Convolutional Neural Network

1 Submission

- Assignment due: Nov 22 (11:55pm)
- Individual assignment
- Up to 2 page summary write-up with resulting visualization (more than 2 page assignment will be automatically returned.).
- Submission through Canvas.
- Following skeletal functions are already included in the cnn.py file (https://www-users.cs.umn.edu/~hspark/csci5561_F2019/HW4.zip)
 - main_slp_linear
 - main_slp
 - main_mlp
 - main_cnn
- List of function to submit:
 - get_mini_batch
 - fc
 - fc_backward
 - loss_euclidean
 - train_slp_linear
 - loss_cross_entropy_softmax
 - train_slp
 - relu
 - relu_backward
 - train_mlp
 - conv
 - conv_backward
 - pool2x2
 - pool2x2_backward
 - flattening
 - flattening_backward
 - trainCNN

- A list of MAT files to submit that contain the following trained weights:
 - slp_linear.mat: w, b
 - slp.mat: w, b
 - mlp.mat: w1, b1, w2, b2
 - cnn.mat: w_conv, b_conv, w_fc, b_fc
- DO NOT SUBMIT THE PROVIDED IMAGE DATA
- The function that does not comply with its specification will not be graded.
- You are not allowed to use computer vision related package functions unless explicitly mentioned here. Please consult with TA if you are not sure about the list of allowed functions.

Convolutional Neural Network

2 Overview

0	0	0	0	0	Ь	0	0	0	Ô
7	l	ł	۱	1	1	١	1	1	1
Z	2	I	Z	2	్రి	3	Э	7	2
З	З	3	3	З	З	3	3	3	3
4	ч.	4	4	4	4	ч	4	4	4
5	5	5	5	5	5	حک	5	5	5
								5	
6	6	6	6	6	6	6	6		6
いつ	6 7	6	6 7						

Figure 1: You will implement (1) a multi-layer perceptron (neural network) and (2) convolutiona neural network to recognize hand-written digit using the MNIST dataset.

The goal of this assignment is to implement neural network to recognize hand-written digits in the MNIST data.

MNIST Data You will use the MNIST hand written digit dataset to perform the first task (neural network). We reduce the image size $(28 \times 28 \rightarrow 14 \times 14)$ and subsample the data. You can download the training and testing data from here: http://www.cs.umn.edu/~hspark/csci5561_F2019/ReducedMNIST.zip

Description: The zip file includes two MAT files (mnist_train.mat and mnist_test.mat). Each file includes im_* and label_* variables:

- im_* is a matrix $(196 \times n)$ storing vectorized image data $(196 = 14 \times 14)$
- label_* is $1 \times n$ vector storing the label for each image data.

n is the number of images. You can visualize the ith image, e.g.,
plt.imshow(mnist_train['im_train'][:, 0].reshape((14, 14), order='F'), cmap='gray').

3 Single-layer Linear Perceptron

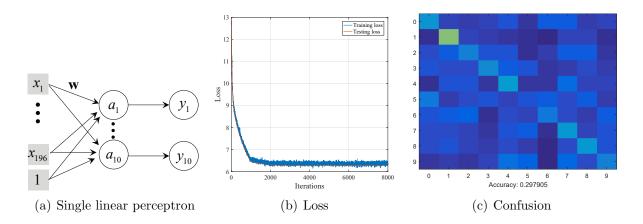


Figure 2: You will implement a single linear perceptron that produces accuracy near 30%. Random chance is 10% on testing data.

You will implement a single-layer *linear* perceptron (Figure 2(a)) with stochastic gradient descent method. We provide main_slp_linear where you will implement get_mini_batch and train_slp_linear.

```
def get_mini_batch(im_train, label_train, batch_size)
```

return mini_batch_x, mini_batch_y

. . .

Input: im_train and label_train are a set of images and labels, and batch_size is the size of the mini-batch for stochastic gradient descent.

Output: mini_batch_x and mini_batch_y are cells that contain a set of batches (images and labels, respectively). Each batch of images is a matrix with size 196×batch_size, and each batch of labels is a matrix with size 10×batch_size (one-hot encoding). Note that the number of images in the last batch may be smaller than batch_size. Description: You should randomly permute the the order of images when building

the batch, and whole sets of mini_batch_* must span all training data.

Convolutional Neural Network

def fc(x, w, b)

•••

return y

Input: $\mathbf{x} \in \mathbb{R}^{m \times 1}$ is the input to the fully connected layer, and $\mathbf{w} \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^{n \times 1}$ are the weights and bias.

