
CSCI 5561: Assignment #4

Convolutional Neural Network

1 Submission

• Assignment due: Nov 22 (11:55pm)

• Individual assignment

• Up to 2 page summary write-up with resulting visualization (more than 2 page
assignment will be automatically returned.).

• Submission through Canvas.

• Following skeletal functions are already included in the cnn.py file (https://
www-users.cs.umn.edu/~hspark/csci5561_F2019/HW4.zip)

– main_slp_linear

– main_slp

– main_mlp

– main_cnn

• List of function to submit:

– get_mini_batch

– fc

– fc_backward

– loss_euclidean

– train_slp_linear

– loss_cross_entropy_softmax

– train_slp

– relu

– relu_backward

– train_mlp

– conv

– conv_backward

– pool2x2

– pool2x2_backward

– flattening

– flattening_backward

– trainCNN

1

https://www-users.cs.umn.edu/~hspark/csci5561_F2019/HW4.zip
https://www-users.cs.umn.edu/~hspark/csci5561_F2019/HW4.zip


CSCI 5561: Assignment #4

Convolutional Neural Network

• A list of MAT files to submit that contain the following trained weights:

– slp_linear.mat: w, b

– slp.mat: w, b

– mlp.mat: w1, b1, w2, b2

– cnn.mat: w_conv, b_conv, w_fc, b_fc

• DO NOT SUBMIT THE PROVIDED IMAGE DATA

• The function that does not comply with its specification will not be graded.

• You are not allowed to use computer vision related package functions unless ex-
plicitly mentioned here. Please consult with TA if you are not sure about the list
of allowed functions.

2



CSCI 5561: Assignment #4

Convolutional Neural Network

2 Overview

Figure 1: You will implement (1) a multi-layer perceptron (neural network) and (2)
convolutiona neural network to recognize hand-written digit using the MNIST dataset.

The goal of this assignment is to implement neural network to recognize hand-written
digits in the MNIST data.

MNIST Data You will use the MNIST hand written digit dataset to perform the first
task (neural network). We reduce the image size (28 × 28 → 14 × 14) and subsample
the data. You can download the training and testing data from here:
http://www.cs.umn.edu/~hspark/csci5561_F2019/ReducedMNIST.zip

Description: The zip file includes two MAT files (mnist_train.mat and mnist_test.mat).
Each file includes im_* and label_* variables:

• im_* is a matrix (196× n) storing vectorized image data (196 = 14× 14)

• label_* is 1× n vector storing the label for each image data.

n is the number of images. You can visualize the ith image, e.g.,
plt.imshow(mnist_train[’im_train’][:, 0].reshape((14, 14), order=’F’), cmap=’gray’).

3

http://www.cs.umn.edu/~hspark/csci5561_F2019/ReducedMNIST.zip


CSCI 5561: Assignment #4

Convolutional Neural Network

3 Single-layer Linear Perceptron

w1x

1y1a

196x

1
10a 10y

(a) Single linear perceptron

0 2000 4000 6000 8000
Iterations

6

7

8

9

10

11

12

13

Lo
ss

Training loss
Testing loss

(b) Loss

0 1 2 3 4 5 6 7 8 9
Accuracy: 0.297905

0

1

2

3

4

5

6

7

8

9

(c) Confusion

Figure 2: You will implement a single linear perceptron that produces accuracy near
30%. Random chance is 10% on testing data.

You will implement a single-layer linear perceptron (Figure 2(a)) with stochastic gradi-
ent descent method. We provide main_slp_linear where you will implement get_mini_batch
and train_slp_linear.

def get_mini_batch(im_train, label_train, batch_size)

...

return mini_batch_x, mini_batch_y

Input: im_train and label_train are a set of images and labels, and batch_size is
the size of the mini-batch for stochastic gradient descent.
Output: mini_batch_x and mini_batch_y are cells that contain a set of batches (im-
ages and labels, respectively). Each batch of images is a matrix with size 196×batch_size,
and each batch of labels is a matrix with size 10×batch_size (one-hot encoding). Note
that the number of images in the last batch may be smaller than batch_size.
Description: You should randomly permute the the order of images when building
the batch, and whole sets of mini_batch_* must span all training data.

4



CSCI 5561: Assignment #4

Convolutional Neural Network

def fc(x, w, b)

...

return y

Input: x∈ Rm×1 is the input to the fully connected layer, and w∈ Rn×m and b∈ Rn×1

are the weights and bias.
Output: y∈ Rn×1 is the output of the linear transform (fully connected layer).
Description: FC is a linear transform of x, i.e., y = wx + b.

def fc_backward(dl_dy, x, w, b, y)

...

return dl_dx, dl_dw, dl_db

Input: dl_dy ∈ R1×n is the loss derivative with respect to the output y.
Output: dl_dx ∈ R1×m is the loss derivative with respect the input x, dl_dw ∈
R1×(n×m) is the loss derivative with respect to the weights, and dl_db ∈ R1×n is the
loss derivative with respec to the bias.
Description: The partial derivatives w.r.t. input, weights, and bias will be computed.
dl_dx will be back-propagated, and dl_dw and dl_db will be used to update the weights
and bias.

def loss_euclidean(y_tilde, y)

...

return l, dl_dy

Input: y_tilde ∈ Rm is the prediction, and y∈ 0, 1m is the ground truth label.
Output: l∈ R is the loss, and dl_dy is the loss derivative with respect to the predic-
tion.
Description: loss_euclidean measure Euclidean distance L = ‖y − ỹ‖2.

