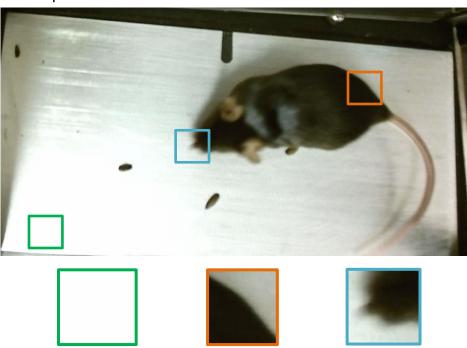
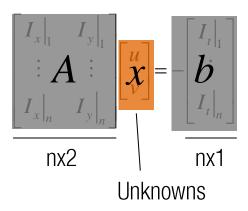


Some patches are better tracked than others.

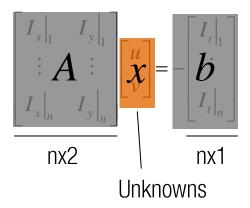


SOLVABILITY



$$\frac{x = (A^T A)^{-1} A^T b}{\text{Least squares solution}}$$

SOLVABILITY

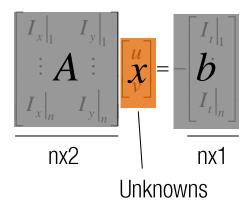


$$\frac{x = (A^T A)^{-1} A^T b}{\text{Least squares solution}}$$

Solvable if the inverse exists:

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix}$$

SOLVABILITY



$$\frac{x = (A^T A)^{-1} A^T b}{\text{Least squares solution}}$$

Numerical stability ~ condition number

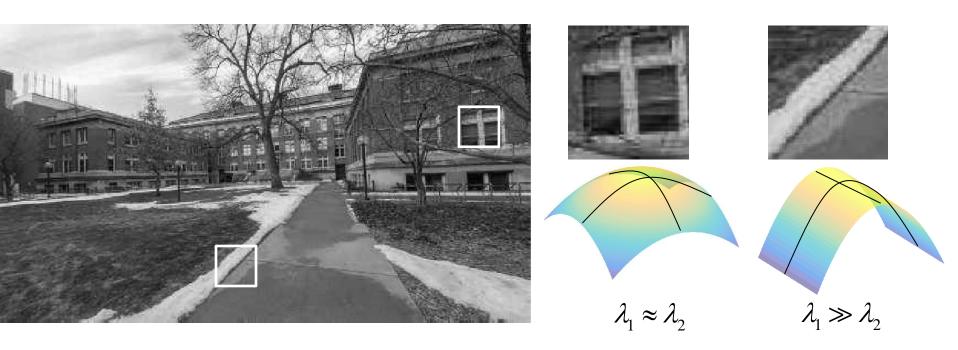
$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix}$$

Condition number of matrix: $\frac{\lambda_1}{\lambda_2}$

where λ_1 , λ_2 are singular values of A^TA and $\lambda_1 \geq \lambda_2$

RECALL: EDGE THRESHOLDING



Principal curvatures are eigen values of Hessian matrix:

$$H = \begin{bmatrix} D_{xx} & D_{xy} \\ D_{yx} & D_{yy} \end{bmatrix}$$

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix}$$

Condition number of matrix: $\frac{\lambda_1}{\lambda_2}$

where λ_1 , λ_2 are eigenvalues of A^TA and $\lambda_1 \geq \lambda_2$

Ax = b is well-conditioned if $\frac{\lambda_1}{\lambda_2} \approx 1$

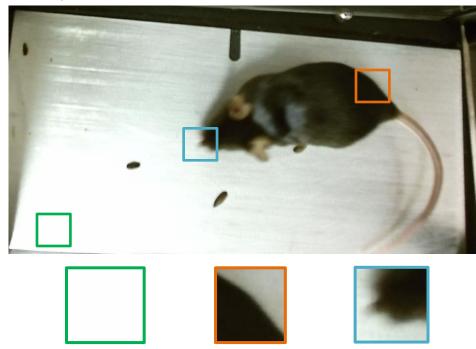
$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix}$$

Condition number of matrix: $\frac{\lambda_1}{\lambda_2}$

where λ_1 , λ_2 are eigenvalues of A^TA and $\lambda_1 \geq \lambda_2$

$$Ax = b$$
 is well-conditioned if $\frac{\lambda_1}{\lambda_2} \approx 1$

Some patches are better tracked than others.