Output: $\mathbf{y} \in \mathbb{R}^{n \times 1}$ is the output of the linear transform (fully connected layer). **Description:** FC is a linear transform of \mathbf{x} , i.e., $\mathbf{y} = \mathbf{w}\mathbf{x} + \mathbf{b}$.

def fc_backward(dl_dy, x, w, b, y)

•••

. . .

return dl_dx, dl_dw, dl_db

Input: $dl_dy \in \mathbb{R}^{1 \times n}$ is the loss derivative with respect to the output **y**.

Output: $dl_dx \in \mathbb{R}^{1 \times m}$ is the loss derivative with respect the input x, $dl_dw \in \mathbb{R}^{1 \times (n \times m)}$ is the loss derivative with respect to the weights, and $dl_db \in \mathbb{R}^{1 \times n}$ is the loss derivative with respect to the bias.

Description: The partial derivatives w.r.t. input, weights, and bias will be computed. dl_dx will be back-propagated, and dl_dw and dl_db will be used to update the weights and bias.

def loss_euclidean(y_tilde, y)

return 1, dl_dy

Input: $y_{tilde} \in \mathbb{R}^m$ is the prediction, and $y \in 0, 1^m$ is the ground truth label.

Output: $l \in \mathbb{R}$ is the loss, and dl_dy is the loss derivative with respect to the prediction.

Description: loss_euclidean measure Euclidean distance $L = ||\mathbf{y} - \widetilde{\mathbf{y}}||^2$.

Convolutional Neural Network

```
def train_slp_linear(mini_batch_x, mini_batch_y)
```

•••

return w, b

Input: mini_batch_x and mini_batch_y are cells where each cell is a batch of images and labels.

Output: $\mathbf{w} \in \mathbb{R}^{10 \times 196}$ and $\mathbf{b} \in \mathbb{R}^{10 \times 1}$ are the trained weights and bias of a single-layer perceptron.

Description: You will use fc, fc_backward, and loss_euclidean to train a singlelayer perceptron using a stochastic gradient descent method where a pseudo-code can be found below. Through training, you are expected to see reduction of loss as shown in Figure 2(b). As a result of training, the network should produce more than 25% of accuracy on the testing data (Figure 2(c)).

Algorithm 1 Stochastic Gradient Descent based Training

1: Set the learning rate γ 2: Set the decay rate $\lambda \in (0, 1]$ 3: Initialize the weights with a Gaussian noise $\mathbf{w} \in \mathcal{N}(0, 1)$ 4: k = 15: for iIter = 1 : nIters do At every 1000th iteration, $\gamma \leftarrow \lambda \gamma$ 6: $\frac{\partial L}{\partial \mathbf{w}} \leftarrow 0 \text{ and } \frac{\partial L}{\partial \mathbf{b}} \leftarrow 0$ for Each image \mathbf{x}_i in k^{th} mini-batch do 7: 8: Label prediction of \mathbf{x}_i 9: 10: Loss computation lGradient back-propagation of \mathbf{x}_i , $\frac{\partial l}{\partial \mathbf{w}}$ using back-propagation. $\frac{\partial L}{\partial \mathbf{w}} = \frac{\partial L}{\partial \mathbf{w}} + \frac{\partial l}{\partial \mathbf{w}}$ and $\frac{\partial L}{\partial \mathbf{b}} = \frac{\partial L}{\partial \mathbf{b}} + \frac{\partial l}{\partial \mathbf{b}}$ 11: 12:end for 13:k++ (Set k=1 if k is greater than the number of mini-batches.) 14: Update the weights, $\mathbf{w} \leftarrow \mathbf{w} - \frac{\gamma}{R} \frac{\partial L}{\partial \mathbf{w}}$, and bias $\mathbf{b} \leftarrow \mathbf{b} - \frac{\gamma}{R} \frac{\partial L}{\partial \mathbf{b}}$ 15:16: **end for**

Convolutional Neural Network

4 Single-layer Perceptron

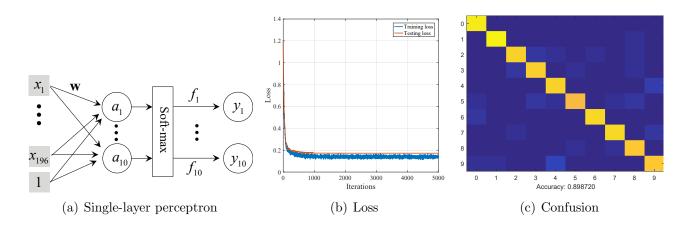


Figure 3: You will implement a single perceptron that produces accuracy near 90% on testing data.