5



CSCI 5561: Assignment #4

Convolutional Neural Network

def train_slp_linear(mini_batch_x, mini_batch_y)

...

return w, b

Input: mini_batch_x and mini_batch_y are cells where each cell is a batch of images
and labels.
Output: w ∈ R10×196 and b ∈ R10×1 are the trained weights and bias of a single-layer
perceptron.
Description: You will use fc, fc_backward, and loss_euclidean to train a single-
layer perceptron using a stochastic gradient descent method where a pseudo-code can
be found below. Through training, you are expected to see reduction of loss as shown
in Figure 2(b). As a result of training, the network should produce more than 25% of
accuracy on the testing data (Figure 2(c)).

Algorithm 1 Stochastic Gradient Descent based Training

1: Set the learning rate γ
2: Set the decay rate λ ∈ (0, 1]
3: Initialize the weights with a Gaussian noise w ∈ N (0, 1)
4: k = 1
5: for iIter = 1 : nIters do
6: At every 1000th iteration, γ ← λγ
7: ∂L

∂w
← 0 and ∂L

∂b
← 0

8: for Each image xi in kth mini-batch do
9: Label prediction of xi

10: Loss computation l
11: Gradient back-propagation of xi,

∂l
∂w

using back-propagation.
12: ∂L

∂w
= ∂L

∂w
+ ∂l

∂w
and ∂L

∂b
= ∂L

∂b
+ ∂l

∂b

13: end for
14: k++ (Set k = 1 if k is greater than the number of mini-batches.)
15: Update the weights, w← w − γ

R
∂L
∂w

, and bias b← b− γ
R
∂L
∂b

16: end for

6



CSCI 5561: Assignment #4

Convolutional Neural Network

4 Single-layer Perceptron

w1x

1y

196x

1
10y

1a

10a

1fSoft-m
ax

10f

(a) Single-layer perceptron

0 1000 2000 3000 4000 5000
Iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Lo
ss

Training loss
Testing loss

(b) Loss

0 1 2 3 4 5 6 7 8 9
Accuracy: 0.898720

0

1

2

3

4

5

6

7

8

9

(c) Confusion

Figure 3: You will implement a single perceptron that produces accuracy near 90% on
testing data.

You will implement a single-layer perceptron with soft-max cross-entropy using stochas-
tic gradient descent method. We provide main_slp where you will implement train_slp.
Unlike the single-layer linear perceptron, it has a soft-max layer that approximates a
max function by clamping the output to [0, 1] range as shown in Figure 3(a).

def loss_cross_entropy_softmax(x, y)

...

return l, dl_dy

Input: x ∈ Rm×1 is the input to the soft-max, and y∈ 0, 1m is the ground truth label.
Output: L∈ R is the loss, and dl_dy is the loss derivative with respect to x.
Description: Loss_cross_entropy_softmax measure cross-entropy between two dis-
tributions L =

∑m
i yi log ỹi where ỹi is the soft-max output that approximates the max

operation by clamping x to [0, 1] range:

ỹi =
exi∑
i e

xi
,

where xi is the ith element of x.

7



CSCI 5561: Assignment #4

Convolutional Neural Network

def train_slp(mini_batch_x, mini_batch_y)

...

return w, b

Output: w ∈ R10×196 and b ∈ R10×1 are the trained weights and bias of a single-layer
perceptron.
Description: You will use the following functions to train a single-layer perceptron us-
ing a stochastic gradient descent method: fc, fc_backward, loss_cross_entropy_softmax

Through training, you are expected to see reduction of loss as shown in Figure 3(b).
As a result of training, the network should produce more than 85% of accuracy on the
testing data (Figure 3(c)).

8



CSCI 5561: Assignment #4

Convolutional Neural Network

5 Multi-layer Perceptron

1w
1x

196x

1

1y1a

10y10a

1a 1f

ma mf

2w
1fSoft-m

ax

10f

(a) Multi-layer perceptron

0 1 2 3 4 5 6 7 8 9
Accuracy: 0.914553

0

1

2

3

4

5

6

7

8

9

(b) Confusion

Figure 4: You will implement a multi-layer perceptron that produces accuracy more
than 90% on testing data.

