CSCI 5561: Assignment #4

Convolutional Neural Network

1 Submission

e Assignment due: Apr 19 (11:55pm)
e Individual assignment

e Up to 2 page summary write-up with resulting visualization (more than 2 page
assignment will be automatically returned.).

e Submission through Canvas.

e Skeletal codes can be downloaded from:
https://www-users.cs.umn.edu/~hspark/cscib5561/HW4_code.zip. It contains
the following four codes:

— main_slp_linear.m
— main_slp.m
— main_mlp.m

— main_cnn.m
e List of submission codes:

— GetMiniBatch.m

— FC.m

— FC_backward.m

— Loss_euclidean.m

— TrainSLP_linear.m

— Loss_cross_entropy_softmax.m
— TrainSLP

— ReLu.m

— ReLu_backward.m

— TrainMLP.m

— Conv.m

— Conv_backward.m

— Pool2x2.m

— Pool2x2_backward.m

— Flattening.m

— Flattening_backward.m

— TrainCNN.m


https://www-users.cs.umn.edu/~hspark/csci5561/HW4_code.zip
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A list of MAT files that contain the following trained weights:
— slp_linear.mat: w, b
— slp.mat: w, b
— mlp.mat: wl, bl, w2, b2
— cnn.mat: w_conv, b_conv, w_fc, b_fc
DO NOT SUBMIT THE PROVIDED IMAGE DATA

The function that does not comply with its specification will not be graded.

You are allowed to use MATLAB built-in functions except for the ones in the
Computer Vision Toolbox and Deep Learning Toolbox. Please consult with TA
if you are not sure about the list of allowed functions.
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2 Overview
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Figure 1: You will implement (1) a multi-layer perceptron (neural network) and (2)
convolutiona neural network to recognize hand-written digit using the MNIST dataset.

The goal of this assignment is to implement neural network to recognize hand-written
digits in the MNIST data.

MNIST Data You will use the MNIST hand written digit dataset to perform the first
task (neural network). We reduce the image size (28 x 28 — 14 x 14) and subsample
the data. You can download the training and testing data from here:
http://www.cs.umn.edu/~hspark/cscib561/ReducedMNIST.zip

Description: The zip file includes two MAT files (mnist_train.mat and mnist_test.mat).
Each file includes im_x* and label_x* variables:

e im_x is a matrix (196 x n) storing vectorized image data (196 = 14 x 14)
e label_x is n x 1 vector storing the label for each image data.

n is the number of images. You can visualize the i*" image, e.g.,
imshow(uint8(reshape(im_train(:,i), [14,14]))).


http://www.cs.umn.edu/~hspark/csci5561/ReducedMNIST.zip
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3 Single-layer Linear Perceptron
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(a) Single linear perceptron (b) Loss (¢) Confusion

Figure 2: You will implement a single linear perceptron that produces accuracy near
30%. Random chance is 10% on testing data.

You will implement a single-layer linear perceptron (Figure [2(a)|) with stochastic gradi-
ent descent method. We provide main_slp_linear where you will implement GetMiniBatch
and TrainSLP_linear.

function [mini_batch_x, mini_batch_y] = GetMiniBatch(im_train,
label_train, batch_size)

Input: im_train and label_train are a set of images and labels, and batch_size is
the size of the mini-batch for stochastic gradient descent.

Output: mini_batch_x and mini_batch_y are cells that contain a set of batches (im-
ages and labels, respectively). Each batch of images is a matrix with size 194 xbatch_size,
and each batch of labels is a matrix with size 10xbatch_size (one-hot encoding). Note
that the number of images in the last batch may be smaller than batch_size.
Description: You may randomly permute the the order of images when building the
batch, and whole sets of mini_batch_* must span all training data.

function y = FC(x, w, b)

Input: x€ R™ is the input to the fully connected layer, and we R™*™ and be R" are
the weights and bias.

