CSCI 5561: Assignment #4

Convolutional Neural Network

1 Submission

e Assignment due: Apr 19 (11:55pm)
e Individual assignment

e Up to 2 page summary write-up with resulting visualization (more than 2 page
assignment will be automatically returned.).

e Submission through Canvas.

e Skeletal codes can be downloaded from:
https://www-users.cs.umn.edu/~hspark/cscib5561/HW4_code.zip. It contains
the following four codes:

— main_slp_linear.m
— main_slp.m
— main_mlp.m

— main_cnn.m
e List of submission codes:

— GetMiniBatch.m

— FC.m

— FC_backward.m

— Loss_euclidean.m

— TrainSLP_linear.m

— Loss_cross_entropy_softmax.m
— TrainSLP

— ReLu.m

— ReLu_backward.m

— TrainMLP.m

— Conv.m

— Conv_backward.m

— Pool2x2.m

— Pool2x2_backward.m

— Flattening.m

— Flattening_backward.m

— TrainCNN.m

https://www-users.cs.umn.edu/~hspark/csci5561/HW4_code.zip

CSCI 5561: Assignment #4

Convolutional Neural Network

A list of MAT files that contain the following trained weights:
— slp_linear.mat: w, b
— slp.mat: w, b
— mlp.mat: wl, bl, w2, b2
— cnn.mat: w_conv, b_conv, w_fc, b_fc
DO NOT SUBMIT THE PROVIDED IMAGE DATA

The function that does not comply with its specification will not be graded.

You are allowed to use MATLAB built-in functions except for the ones in the
Computer Vision Toolbox and Deep Learning Toolbox. Please consult with TA
if you are not sure about the list of allowed functions.

CSCI 5561: Assignment #4

Convolutional Neural Network

2 Overview

Q000 0AHLPOOC
/A A O Y 2 I Y)
23222222332
3 3IF3I3FFI 33
Gy Y Y Yy
5568 4554 s 45
L &b 6 &6 66666
AFRRIIITI TP
EEEFEFFLET ER

19499799357

Figure 1: You will implement (1) a multi-layer perceptron (neural network) and (2)
convolutiona neural network to recognize hand-written digit using the MNIST dataset.

The goal of this assignment is to implement neural network to recognize hand-written
digits in the MNIST data.

MNIST Data You will use the MNIST hand written digit dataset to perform the first
task (neural network). We reduce the image size (28 x 28 — 14 x 14) and subsample
the data. You can download the training and testing data from here:
http://www.cs.umn.edu/~hspark/cscib561/ReducedMNIST.zip

Description: The zip file includes two MAT files (mnist_train.mat and mnist_test.mat).
Each file includes im_x* and label_x* variables:

e im_x is a matrix (196 x n) storing vectorized image data (196 = 14 x 14)
e label_x is n x 1 vector storing the label for each image data.

n is the number of images. You can visualize the i*" image, e.g.,
imshow(uint8(reshape(im_train(:,i), [14,14]))).

http://www.cs.umn.edu/~hspark/csci5561/ReducedMNIST.zip

CSCI 5561: Assignment #4

Convolutional Neural Network

3 Single-layer Linear Perceptron

xl A% 10

s}
9
L]
L]
L]
7

1 0 2000 4000 6000 8000 0 1 2 3 4 5 6 7 8 9
Iterations Accuracy: 0.297905

(a) Single linear perceptron (b) Loss (¢) Confusion

Figure 2: You will implement a single linear perceptron that produces accuracy near
30%. Random chance is 10% on testing data.

You will implement a single-layer linear perceptron (Figure [2(a)|) with stochastic gradi-
ent descent method. We provide main_slp_linear where you will implement GetMiniBatch
and TrainSLP_linear.

function [mini_batch_x, mini_batch_y] = GetMiniBatch(im_train,
label_train, batch_size)

Input: im_train and label_train are a set of images and labels, and batch_size is
the size of the mini-batch for stochastic gradient descent.

Output: mini_batch_x and mini_batch_y are cells that contain a set of batches (im-
ages and labels, respectively). Each batch of images is a matrix with size 194 xbatch_size,
and each batch of labels is a matrix with size 10xbatch_size (one-hot encoding). Note
that the number of images in the last batch may be smaller than batch_size.
Description: You may randomly permute the the order of images when building the
batch, and whole sets of mini_batch_* must span all training data.

function y = FC(x, w, b)

Input: x€ R™ is the input to the fully connected layer, and we R™*™ and be R" are
the weights and bias.

