{bmatrix}$

Parallel lines: $\mathbf{I}_{11} = \mathbf{u}_4 \times \mathbf{u}_3$ $\mathbf{I}_{12} = \mathbf{u}_1 \times \mathbf{u}_2$

Parallel lines:

$$\mathbf{I}_{11} = \mathbf{u}_4 \times \mathbf{u}_3 \qquad \mathbf{I}_{12} = \mathbf{u}_1 \times \mathbf{u}_2$$

$$\mathbf{I}_{21} = \mathbf{u}_4 \times \mathbf{u}_1 \qquad \mathbf{I}_{22} = \mathbf{u}_3 \times \mathbf{u}_4$$

Parallel lines:

$$\mathbf{I}_{11} = \mathbf{u}_4 \times \mathbf{u}_3 \qquad \mathbf{I}_{12} = \mathbf{u}_1 \times \mathbf{u}_2$$

$$\mathbf{I}_{21} = \mathbf{u}_4 \times \mathbf{u}_1 \qquad \mathbf{I}_{22} = \mathbf{u}_3 \times \mathbf{u}_4$$

Vanishing points:

$$\mathbf{X}_{1} = \mathbf{I}_{11} \times \mathbf{I}_{12}$$
 $\mathbf{X}_{2} = \mathbf{I}_{21} \times \mathbf{I}_{22}$

Parallel lines:

$$\mathbf{I}_{11} = \mathbf{u}_4 \times \mathbf{u}_3 \qquad \mathbf{I}_{12} = \mathbf{u}_1 \times \mathbf{u}_2$$

$$\mathbf{I}_{21} = \mathbf{u}_4 \times \mathbf{u}_1 \qquad \mathbf{I}_{22} = \mathbf{u}_3 \times \mathbf{u}_4$$

Vanishing points:

$$\mathbf{V}_1 = \mathbf{I}_{11} \times \mathbf{I}_{12} \qquad \qquad \mathbf{V}_2 = \mathbf{I}_{21} \times \mathbf{I}_{22}$$

Vanishing line:

$$\mathbf{I} = \mathbf{V}_1 \times \mathbf{V}_2$$

GEOMETRIC INTERPRETATION OF VANISHING LINE

WHERE WAS 1?

WHERE WAS 1?

Taken from my hotel room (6th floor)

Taken from beach