IMAGE AEIGNMENT

When (U,V) Flow Makes Sense?

$$
\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v+\frac{\partial I}{\partial t}=0 \quad \begin{aligned}
& x^{\prime}=x+u \\
& y^{\prime}=y+v
\end{aligned}
$$

Side view

General Object Motion

$$
\frac{\partial I}{\partial x} u+\frac{\partial I}{\partial y} v+\frac{\partial I}{\partial t}=0 \quad \begin{array}{ll}
x^{\prime} \neq x+u \\
y^{\prime} \neq y+v
\end{array}
$$

Side view

camera

Different depth/orientation

Recall: Parametric Transformations

Recall: Parametric Transformations

Far objects

Parametric Transformation

$\mathbf{x}^{\prime}=W(\mathbf{x} ; p)$
Unknowns: p

Different depth/orientation

Optical Flow

Template $T(x)$

Target image $I(x)$

Brightness constancy
$I(x+\Delta x) \approx T(x)$

Image Alignment

Template $T(x)$

Target image $I(x)$

Brightness constancy
$I(W(x ; p)) \approx T(x)$
ex) affine transform
$W(x ; p)=\left[\begin{array}{l}p_{1} u+p_{2} v+p_{3} \\ p_{4} u+p_{5} v+p_{6}\end{array}\right]$

Image Alignment

Template $T(x)$

Target image $I(x)$

Brightness constancy
$I(W(x ; p)) \approx T(x)$
ex) affine transform

$$
\begin{aligned}
W(x ; p) & =\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \\
& =\left[\begin{array}{l}
\left(p_{1}+1\right) u+p_{2} v+p_{3} \\
p_{4} u+\left(p_{5}+1\right) v+p_{6}
\end{array}\right]
\end{aligned}
$$

Image Alignment

Template
$T(x)$

Target image $I(x)$

Brightness constancy
$I(W(x ; p)) \approx T(x)$

Objective: to find the optimal warping parameter p that minimizes warping error.

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p))-\frac{T(x))^{2}}{\overline{\text { Template }}}\right.
$$

IMAGE ALIGNMENT

Template
$T(x)$

Target image $I(x)$

Brightness constancy
$I(W(x ; p)) \approx T(x)$

Objective: to find the optimal warping parameter p that minimizes warping error.

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x} \frac{(I(W(x ; p))}{\text { Warped image }}-\frac{T(x))^{2}}{\text { Template }}
$$

Image Alignment

Template
$T(x)$

Target image $I(x)$

Brightness constancy

$I(W(x ; p)) \approx T(x)$

Objective: to find the optimal warping parameter p that minimizes warping error.

$$
p *=\underset{p}{\operatorname{minimize}} \sum_{x} \frac{(I(W(x ; p))-T(x))^{2}}{\text { Error image }}
$$

Recall: Local Patch Tracking

Image Alignment Objective

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method
1.Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\frac{\partial I}{\partial p} \Delta p
$$

Image Alignment Objective

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1.Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\frac{\partial I}{\partial p} \Delta p
$$

Ex) optical flow (translation)

$$
\begin{aligned}
& W(x ; p)=x+\Delta x \\
& \rightarrow \frac{\partial I}{\partial p} \Delta p=\frac{\partial I}{\partial x} \Delta x=\nabla I \Delta x
\end{aligned}
$$

Image Alignment Objective

$$
p *=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1.Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\frac{\partial I}{\partial p} \Delta p
$$

Ex) affine transform

$$
\begin{aligned}
& W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \\
& \rightarrow \frac{\partial I}{\partial p} \Delta p
\end{aligned}
$$

What does the gradient image
w.r.t. the affine parameters mean?

Image Alignment Objective

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1.Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\frac{\partial I}{\partial p} \Delta p
$$

Ex) affine transform

$$
\begin{aligned}
& W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \\
& \rightarrow \frac{\partial I}{\partial p} \Delta p=\frac{\frac{\partial I}{\partial x} \frac{\partial W}{\partial p} \Delta p}{\text { Chain rule }}
\end{aligned}
$$

Image Alignment Objective

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1.Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\frac{\partial I}{\partial p} \Delta p
$$

Ex) affine transform

$$
\begin{array}{r}
W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \\
\rightarrow \frac{\partial I}{\partial p} \Delta p=\frac{\partial I}{\partial x} \frac{\partial W}{\partial p} \Delta p=\nabla I \frac{\partial W}{\partial p} \Delta p \\
\end{array}
$$

Image Alignment Objective

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1.Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\frac{\partial I}{\partial p} \Delta p
$$