You will implement a multi-layer perceptron with a single hidden layer using a stochastic
gradient descent method. We provide main_mlp. The hidden layer is composed of 30
units as shown in Figure 4(a).

def relu(x)

...

return y

Input: x is a general tensor, matrix, and vector.
Output: y is the output of the Rectified Linear Unit (ReLu) with the same input size.
Description: ReLu is an activation unit (yi = max(0,xi)). In some case, it is possible
to use a Leaky ReLu (yi = max(εxi,xi) where ε = 0.01).

def relu_backward(dl_dy, x, y)

...

return dl_dx

Input: dl_dy ∈ R1×z is the loss derivative with respect to the output y ∈ Rz where z
is the size of input (it can be tensor, matrix, and vector).
Output: dl_dx ∈ R1×z is the loss derivative with respect to the input x.

9



CSCI 5561: Assignment #4

Convolutional Neural Network

def train_mlp(mini_batch_x, mini_batch_y)

...

return w1, b1, w2, b2

Output: w1 ∈ R30×196, b1 ∈ R30×1, w2 ∈ R10×30, b2 ∈ R10×1 are the trained weights
and biases of a multi-layer perceptron.
Description: You will use the following functions to train a multi-layer perceptron
using a stochastic gradient descent method: fc, fc_backward, relu, relu_backward,
loss_cross_entropy_softmax. As a result of training, the network should produce
more than 90% of accuracy on the testing data (Figure 4(b)).

10



CSCI 5561: Assignment #4

Convolutional Neural Network

6 Convolutional Neural Network

Input Conv (3) ReLu Pool (2x2) Flatten FC Soft-max

(a) CNN

0 1 2 3 4 5 6 7 8 9
Accuracy: 0.947251

0

1

2

3

4

5

6

7

8

9

(b) Confusion

Figure 5: You will implement a convolutional neural network that produces accuracy
more than 92% on testing data.

You will implement a convolutional neural network (CNN) using a stochastic gradient
descent method. We provide main_cnn. As shown in Figure 4(a), the network is
composed of: a single channel input (14×14×1)→ Conv layer (3×3 convolution with
3 channel output and stride 1) → ReLu layer → Max-pooling layer (2 × 2 with stride
2) → Flattening layer (147 units) → FC layer (10 units) → Soft-max.

def conv(x, w_conv, b_conv)

...

return y

Input: x ∈ RH×W×C1 is an input to the convolutional operation, w_conv ∈ Rh×w×C1×C2

and b_conv ∈ RC2×1 are weights and bias of the convolutional operation.
Output: y ∈ RH×W×C2 is the output of the convolutional operation. Note that to get
the same size with the input, you may pad zero at the boundary of the input image.
Description: You can use np.pad for padding 0s at boundary. Optionally, you may
use im2col1 to simplify convolutional operation.

1https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/making_

faster.html

11

https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/making_faster.html
https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/making_faster.html


CSCI 5561: Assignment #4

Convolutional Neural Network

def conv_backward(dl_dy, x, w_conv, b_conv, y)

...

return dl_dw, dl_db

Input: dl_dy is the loss derivative with respec to y.
Output: dl_dw and dl_db are the loss derivatives with respect to convolutional weights
and bias w and b, respectively.
Description: Note that for the single convolutional layer, ∂L

∂x
is not needed. Option-

ally, you may use im2col to simplify convolutional operation.

def pool2x2(x)

...

return y

Input: x ∈ RH×W×C is a general tensor and matrix.
Output: y ∈ RH

2
×W

2
×C is the output of the 2× 2 max-pooling operation with stride 2.

def pool2x2_backward(dl_dy, x, y)

...

return dl_dx

Input: dl_dy is the loss derivative with respect to the output y.
Output: dl_dx is the loss derivative with respect to the input x.

12



CSCI 5561: Assignment #4

Convolutional Neural Network

def flattening(x)

...

return y

Input: x ∈ RH×W×C is a tensor.
Output: y ∈ RHWC is the vectorized tensor (column major).

def flattening_backward(dl_dy, x, y)

...

return dl_dx

Input: dl_dy is the loss derivative with respect to the output y.
Output: dl_dx is the loss derivative with respect to the input x.

function train_cnn(mini_batch_x, mini_batch_y)

...

return w_conv, b_conv, w_fc, b_fc

Output: w_conv ∈ R3×3×1×3, b_conv ∈ R3, w_fc ∈ R10×147, b_fc ∈ R10×1 are the
trained weights and biases of the CNN.
Description: You will use the following functions to train a convolutional neural
network using a stochastic gradient descent method: conv, conv_backward, pool2x2,
pool2x2_backward, Flattening, flattening_backward, fc, fc_backward, relu, relu_backward,
loss_cross_entropy_softmax. As a result of training, the network should produce
more than 92% of accuracy on the testing data (Figure 5(b)).

13


	Submission
	Overview
	Single-layer Linear Perceptron
	Single-layer Perceptron
	Multi-layer Perceptron
	Convolutional Neural Network