Output: ye R” is the output of the linear transform (fully connected layer).
Description: FC is a linear transform of x, i.e., y = wx + b.

function [dLdx dLdw dLdb] = FC_backward(dLdy, x, w, b, y)
Input: dLdy € R'™" is the loss derivative with respect to the output y.
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Output: dLdx € R™™ is the loss derivative with respect the input x, dLdw € R*(*™)
is the loss derivative with respect to the weights, and dLdb € R'*" is the loss derivative
with respec to the bias.

Description: The partial derivatives w.r.t. input, weights, and bias will be computed.
dLdx will be back-propagated, and dLdw and dLdb will be used to update the weights
and bias.

function [L, dLdy] = Loss_euclidean(y_tilde, y)

Input: y_tilde € R™ is the prediction, and y€ 0,1™ is the ground truth label.
Output: Le R is the loss, and dLdy is the loss derivative with respect to the prediction.
Description: Loss_euclidean measure Euclidean distance L = ||y — y||°.

function [w, b] = TrainSLP_linear(mini_batch_x, mini_batch_y)

Input: mini_batch_x and mini_batch_y are cells where each cell is a batch of images
and labels.

Output: w € R and b € R!**! are the trained weights and bias of a single-layer
perceptron.

Description: You will use FC, FC_backward, and Loss_euclidean to train a single-
layer perceptron using a stochastic gradient descent method where a pseudo-code can
be found below. Through training, you are expected to see reduction of loss as shown
in Figure As a result of training, the network should produce more than 25% of
accuracy on the testing data (Figure 2(c)).

Algorithm 1 Stochastic Gradient Descent based Training

1: Set the learning rate «

2: Set the decay rate A € (0, 1]

3: Initialize the weights with a Gaussian noise w € N(0,1)

4: k=1

5. for ilter = 1 : nlters do

6: At every 1000'" iteration, v < \y

7: g_va + 0 and ‘g—ﬁ 0

8: for Each image x; in £ mini-batch do

9: Label prediction of x;

10: Loss computation [
11: Gradient bagk—prope{mgation of X, g—jv using back-propagation.
12: OL — OL | O anq 8L = 9L 4 OL
13: end for

14: k++ (Set k = 1if k is greater than the number of mini-batches.)
15: Update the weights, w < w — %g_vav and bias b < b — %g—ﬁ

16: end for
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4 Single-layer Perceptron
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Figure 3: You will implement a single perceptron that produces accuracy near 90% on
testing data.

You will implement a single-layer perceptron with soft-max cross-entropy using stochas-
tic gradient descent method. We provide main_slp where you will implement TrainSLP.
Unlike the single-layer linear perceptron, it has a soft-max layer that approximates a
max function by clamping the output to [0, 1] range as shown in Figure [3(a)]

function [L, dLdy] = Loss_cross_entropy_softmax(x, y)

Input: x € R™ is the input to the soft-max, and ye€ 0,1™ is the ground truth label.
Output: Le R is the loss, and dLdy is the loss derivative with respect to x.
Description: Loss_cross_entropy_softmax measure cross-entropy between two dis-
tributions L = > " y; logy; where y; is the soft-max output that approximates the max
operation by clamping x to [0, 1] range:

Xq

~ €
Yi—w>

where x; is the ™" element of x.

function [w, b] = TrainSLP(mini_batch_x, mini_batch_y)

Output: w € R and b € R%*! are the trained weights and bias of a single-layer
perceptron.

Description: You will use the following functions to train a single-layer perceptron us-

ing a stochastic gradient descent method: FC, FC_backward, Loss_cross_entropy_softmax

Through training, you are expected to see reduction of loss as shown in Figure
As a result of training, the network should produce more than 85% of accuracy on the

testing data (Figure [3(c))).
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5 Multi-layer Perceptron
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Figure 4: You will implement a multi-layer perceptron that produces accuracy more
than 90% on testing data.

You will implement a multi-layer perceptron with a single hidden layer using a stochastic
gradient descent method. We provide main_mlp. The hidden layer is composed of 30

units as shown in Figure .

function [y] = ReLu(x)

Input: x is a general tensor, matrix, and vector.

