
CSCI 5561: Assignment #1

Histogram of Oriented Gradients (HOG)

1 Submission

• Assignment due: Sep 20 (11:55pm)

• Individual assignment

• 1 page summary write-up with resulting visualization (more than 1 page assign-
ment will be automatically returned.).

• Submission through Canvas.

• You will complete HOG.py that contains the following functions:

– extract_hog

– get_differential_filter

– filter_image

– get_gradient

– build_histogram

– get_block_descriptor

The code can be downloaded from
https://www-users.cs.umn.edu/~hspark/csci5561_F2019/HOG.zip.

• The function that does not comply with its specification will not be graded (no
credit).

• The code must be run with Python 3 interpreter.

• Required python packages: numpy, matplotlib, and opencv.

– numpy & matplotlib: https://scipy.org/install.html

– opencv: https://pypi.org/project/opencv-python/

• You are not allowed to use any high level python functions of image processing
and computer vision, e.g., cv2.filter2D. Please consult with TA if you are not
sure about the list of allowed functions.

• We provide a visualization code. The resulting HOG descriptor must be able to
be visualized with the provided code:
def visualize_hog_block(im, hog, cell_size, block_size)

1

https://www-users.cs.umn.edu/~hspark/csci5561_F2019/HOG.zip
https://scipy.org/install.html
https://pypi.org/project/opencv-python/

CSCI 5561: Assignment #1

Histogram of Oriented Gradients (HOG)

2 HOG

Figure 1: Histogram of oriented gradients. HOG feature is extracted and visualized for
(a) the entire image and (b) zoom-in image. The orientation and magnitude of the red
lines represents the gradient components in a local cell.

In this assignment, you will implement a variant of HOG (Histogram of Oriented Gradi-
ents) in Python proposed by Dalal and Trigg [1] (2015 Longuet-Higgins Prize Winner).
It had been long standing top representation (until deep learning) for the object detec-
tion task with a deformable part model by combining with a SVM classifier [2]. Given
an input image, your algorithm will compute the HOG feature and visualize as shown in
Figure 1 (the line directions are perpendicular to the gradient to show edge alignment).
The orientation and magnitude of the red lines represents the gradient components in
a local cell.

def extract_hog(im):

...

return hog

Input: input gray-scale image with uint8 format.
Output: HOG descriptor.
Description: You will compute the HOG descriptor of input image im. The pseudo-
code can be found below:

Algorithm 1 HOG

1: Convert the gray-scale image to float format and normalize to range [0, 1].
2: Get differential images using get_differential_filter and filter_image

3: Compute the gradients using get_gradient

4: Build the histogram of oriented gradients for all cells using build_histogram

5: Build the descriptor of all blocks with normalization using get_block_descriptor

6: Return a long vector (hog) by concatenating all block descriptors.

2

CSCI 5561: Assignment #1

Histogram of Oriented Gradients (HOG)

2.1 Image filtering

m

n

(a) Input image (b) Differential along x
direction

(c) Differential along y
direction

Figure 2: (a) Input image dimension. (b-c) Differential image along x and y directions.

def get_differential_filter():

...

return filter_x, filter_y

Input: none.
Output: filter_x and filter_y are 3×3 filters that differentiate along x and y di-
rections, respectively.
Description: You will compute the gradient by differentiating the image along x and
y directions. This code will output the differential filters.

def filter_image(im, filter):

...

return im_filtered

Input: im is the gray scale m × n image (Figure 2(a)) converted to float format and
filter is a filter (k × k matrix)
Output: im_filtered is m × n filtered image. You may need to pad zeros on the
boundary on the input image to get the same size filtered image.
Description: Given an image and filter, you will compute the filtered image. Given the
two functions above, you can generate differential images by visualizing the magnitude
of the filter response as shown in Figure 2(b) and 2(c).

3

CSCI 5561: Assignment #1

Histogram of Oriented Gradients (HOG)

2.2 Gradient Computation

(a) Magnitude

0

20

40

60

80

100

120

140

160

180

(b) Angle (c) Gradient (d) Zoomed eye (e) Zoomed neck

Figure 3: Visualization of (a) magnitude and (b) orientation of image gradients. (c-e)
Visualization of gradients at every 3rd pixel (the magnitudes are re-scaled for illustrative
purpose.).

def get_gradient(im_dx, im_dy):

...

return grad_mag, grad_angle

Input: im_dx and im_dy are the x and y differential images (size: m× n).
Output: grad_mag and grad_angle are the magnitude and orientation of the gradient
images (size: m × n). Note that the range of the angle should be [0, π), i.e., unsigned
angle (θ == θ + π).
Description: Given the differential images, you will compute the magnitude and angle
of the gradient. Using the gradients, you can visualize and have some sense with the
image, i.e., the magnitude of the gradient is proportional to the contrast (edge) of the lo-
cal patch and the orientation is perpendicular to the edge direction as shown in Figure 3.