Output: ye R” is the output of the linear transform (fully connected layer).
Description: FC is a linear transform of x, i.e., y = wx + b.

function [dLdx dLdw dLdb] = FC_backward(dLdy, x, w, b, y)
Input: dLdy € R'™" is the loss derivative with respect to the output y.

CSCI 5561: Assignment #4

Convolutional Neural Network

Output: dLdx € R™™ is the loss derivative with respect the input x, dLdw € R*(*™)
is the loss derivative with respect to the weights, and dLdb € R'*" is the loss derivative
with respec to the bias.

Description: The partial derivatives w.r.t. input, weights, and bias will be computed.
dLdx will be back-propagated, and dLdw and dLdb will be used to update the weights
and bias.

function [L, dLdy] = Loss_euclidean(y_tilde, y)

Input: y_tilde € R™ is the prediction, and y€ 0,1™ is the ground truth label.
Output: Le R is the loss, and dLdy is the loss derivative with respect to the prediction.
Description: Loss_euclidean measure Euclidean distance L = ||y — y||°.

function [w, b] = TrainSLP_linear(mini_batch_x, mini_batch_y)

Input: mini_batch_x and mini_batch_y are cells where each cell is a batch of images
and labels.

Output: w € R and b € R!**! are the trained weights and bias of a single-layer
perceptron.

Description: You will use FC, FC_backward, and Loss_euclidean to train a single-
layer perceptron using a stochastic gradient descent method where a pseudo-code can
be found below. Through training, you are expected to see reduction of loss as shown
in Figure As a result of training, the network should produce more than 25% of
accuracy on the testing data (Figure 2(c)).

Algorithm 1 Stochastic Gradient Descent based Training

1: Set the learning rate «

2: Set the decay rate A € (0, 1]

3: Initialize the weights with a Gaussian noise w € N(0,1)

4: k=1

5. for ilter = 1 : nlters do

6: At every 1000'" iteration, v < \y

7: g_va + 0 and ‘g—ﬁ 0

8: for Each image x; in £ mini-batch do

9: Label prediction of x;

10: Loss computation [
11: Gradient bagk—prope{mgation of X, g—jv using back-propagation.
12: OL — OL | O anq 8L = 9L 4 OL
13: end for

14: k++ (Set k = 1if k is greater than the number of mini-batches.)
15: Update the weights, w < w — %g_vav and bias b < b — %g—ﬁ

16: end for

CSCI 5561: Assignment #4

Convolutional Neural Network

4 Single-layer Perceptron

0 1000 2000 3000 4000 5000 0 1 2 3 4 5 6 7 8 9
Iterations Accuracy: 0.898720

(a) Single-layer perceptron (b) Loss (¢) Confusion

Figure 3: You will implement a single perceptron that produces accuracy near 90% on
testing data.

You will implement a single-layer perceptron with soft-max cross-entropy using stochas-
tic gradient descent method. We provide main_slp where you will implement TrainSLP.
Unlike the single-layer linear perceptron, it has a soft-max layer that approximates a
max function by clamping the output to [0, 1] range as shown in Figure [3(a)]

function [L, dLdy] = Loss_cross_entropy_softmax(x, y)

Input: x € R™ is the input to the soft-max, and ye€ 0,1™ is the ground truth label.
Output: Le R is the loss, and dLdy is the loss derivative with respect to x.
Description: Loss_cross_entropy_softmax measure cross-entropy between two dis-
tributions L = > " y; logy; where y; is the soft-max output that approximates the max
operation by clamping x to [0, 1] range:

Xq

~ €
Yi—w>

where x; is the ™" element of x.

function [w, b] = TrainSLP(mini_batch_x, mini_batch_y)

Output: w € R and b € R%*! are the trained weights and bias of a single-layer
perceptron.

Description: You will use the following functions to train a single-layer perceptron us-

ing a stochastic gradient descent method: FC, FC_backward, Loss_cross_entropy_softmax

Through training, you are expected to see reduction of loss as shown in Figure
As a result of training, the network should produce more than 85% of accuracy on the

testing data (Figure [3(c))).

CSCI 5561: Assignment #4

Convolutional Neural Network

5 Multi-layer Perceptron

S

.
.
.
@ Jo .
1 0 1 2 3 4 5 6 7 8 9
Accuracy: 0.914553

(a) Multi-layer perceptron (b) Confusion

XBW-)JOS

Figure 4: You will implement a multi-layer perceptron that produces accuracy more
than 90% on testing data.