Output: y is the output of the Rectified Linear Unit (ReLu) with the same input size.
Description: ReLu is an activation unit (y; = max(0,x;)). In some case, it is possible
to use a Leaky ReLu (y; = max(ex;, x;) where e = 0.01).

function [dLdx] = ReLu_backward(dLdy, x, y)

Input: dLdy € R'** is the loss derivative with respect to the output y € R* where z
is the size of input (it can be tensor, matrix, and vector).

Output: dLdx € R'** is the loss derivative with respect to the input x.

function [wl, bl, w2, b2] = TrainMLP(mini_batch_x, mini_batch_y)
Output: wi € R399 p1 ¢ R3O w2 ¢ RO b2 € R!%*! are the trained weights
and biases of a multi-layer perceptron.

Description: You will use the following functions to train a multi-layer perceptron
using a stochastic gradient descent method: FC, FC_backward, ReLu, ReLu_backward,
Loss_cross_entropy_softmax. As a result of training, the network should produce

more than 90% of accuracy on the testing data (Figure [4(b)]).
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6 Convolutional Neural Network
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Figure 5: You will implement a convolutional neural network that produces accuracy
more than 92% on testing data.

You will implement a convolutional neural network (CNN) using a stochastic gradient
descent method. We provide main_cnn. As shown in Figure , the network is
composed of: a single channel input (14 x 14 x 1) — Conv layer (3 x 3 convolution with
3 channel output and stride 1) — ReLu layer — Max-pooling layer (2 x 2 with stride
2) — Flattening layer (147 units) — FC layer (10 units) — Soft-max.

function [y] = Conv(x, w_conv, b_conv)

Input: x € R7*W*C1 i5 an input to the convolutional operation, w_conv €
and b_conv € R®? are weights and bias of the convolutional operation.
Output: y € R7*W*C ig the output of the convolutional operation. Note that to get
the same size with the input, you may pad zero at the boundary of the input image.
Description: This convolutional operation can be simplified using MATLAB built-in
function im2col.

RHXWXC1 xCy

function [dLdw, dLdb] = Conv_backward(dLdy, x, w_conv, b_conv, y)

Input: dLdy is the loss derivative with respec to y.

Output: dLdw and dLdb are the loss derivatives with respect to convolutional weights

and bias w and b, respectively.

Description: This convolutional operation can be simplified using MATLAB built-in
oL

function im2col. Note that for the single convolutional layer, 2= is not needed.

function [y] = Pool2x2(x)
Input: x € R7*W*C ig a general tensor and matrix.
H W
Output: y € R2*=*% is the output of the 2 x 2 max-pooling operation with stride 2.

8
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function [dLdx] = Pool2x2_backward(dLdy, x, y)
Input: dLdy is the loss derivative with respect to the output y.
Output: dLdx is the loss derivative with respect to the input x.

function [y] = Flattening(x)
Input: x € R7*"*C is a tensor.
Output: y € R7WC is the vectorized tensor (column major).

function [dLdx] = Flattening_backward(dLdy, x, y)
Input: dLdy is the loss derivative with respect to the output y.
Output: dLdx is the loss derivative with respect to the input x.

function [w_conv, b_conv, w_fc, b_fc] = TrainCNN(mini_batch_x, mini_batch_y)
Output: w_conv € R¥>3*13 b _conv € R?, w_fc € R b_fc € R are the

trained weights and biases of the CNN.

Description: You will use the following functions to train a convolutional neural

network using a stochastic gradient descent method: Conv, Conv_backward, Pool2x2,
Pool2x2_backward, Flattening, Flattening_backward, FC, FC_backward, ReLu, ReLu_backward,
Loss_cross_entropy_softmax. As a result of training, the network should produce

more than 92% of accuracy on the testing data (Figure [5(b))).



	Submission
	Overview
	Single-layer Linear Perceptron
	Single-layer Perceptron
	Multi-layer Perceptron
	Convolutional Neural Network

