


CHALLENGES OF VISUAL RECOGNITION

» Appearance
 DOF: texture, illumniation, material, shading, ...
« Shape
» DOF: object category, geometric pose, viewpoint, ...
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VioLA-JONES FACE DETECTION

Extremely fast and accurate face detection
 Running at real-time

https://www.youtube.com/watch?v=aTErTqOlkss
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HAAR-LIKE FEATURE

A simple rectangular filter
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HAAR-LIKE FEATURE

Various derivative filters varying location, size, and combinations

# of possible filters for 24x24 patch: ~160k




INTEGRAL IMAGE

Image with values at each pixel that is the sum of pixels above and left inclusive.




INTEGRAL IMAGE

Image with values at each pixel that is the sum of pixe
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INTEGRAL IMAGE

Image with values at each pixel that is the sum of pixels above and left inclusive.
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FEATURE COMPUTATION WITH INTEGRAL IMAGE

Sum of pixels in the area:

(X12’y12) \J(Xzzyyzz):

X, X0
( 21 Y21) ( 22 yzz) ‘](Xlz’y12): :‘](XZZ’yZZ)_‘](X12’y12)

—J (X21’ y21) +J (X11’ y11)
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Too0 MANY FEATURES

Various derivative filters varying location, size, and combinations

# of possible filters for 24x24 patch: ~160k




FEATURE SELECTION
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FEATURE SELECTION

Various derivative filters varying location, size, and combinations

# of possible filters for 24x24 patch: ~160k

Can we choose a set of good filters?
What defines the good filters?




FEATURE SELECTION: BOOSTING

Boosting is a classifier that combines a set of weak classifiers to build a strong classifier.

:Z I B L{q = (1) threshold

/

+1 p,f(l)>p0
h(l)= .
—1 otherwise

Each filter can be a weak classifier.
P, € {11} : to change the direction of threshold



FEATURE SELECTION: BOOSTING

Boosting is a classifier that combines a set of weak classifiers to build a strong classifier.

— -
i a
threshold
h(I):a(Zatht(l)j /
t
Ensemble classifier +1 p,f(l)>p0
h(l)= .
-1  otherwise

P, € {11} : to change the direction of threshold
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FEATURE SELECTION: BOOSTING
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FEATURE SELECTION: BOOSTING
Round 5




FEATURE SELECTION: BOOSTING

Round 5




https://www.youtube.com/watch?v=k4G2VCuOMMg



Figure 3: The first and second features selected by Ad-
aBoost. The two features are shown in the top row and then
overlayed on a typical training face in the bottom row. The
first feature measures the difference 1n intensity between the
region of the eyes and a region across the upper cheeks. The
teature capitalizes on the observation that the eye region 1s
often darker than the cheeks. The second feature compares

the intensities in the eye regions to the intensity across the
bridge of the nose.
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CASCADE GLASSIFIER

v 50% v 20% v 2%
N —> —> —> —> Face

! ! !

Non-face Non-face Non-face

h*(1) : acheives 100% detection rate and 50% false positive rate

h?(1): acheives 100% detection rate and 40% false positive rate (cummulative 20%)
h*(1) : acheives 100% detection rate and 10% false positive rate (cummulative 2%)

90% detection rate and 1E-6 false positive rate can be achieved by 10 cascade classifiers.
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RESULTING DETECTION ALGORITHM

» Training time: “weeks” on 466 MHz Sun
workstation

« 38 layers, total of 6061 features

« Average of 10 features evaluated per window
on test set

» “On a 700 Mhz Pentium Il processor, the
face detector can process a 384 by 288 pixel

image in about .067 seconds”
- 15 Hz

+ 15 times faster than previous detector of comparable
accuracy (Rowley et al., 1998)
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https://www.youtube.com/watch?v=hPCTwxFO0qf4