Ex) affine transform

$$
\begin{aligned}
& W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \\
& \rightarrow \frac{\partial I}{\partial p} \Delta p=\frac{\partial I}{\partial x} \frac{\partial W}{\partial p} \Delta p=\nabla I \frac{\partial W}{\partial p} \Delta p
\end{aligned}
$$

$$
\text { Jacobian: } \frac{\partial W}{\partial p}=\left[\begin{array}{lll}
\frac{\partial u}{\partial p_{1}} & \cdots & \frac{\partial u}{\partial p_{6}} \\
\frac{\partial v}{\partial p_{1}} & \cdots & \frac{\partial v}{\partial p_{6}}
\end{array}\right]
$$

Image Jacobian (Steepest Descent Image)

$$
W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \rightarrow \frac{\partial I}{\partial p} \Delta p=\nabla I \frac{\partial W}{\partial p} \Delta p
$$

$$
\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
\frac{\partial u}{\partial p_{1}} & \cdots & \frac{\partial u}{\partial p_{6}} \\
\frac{\partial v}{\partial p_{1}} & \cdots & \frac{\partial v}{\partial p_{6}}
\end{array}\right]
$$

$$
W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right]
$$

Image Jacobian (Steepest Descent Image)

$$
W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \rightarrow \frac{\partial I}{\partial p} \Delta p=\nabla I \frac{\partial W}{\partial p} \Delta p
$$

$$
\left[\begin{array}{ll}
I_{x} & I_{y} \\
& 1 \times 2
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
u & v & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & u & v & 1
\end{array}\right]
$$

Image Jacobian (Steepest Descent Image)

$$
W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \rightarrow \frac{\partial I}{\partial p} \Delta p=\nabla I \frac{\partial W}{\partial p} \Delta p
$$

$$
\left[\begin{array}{ll}
I_{x} & I_{y} \\
& 1 \times 2
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
u & v & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & u & v & 1
\end{array}\right]
$$

$$
\nabla I \frac{\partial W}{\partial p}
$$

Image Jacobian (Steepest Descent Image)

$$
W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \rightarrow \frac{\partial I}{\partial p} \Delta p=\nabla I \frac{\partial W}{\partial p} \Delta p
$$

$$
\left[\begin{array}{ll}
I_{x} & I_{y} \\
& 1 \times 2
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
u & v & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & u & v & 1
\end{array}\right]
$$

$$
\nabla I \frac{\partial W}{\partial p}
$$

Image Jacobian (Steepest Descent Image)

$$
W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \rightarrow \frac{\partial I}{\partial p} \Delta p=\nabla I \frac{\partial W}{\partial p} \Delta p
$$

$$
\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
u & v & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & u & v & 1
\end{array}\right]
$$

$$
\nabla I \frac{\partial W}{\partial p}
$$

Image Jacobian (Steepest Descent Image)

$$
W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \rightarrow \frac{\partial I}{\partial p} \Delta p=\nabla I \frac{\partial W}{\partial p} \Delta p
$$

$$
\left[\begin{array}{ll}
I_{x} & I_{y} \\
& 1 \times 2
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
u & v & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & u & v & 1
\end{array}\right]
$$

Image Jacobian (Steepest Descent Image)

$$
W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \rightarrow \frac{\partial I}{\partial p} \Delta p=\nabla I \frac{\partial W}{\partial p} \Delta p
$$

$$
\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
u & v & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & u & v & 1
\end{array}\right]
$$

$$
\nabla I \frac{\partial W}{\partial p}
$$

Image Jacobian (Steepest Descent Image)

$$
W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \rightarrow \frac{\partial I}{\partial p} \Delta p=\nabla I \frac{\partial W}{\partial p} \Delta p
$$

$$
\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]
$$

$$
\left[\begin{array}{cccccc}
u & v & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & u & v & 1
\end{array}\right]
$$

$$
\nabla I \frac{\partial W}{\partial p}
$$

Image Jacobian (Steepest Descent Image)

$$
W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \rightarrow \frac{\partial I}{\partial p} \Delta p=\nabla I \frac{\partial W}{\partial p} \Delta p
$$

$$
\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]
$$

$$
\left[\begin{array}{llllll}
u & v & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & u & v & 1
\end{array}\right]
$$

$$
\nabla I \frac{\partial W}{\partial p}
$$

Image Jacobian (Steepest Descent Image)

$$
W(x ; p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{l}
p_{1} u+p_{2} v+p_{3} \\
p_{4} u+p_{5} v+p_{6}
\end{array}\right] \rightarrow \frac{\partial I}{\partial p} \Delta p=\nabla I \frac{\partial W}{\partial p} \Delta p
$$

$$
\left[\begin{array}{ll}
I_{x} & I_{y}
\end{array}\right]
$$

$$
\left[\begin{array}{cccccc}
u & v & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & u & v & 1
\end{array}\right]
$$