You will implement a single-layer perceptron with *soft-max cross-entropy* using stochastic gradient descent method. We provide main_slp where you will implement train_slp. Unlike the single-layer linear perceptron, it has a soft-max layer that approximates a max function by clamping the output to [0, 1] range as shown in Figure 3(a).

```
def loss_cross_entropy_softmax(x, y)
```

...

return l, dl_dy

Input: $\mathbf{x} \in \mathbb{R}^{m \times 1}$ is the input to the soft-max, and $\mathbf{y} \in 0, 1^m$ is the ground truth label. **Output:** $\mathbf{L} \in \mathbb{R}$ is the loss, and $\mathtt{dl}_\mathtt{dy}$ is the loss derivative with respect to \mathbf{x} . **Description:** $\mathtt{Loss_cross_entropy_softmax}$ measure cross-entropy between two distributions $L = \sum_i^m \mathbf{y}_i \log \tilde{\mathbf{y}}_i$ where $\tilde{\mathbf{y}}_i$ is the soft-max output that approximates the max operation by clamping \mathbf{x} to [0, 1] range:

$$\sim e^{\mathbf{x}_i}$$

$$\widetilde{\mathbf{y}}_i = \frac{e^{-1}}{\sum_i e^{\mathbf{x}_i}},$$

where \mathbf{x}_i is the *i*th element of \mathbf{x} .

Convolutional Neural Network

def train_slp(mini_batch_x, mini_batch_y)

•••

return w, b

Output: $\mathbf{w} \in \mathbb{R}^{10 \times 196}$ and $\mathbf{b} \in \mathbb{R}^{10 \times 1}$ are the trained weights and bias of a single-layer perceptron.

Description: You will use the following functions to train a single-layer perceptron using a stochastic gradient descent method: fc, fc_backward, loss_cross_entropy_softmax

Through training, you are expected to see reduction of loss as shown in Figure 3(b). As a result of training, the network should produce more than 85% of accuracy on the testing data (Figure 3(c)).

5 Multi-layer Perceptron

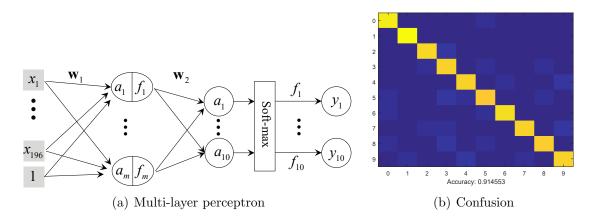


Figure 4: You will implement a multi-layer perceptron that produces accuracy more than 90% on testing data.

You will implement a multi-layer perceptron with a single hidden layer using a stochastic gradient descent method. We provide $main_mlp$. The hidden layer is composed of 30 units as shown in Figure 4(a).

```
def relu(x)
...
return y
```

Input: x is a general tensor, matrix, and vector.

Output: y is the output of the Rectified Linear Unit (ReLu) with the same input size. **Description:** ReLu is an activation unit $(\mathbf{y}_i = \max(0, \mathbf{x}_i))$. In some case, it is possible to use a Leaky ReLu $(\mathbf{y}_i = \max(\epsilon \mathbf{x}_i, \mathbf{x}_i)$ where $\epsilon = 0.01$).

```
def relu_backward(dl_dy, x, y)
```

... return dl_dx

Input: $dl_dy \in \mathbb{R}^{1 \times z}$ is the loss derivative with respect to the output $y \in \mathbb{R}^z$ where z is the size of input (it can be tensor, matrix, and vector).

Output: $dl_dx \in \mathbb{R}^{1 \times z}$ is the loss derivative with respect to the input **x**.

def train_mlp(mini_batch_x, mini_batch_y)

. . .

return w1, b1, w2, b2

Output: $w1 \in \mathbb{R}^{30 \times 196}$, $b1 \in \mathbb{R}^{30 \times 1}$, $w2 \in \mathbb{R}^{10 \times 30}$, $b2 \in \mathbb{R}^{10 \times 1}$ are the trained weights and biases of a multi-layer perceptron.

