
CSCI 5561: Assignment #5

Stereo Reconstruction

1 Submission

• Assignment due: Dec 13 (11:55pm)

• Individual assignment

• Up to 2 page summary write-up with resulting visualization (more than 2 page
assignment will be automatically returned.).

• Submission through Canvas.

• List functions to submission:

– find_match

– compute_F

– triangulation

– disambiguate_pose

– compute_rectification

– dense_match

• A MAT file that contains the following variables:

– stereo.mat: pts1, pts2, F, pts3D, H1, H2, img_left_w, img_right_w,
disparity

• DO NOT SUBMIT THE PROVIDED IMAGE DATA

• The function that does not comply with its specification will not be graded.

• You are not allowed to use computer vision related package functions unless ex-
plicitly mentioned here. Please consult with TA if you are not sure about the list
of allowed functions.

1

CSCI 5561: Assignment #5

Stereo Reconstruction

2 Overview

In this assignment, you will implement a stereo reconstruction algorithm given two view
images.

(a) Left image (b) Right image

Figure 1: In this assignment, you will implement a stereo reconstruction algorithm
given two images.

You can download provided code and data (left.bmp and right.bmp) from here:
https://www-users.cs.umn.edu/~hspark/csci5561_F2019/HW5.zip

You will fill each function to submit such that the skeletal code in Stereo_Reconstruction

can run through and produces a stereo disparity map.

2

https://www-users.cs.umn.edu/~hspark/csci5561_F2019/HW5.zip

CSCI 5561: Assignment #5

Stereo Reconstruction

3 SIFT Feature Matching

(a) Matching from I1 to I2 (b) Matching from I2 to I1

(c) Matching from I1 to I2 after ratio test (d) Matching from I2 to I1 after ratio test

(e) Bidirectional matching between I1 and I2

Figure 2: You will match points between I1 and I2 using SIFT features.

You will use OpenCV SIFT to extract keypoints and match between two views using
k-nearest neighbor search. The matches will be filtered using the ratio test and bidi-
rectional consistency check.

def find_match(img1, img2):

...

return x1, x2

Input: two input gray-scale images with uint8 format.
Output: x1 and x2 are n× 2 matrices that specify the correspondence.
Description: Each row of x1 and x2 contains the (x, y) coordinate of the point corre-
spondence in I1 ad I2, respectively, i.e., x1(i,:) ↔ x2(i,:).

(Note) You can only use SIFT module of OpenCV for the SIFT descriptor extraction.
Matching with the ratio test needs to be implemented by yourself.

3

CSCI 5561: Assignment #5

Stereo Reconstruction

4 Fundamental Matrix Computation

Figure 3: Given matches, you will compute a fundamental matrix to draw epipolar
lines.

def compute_F(pts1, pts2):

...

return F

Input: pts1 and pts2 are n× 2 matrices that specify the correspondence.
Output: F ∈ R3×3 is the fundamental matrix.
Description: F is robustly computed by the 8-point algorithm within RANSAC. Note
that the rank of the fundamental matrix needs to be 2 (SVD clean-up should be ap-
plied.). You can verify the validity of fundamental matrix by visualizing epipolar line
as shown in Figure 3.

4

CSCI 5561: Assignment #5

Stereo Reconstruction

(Note) Given the fundamental matrix, you can get camera poses using the PROVIDED
function:
def compute_camera_pose(F, K)

...

return Rs, Cs

This function computes the four sets of camera poses given the fundamental matrix
where Rs, Cs are python lists of rotation matrices (3× 3) and camera centers (3× 1)
respectively (represented in the world coordinate system) and K∈ R3×3 is the PRO-
VIDED intrinsic parameter. These four configurations can be visualized in 3D using
PROVIDED function visualize_camera_poses as shown in Figure 4.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.8

0.6

0.4

0.2

0

0.5

0.2

0

0

-0.2

-0.5

-0.4

-1

-0.6

-1.5 0.50
-0.5

0
0

0.2

-0.2

0.4

0 0.2 0.4 0.6 0.8 1
0.50-0.5-1

0.2

0

-0.2

-0.4

-1.5

-0.6

0

Figure 4: Four configurations of camera pose from a fundamental matrix.