You will implement a multi-layer perceptron with a single hidden layer using a stochastic
gradient descent method. We provide main_mlp. The hidden layer is composed of 30

units as shown in Figure .

function [y] = ReLu(x)

Input: x is a general tensor, matrix, and vector.

Output: y is the output of the Rectified Linear Unit (ReLu) with the same input size.
Description: ReLu is an activation unit (y; = max(0,x;)). In some case, it is possible
to use a Leaky ReLu (y; = max(ex;, x;) where e = 0.01).

function [dLdx] = ReLu_backward(dLdy, x, y)

Input: dLdy € R'** is the loss derivative with respect to the output y € R* where z
is the size of input (it can be tensor, matrix, and vector).

Output: dLdx € R'** is the loss derivative with respect to the input x.

function [wl, bl, w2, b2] = TrainMLP(mini_batch_x, mini_batch_y)
Output: wi € R399 p1 ¢ R3O w2 ¢ RO b2 € R!%*! are the trained weights
and biases of a multi-layer perceptron.

Description: You will use the following functions to train a multi-layer perceptron
using a stochastic gradient descent method: FC, FC_backward, ReLu, ReLu_backward,
Loss_cross_entropy_softmax. As a result of training, the network should produce

more than 90% of accuracy on the testing data (Figure [4(b)]).

CSCI 5561: Assignment #4

Convolutional Neural Network

6 Convolutional Neural Network

‘ 14y
(i > “" > — — —
4

‘ ’ ’ o 1 2 3 4 5 6 7 8 9
Input Conv (3) ReLu Pool (2x2) Flatten FC Soft-max Accuracy: 0.947251

(a) CNN (b) Confusion

Figure 5: You will implement a convolutional neural network that produces accuracy
more than 92% on testing data.

You will implement a convolutional neural network (CNN) using a stochastic gradient
descent method. We provide main_cnn. As shown in Figure , the network is
composed of: a single channel input (14 x 14 x 1) — Conv layer (3 x 3 convolution with
3 channel output and stride 1) — ReLu layer — Max-pooling layer (2 x 2 with stride
2) — Flattening layer (147 units) — FC layer (10 units) — Soft-max.

function [y] = Conv(x, w_conv, b_conv)

Input: x € R7*W*C1 i5 an input to the convolutional operation, w_conv €
and b_conv € R®? are weights and bias of the convolutional operation.
Output: y € R7*W*C ig the output of the convolutional operation. Note that to get
the same size with the input, you may pad zero at the boundary of the input image.
Description: This convolutional operation can be simplified using MATLAB built-in
function im2col.

RHXWXC1 xCy

function [dLdw, dLdb] = Conv_backward(dLdy, x, w_conv, b_conv, y)

Input: dLdy is the loss derivative with respec to y.

Output: dLdw and dLdb are the loss derivatives with respect to convolutional weights

and bias w and b, respectively.

Description: This convolutional operation can be simplified using MATLAB built-in
oL

function im2col. Note that for the single convolutional layer, 2= is not needed.

function [y] = Pool2x2(x)
Input: x € R7*W*C ig a general tensor and matrix.
H W
Output: y € R2*=*% is the output of the 2 x 2 max-pooling operation with stride 2.

8

CSCI 5561: Assignment #4

Convolutional Neural Network

function [dLdx] = Pool2x2_backward(dLdy, x, y)
Input: dLdy is the loss derivative with respect to the output y.
Output: dLdx is the loss derivative with respect to the input x.

function [y] = Flattening(x)
Input: x € R7*"*C is a tensor.
Output: y € R7WC is the vectorized tensor (column major).

function [dLdx] = Flattening_backward(dLdy, x, y)
Input: dLdy is the loss derivative with respect to the output y.
Output: dLdx is the loss derivative with respect to the input x.

function [w_conv, b_conv, w_fc, b_fc] = TrainCNN(mini_batch_x, mini_batch_y)
Output: w_conv € R¥>3*13 b _conv € R?, w_fc € R b_fc € R are the

trained weights and biases of the CNN.

Description: You will use the following functions to train a convolutional neural

network using a stochastic gradient descent method: Conv, Conv_backward, Pool2x2,
Pool2x2_backward, Flattening, Flattening_backward, FC, FC_backward, ReLu, ReLu_backward,
Loss_cross_entropy_softmax. As a result of training, the network should produce

more than 92% of accuracy on the testing data (Figure [5(b))).

	Submission
	Overview
	Single-layer Linear Perceptron
	Single-layer Perceptron
	Multi-layer Perceptron
	Convolutional Neural Network