Description: You will use the following functions to train a multi-layer perceptron using a stochastic gradient descent method: fc, fc_backward, relu, relu_backward, loss_cross_entropy_softmax. As a result of training, the network should produce more than 90% of accuracy on the testing data (Figure 4(b)).

Convolutional Neural Network

6 Convolutional Neural Network

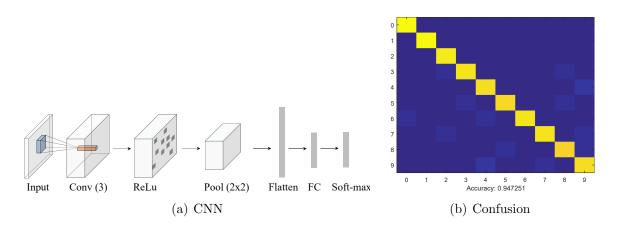


Figure 5: You will implement a convolutional neural network that produces accuracy more than 92% on testing data.

You will implement a convolutional neural network (CNN) using a stochastic gradient descent method. We provide main_cnn. As shown in Figure 4(a), the network is composed of: a single channel input $(14 \times 14 \times 1) \rightarrow$ Conv layer $(3 \times 3$ convolution with 3 channel output and stride 1) \rightarrow ReLu layer \rightarrow Max-pooling layer $(2 \times 2$ with stride 2) \rightarrow Flattening layer $(147 \text{ units}) \rightarrow$ FC layer $(10 \text{ units}) \rightarrow$ Soft-max.

```
def conv(x, w_conv, b_conv)
```

... return y

Input: $\mathbf{x} \in \mathbb{R}^{H \times W \times C_1}$ is an input to the convolutional operation, $\mathbf{w}_\operatorname{conv} \in \mathbb{R}^{h \times w \times C_1 \times C_2}$ and $\mathbf{b}_\operatorname{conv} \in \mathbb{R}^{C_2 \times 1}$ are weights and bias of the convolutional operation. **Output:** $\mathbf{y} \in \mathbb{R}^{H \times W \times C_2}$ is the output of the convolutional operation. Note that to get the same size with the input, you may pad zero at the boundary of the input image. **Description:** You can use np.pad for padding 0s at boundary. Optionally, you may use $\operatorname{im} 2\operatorname{col}^1$ to simplify convolutional operation.

¹https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/making_faster.html

Convolutional Neural Network

def conv_backward(dl_dy, x, w_conv, b_conv, y)

• • •

return dl_dw, dl_db

Input: dl_dy is the loss derivative with respec to y.

Output: dl_dw and dl_db are the loss derivatives with respect to convolutional weights and bias w and b, respectively.

Description: Note that for the single convolutional layer, $\frac{\partial L}{\partial \mathbf{x}}$ is not needed. Optionally, you may use im2col to simplify convolutional operation.

def pool2x2(x)

return y

Input: $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$ is a general tensor and matrix. **Output:** $\mathbf{y} \in \mathbb{R}^{\frac{H}{2} \times \frac{W}{2} \times C}$ is the output of the 2 × 2 max-pooling operation with stride 2.

def pool2x2_backward(dl_dy, x, y)

• • •

return dl_dx

Input: dl_dy is the loss derivative with respect to the output y.

Output: dl_dx is the loss derivative with respect to the input x.

Convolutional Neural Network

```
def flattening(x)
    ...
    return y
Input: x ∈ ℝ<sup>H×W×C</sup> is a tensor.
Output: y ∈ ℝ<sup>HWC</sup> is the vectorized tensor (column major).
```

def flattening_backward(dl_dy, x, y)

return dl_dx
Input: dl_dy is the loss derivative with respect to the output y.

Output: dl_dx is the loss derivative with respect to the input x.

function train_cnn(mini_batch_x, mini_batch_y)

• • •

return w_conv, b_conv, w_fc, b_fc

Output: $w_conv \in \mathbb{R}^{3 \times 3 \times 1 \times 3}$, $b_conv \in \mathbb{R}^3$, $w_fc \in \mathbb{R}^{10 \times 147}$, $b_fc \in \mathbb{R}^{10 \times 1}$ are the trained weights and biases of the CNN.

Description: You will use the following functions to train a convolutional neural network using a stochastic gradient descent method: conv, conv_backward, pool2x2, pool2x2_backward, Flattening, flattening_backward, fc, fc_backward, relu, relu_backward, loss_cross_entropy_softmax. As a result of training, the network should produce more than 92% of accuracy on the testing data (Figure 5(b)).