$\nabla I \frac{\partial W}{\partial p}$: steepest decent images

Image Alignment Objective

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1. Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p
$$

2. Find Δp that minimizes the obj. function at p

$$
I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p-T(x)=0 \longrightarrow \nabla I \frac{\partial W}{\partial p} \Delta p=T(x)-I(W(x ; p))
$$

Image Alignment Objective

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1. Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p
$$

2. Find Δp that minimizes the obj. function at p

$$
I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p-T(x)=0 \longrightarrow \nabla I \frac{\partial W}{\partial p} \Delta p=T(x)-I(W(x ; p))
$$

Image Alignment Objective

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1. Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p
$$

2. Find Δp that minimizes the obj. function at p

$$
\begin{aligned}
& I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p-T(x)=0 \longrightarrow \nabla I \frac{\partial W}{\partial p} \Delta p=T(x)-I(W(x ; p)) \\
& {\left[\begin{array}{c}
\left.\nabla I \frac{\partial W}{\partial p}\right|_{x_{1}} \\
\vdots \\
\left.\nabla I \frac{\partial W}{\partial p}\right|_{x_{n}}
\end{array}\right] \Delta p=-\left[\begin{array}{l}
I\left(W\left(x_{1} ; p\right)\right)-T\left(x_{1}\right) \\
I\left(W\left(x_{n} ; p\right)\right)-T\left(x_{n}\right)
\end{array}\right]}
\end{aligned}
$$

Image Alignment Objective

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1. Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p
$$

2. Find Δp that minimizes the obj. function at p

$$
I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p-T(x)=0 \longrightarrow \nabla I \frac{\partial W}{\partial p} \Delta p=T(x)-I(W(x ; p))
$$

Image Alignment Objective

$$
p *=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1. Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p
$$

2. Find Δp that minimizes the obj. function at p

$$
\begin{aligned}
& I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p-T(x)=0 \longrightarrow \nabla I \frac{\partial W}{\partial p} \Delta p=T(x)-I(W(x ; p)) \\
& \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))) \\
& \text { where } H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right)
\end{aligned}
$$

Image Alignment Objective

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{r}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1. Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p
$$

2. Find Δp that minimizes the obj. function at p

$$
\Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p)))
$$

3. Update $p \leftarrow p+\Delta p$

Optical Flow Derivation

$$
\Delta x *=\underset{\Delta x}{\operatorname{minimize}} \sum_{x}(I(x ; \Delta x)-T(x))^{2}
$$

Guass-Newton's method

1.Linearize the obj. function at x

$$
I(x+\Delta x) \approx I(x)+\nabla I \Delta x
$$

: steepest descent images
2. Find Δx that minimizes the obj. function at x

$$
\nabla I \Delta x=T(x)-I(x)=-(I(x)-T(x)) \triangleq I_{x} \Delta u+I_{y} \Delta v=-I_{t}
$$

Optical Flow Derivation

$$
\Delta x *=\underset{\Delta x}{\operatorname{minimize}} \sum_{x}(I(x ; \Delta x)-T(x))^{2}
$$

Guass-Newton's method

1.Linearize the obj. function at x

$$
I(x+\Delta x) \approx I(x)+\nabla I \Delta x
$$

steepest descent images
2. Find Δx that minimizes the obj. function at x

$$
\begin{aligned}
& \nabla I \Delta x=T(x)-I(x)=-(I(x)-T(x)) \quad \triangleq \quad I_{x} \Delta u+I_{y} \Delta v=-I_{t} \\
& \Delta x=H^{-1} \sum_{x}(\nabla I)^{T}(T(x)-I(W(x ; p))) \\
& \text { Where } H=\sum_{x} \nabla I^{T} \nabla I
\end{aligned}
$$

Image Alignment

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1. Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p
$$

2. Find Δp that minimizes the
obj. function at p

$$
\Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p)))
$$

3. Update $p \leftarrow p+\Delta p$
4. Goto 1

Monkey interest point tracking

LSD-SLAM: Large-Scale Direct Monocular SLAM

Jakob Engel, Thomas Schöps, Daniel Cremers ECCV 2014, Zurich

Computer Vision Group Department of Computer Science Technical University of Munich