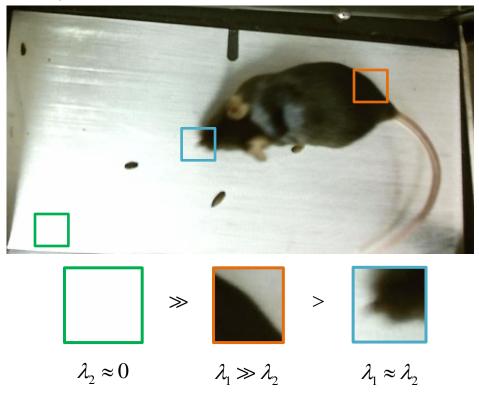
$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix}$$

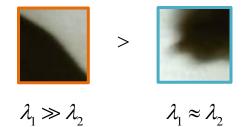
Condition number of matrix: $\frac{\lambda_1}{\lambda_2}$

where λ_1 , λ_2 are eigenvalues of A^TA and $\lambda_1 \geq \lambda_2$

Ax = b is well-conditioned if $\frac{\lambda_1}{\lambda_2} \approx 1$

Some patches are better tracked than others.



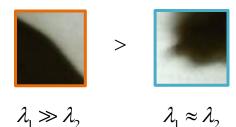


There exists an approximate nullspace z, i.e.,

$$Az = 0$$

$$A(x+z) = b A = \begin{bmatrix} I_x & I_y \end{bmatrix}$$

$$\begin{bmatrix} I_x \\ I_y \end{bmatrix} \perp z$$
7 is perpendicular to the image gradien



There exists an approximate nullspace z, i.e.,

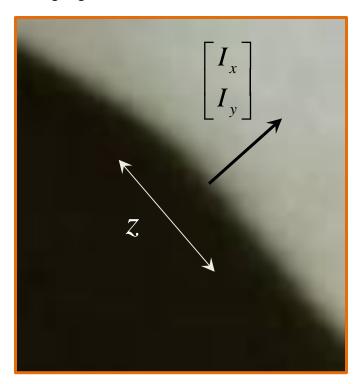
$$Az = 0$$

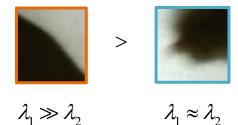
 $A(x+z) = b$ $A = \begin{bmatrix} I_x & I_y \end{bmatrix}$

$$\begin{bmatrix} I_x \\ I_y \end{bmatrix} \perp z$$

z is perpendicular to the image gradient.

Any motion perpendicular to the dominant image gradient cannot be recovered.



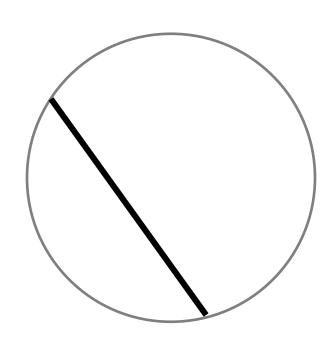


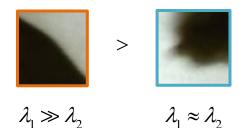
There exists an approximate nullspace z, i.e.,