5

CSCI 5561: Assignment #5

Stereo Reconstruction

5 Triangulation

Given camera pose and correspondences, you will triangulate to reconstruct 3D points.

def triangulation(P1, P2, pts1, pts2)

...

return pts3D

Input: P1 and P2 are two camera projection matrices (R3×4). pts1 and pts2 are n×2
matrices that specify the correspondence.
Output: pts3D is n× 3 where each row specifies the 3D reconstructed point.
Description: You can use a linear triangulation method, i.e.,

[
u
1

]
×
P1[

v
1

]
×
P2

[pts3D
1

]
= 0

(Note) Use PROVIDED function visualize_camera_poses_with_pts to visualize 4
sets of camera poses with reconstructed 3D point cloud as shown in Figure 5.

100500

0

-20

-50

-40

-60

-80

0

0

-100

20

-50

40

60

0

80

50

40

20

806040

0

200-20

-20

-40-60-80 0

-40

-20

0

20

0 6040200-20-40-60-80

(a) nValid = 10 (b) nValid = 488

(c) nValid = 0 (d) nValid = 0

Figure 5: You can visualize four camera pose configurations with point cloud.

6

CSCI 5561: Assignment #5

Stereo Reconstruction

6 Pose Disambiguation

Given four configurations of relative camera pose and reconstructed points, you will
find the best camera pose by verifying through 3D point triangulation.

def disambiguate_pose(Rs, Cs, pts3Ds)

...

return R, C, pts3D

Input: Rs, Cs, pts3Ds are python lists of rotation matrices, camera centers and 3D
reconstructed points respectively
Output: R, C, pts3D are the best camera rotation, center, and 3D reconstructed points.
Description: The 3D point must lie in front of the both cameras. In Figure 5, nValid
means the number of points that are in front of both cameras. (b) configuration pro-
duces the maximum number of valid points, and therefore it is the best configuration.

7

CSCI 5561: Assignment #5

Stereo Reconstruction

7 Stereo

(a) Rectified image 1 (b) Rectified image 2

Figure 6: Stereo rectification.

Given the disambiguated camera pose, you will implement dense stereo matching be-
tween two views based on dense SIFT.

def compute_rectification(K, R, C)

...

return H1, H2

Input: The relative camera pose (R and C) and intrinsic parameter K.
Output: H1 and H2 are homographies that rectify the left and right images such that
the epipoles are at infinity.
Description: Given the disambiguated camera pose, you can find the rectification
rotation matrix, Rrect such that the x-axis of the images aligns with the baseline. Find
the rectification homography H = KRrectR

TK−1 where R is the rotation matrix of
the camera. The rectified images are shown in Figure 6. This rectification sends the
epipoles to infinity where the epipolar line becomes horizontal.

As shown in the skeletal code, function cv2.warpPerspective is then applied to warp
original images to get rectified image pair.

8

CSCI 5561: Assignment #5

Stereo Reconstruction

Figure 7: Visualization of stereo match.

function [disparity] = dense_match(img1, img2)

Input: two gray-scale rectified images with uint8 format.
Output: disparity map disparity ∈ RH×W where H and W are the image height and
width.
Description: Compute the dense matches across all pixels. Given a pixel, u in the
left image, sweep along its epipolar line, lu, and find the disparity, d, that produces the
best match, i.e.,

d = arg min
i
‖d1

u − d2
u+(i,0)‖2 ∀i = 0, 1, · · · , N

where d1
u is the dense SIFT descriptor at u on the left image and d2

u+(i,0) is the SIFT

descriptor at u+ (i, 0) (i pixel displaced along the x-axis) on the right image. Visualize
the disparity map as shown in Figure 7.

9

	Submission
	Overview
	SIFT Feature Matching
	Fundamental Matrix Computation
	Triangulation
	Pose Disambiguation
	Stereo