4

CSCI 5561: Assignment #1

Histogram of Oriented Gradients (HOG)

2.3 Orientation Binning

Ignore this shaded area

ce
ll_

si
ze

Store gradient mag

4 3,

M

N

(,)u v

(a) ori histo

165 15 45 75 105 135 165
Su

m
 o

f m
ag

ni
tu

de
s

(b) Histogram per cell

Figure 4: (a) Histogram of oriented gradients can be built by (b) binning the gradients
to corresponding bin.

def build_histogram(grad_mag, grad_angle, cell_size):

...

return ori_histo

Input: grad_mag and grad_angle are the magnitude and orientation of the gradient
images (size: m× n); cell_size is the size of each cell, which is a positive integer.
Output: ori_histo is a 3D tensor with size M ×N × 6 where M and N are the
number of cells along y and x axes, respectively, i.e., M = bm/cell_sizec and N =
bn/cell_sizec where b·c is the round-off operation as shown in Figure 4(a).
Description: Given the magnitude and orientation of the gradients per pixel, you can
build the histogram of oriented gradients for each cell.

ori_histo(i, j, k) =
∑

(u,v)∈Ci,j

grad_mag(u, v) if grad_angle(u, v) ∈ θk (1)

where Ci,j is a set of x and y coordinates within the (i, j) cell, and θk is the angle
range of each bin, e.g., θ1 = [165◦, 180◦) ∪ [0◦, 15◦), θ2 = [15◦, 45◦), θ3 = [45◦, 75◦),
θ4 = [75◦, 105◦), θ5 = [105◦, 135◦), and θ6 = [135◦, 165◦). Therefore, ori_histo(i,j,:)
returns the histogram of the oriented gradients at (i, j) cell as shown in Figure 4(b).
Using the ori_histo, you can visualize HOG per cell where the magnitude of the line
proportional to the histogram as shown in Figure 1. Typical cell_size is 8.

5

CSCI 5561: Assignment #1

Histogram of Oriented Gradients (HOG)

2.4 Block Normalization

Block2x2 block

Concatenation of HOG
and normalization

Block

M

N

(a) Block descriptor

Block

M-1

N-1

(b) Block overlap with stride 1

Figure 5: HOG is normalized to account illumination and contrast to form a descriptor
for a block. (a) HOG within (1,1) block is concatenated and normalized to form a long
vector of size 24. (b) This applies to the rest block with overlap and stride 1 to form
the normalized HOG.

def get_block_descriptor(ori_histo, block_size):

...

return ori_histo_normalized

Input: ori_histo is the histogram of oriented gradients without normalization. block_size
is the size of each block (e.g., the number of cells in each row/column), which is a pos-
itive integer.
Output: ori_histo_normalized is the normalized histogram (size: (M−(block_size−
1))× (N − (block_size− 1))× (6× block_size2).
Description: To account for changes in illumination and contrast, the gradient strengths
must be locally normalized, which requires grouping the cells together into larger, spa-
tially connected blocks (adjacent cells). Given the histogram of oriented gradients, you
apply L2 normalization as follow:

1. Build a descriptor of the first block by concatenating the HOG within the block.
You can use block_size=2, i.e., 2 × 2 block will contain 2 × 2 × 6 entries that
will be concatenated to form one long vector as shown in Figure 5(a).

2. Normalize the descriptor as follow:

ĥi =
hi√∑
i h

2
i + e2

(2)

where hi is the ith element of the histogram and ĥi is the normalized histogram.
e is the normalization constant to prevent division by zero (e.g., e = 0.001).

3. Assign the normalized histogram to ori_histo_normalized(1,1) (white dot lo-
cation in Figure 5(a)).

4. Move to the next block ori_histo_normalized(1,2) with the stride 1 and iterate
1-3 steps above.

6

CSCI 5561: Assignment #1

Histogram of Oriented Gradients (HOG)

The resulting ori_histo_normalized will have the size of (M − 1)× (N − 1)× 24.

7

CSCI 5561: Assignment #1

Histogram of Oriented Gradients (HOG)

References

[1] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
CVPR, 2005.

[2] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, “Object de-
tection with discriminatively trained part based models,” TPAMI, 2010.

8

	Submission
	HOG
	Image filtering
	Gradient Computation
	Orientation Binning
	Block Normalization