$$Az = 0$$

$$A(x+z) = b$$

$$\left| \begin{array}{c} I_x \\ I_y \end{array} \right| \perp z$$



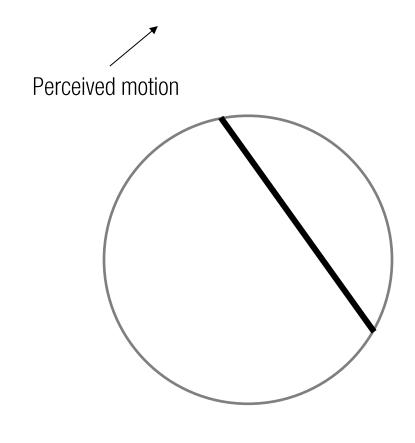


There exists an approximate nullspace z, i.e.,

$$Az = 0$$

$$A(x+z) = b$$

$$\begin{bmatrix} I_x \\ I_y \end{bmatrix} \perp Z$$

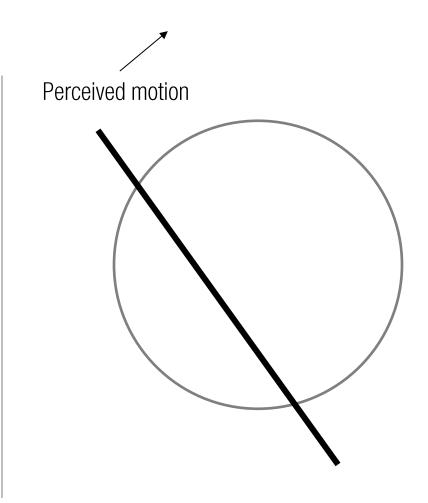


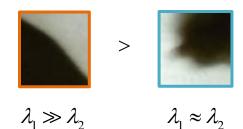
There exists an approximate nullspace z, i.e.,

$$Az = 0$$

$$A(x+z)=b$$

$$\begin{bmatrix} I_x \\ I_y \end{bmatrix} \perp Z$$



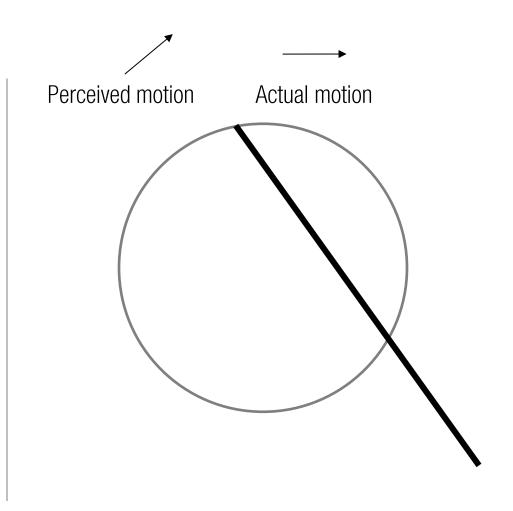


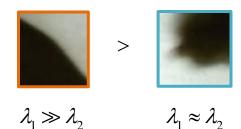
There exists an approximate nullspace z, i.e.,

$$Az = 0$$

$$A(x+z) = b$$

$$\begin{bmatrix} I_x \\ I_y \end{bmatrix} \perp z$$



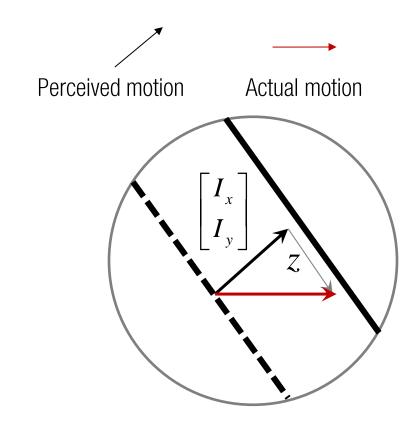


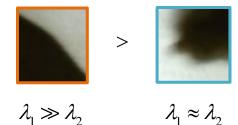
There exists an approximate nullspace z, i.e.,

$$Az = 0$$

$$A(x+z)=b$$

$$\begin{bmatrix} I_x \\ I_y \end{bmatrix} \perp z$$





There exists an approximate nullspace z, i.e.,

$$Az = 0$$

$$A(x+z)=b$$

$$\begin{bmatrix} I_x \\ I_y \end{bmatrix} \perp .$$

GOOD FEATURES TO TRACK

$$\lambda_1 \approx \lambda_2$$

$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix}$$

Shi-Tomasi feature criterion:

$$\lambda_{\min} > \lambda_{threshold}$$

GOOD FEATURES TO TRACK

$$\lambda_1 \approx \lambda_2$$

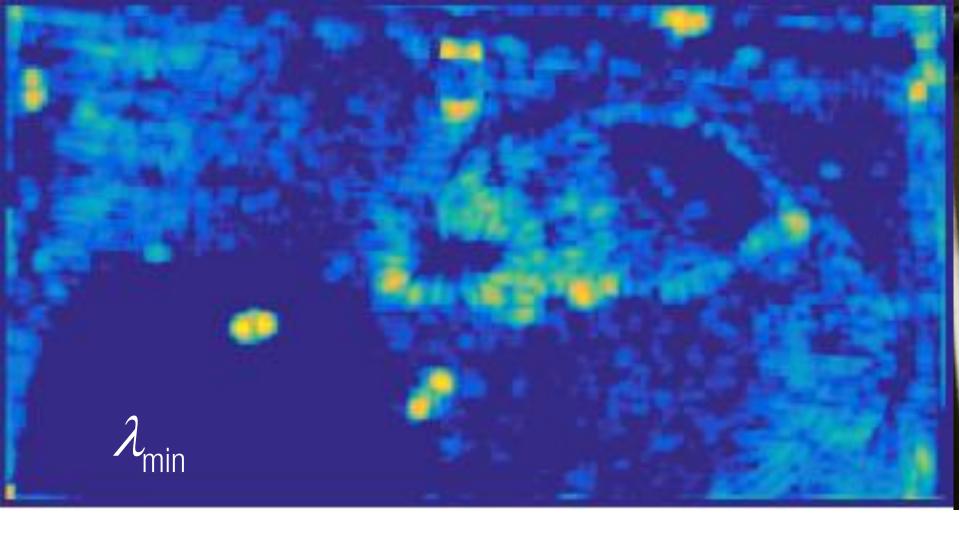
$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix}$$

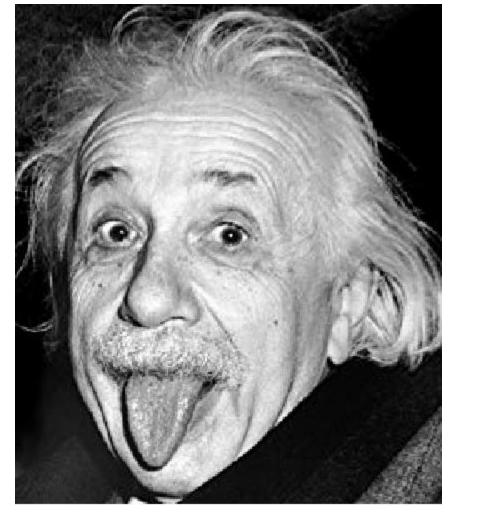
Shi-Tomasi feature criterion:

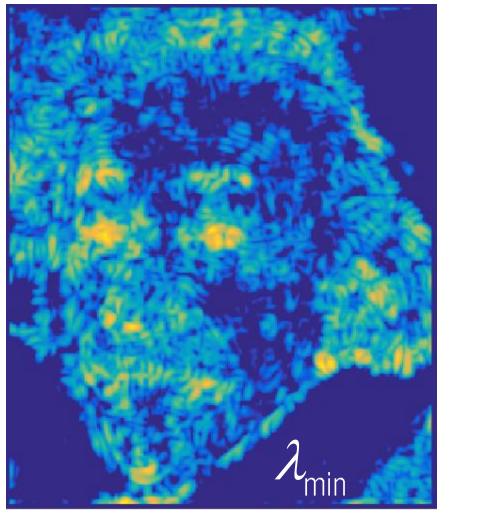
$$\lambda_{\min} > \lambda_{threshold}$$

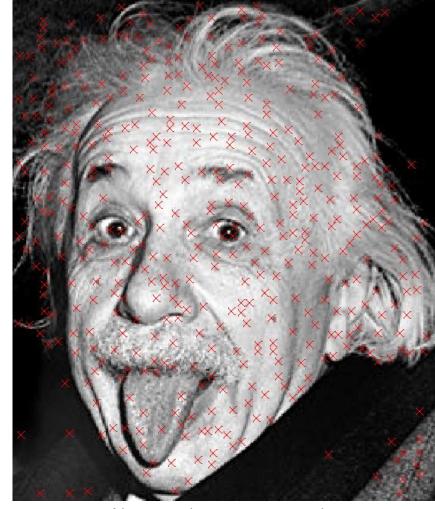
Harris corner criterion:

$$\lambda_{\min} pprox rac{\lambda_{\max} \lambda_{\min}}{(\lambda_{\max} + \lambda_{\min})} = rac{det(A^T A)}{trace(A^T A)} > \lambda_{threshold}$$









Non-maximum suppression

