COMPOSITIONAL WARPING

Hyun Soo Park

Recall: Image Alignment Objective

$$
p *=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1.Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p
$$

2. Find Δp that minimizes the obj. function at p

$$
\begin{aligned}
& I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p-T(x)=0 \longrightarrow \nabla I \frac{\partial W}{\partial p} \Delta p=T(x)-I(W(x ; p)) \\
& \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))) \\
& \text { where } H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right)
\end{aligned}
$$

3. Update $p \leftarrow p+\Delta p$

Computational Aspect

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

Guass-Newton's method

1. Linearize the obj. function at p

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p
$$

2. Find Δp that minimizes the obj. function at p

$$
I(W(x ; p))+\nabla I \frac{\partial W}{\partial p} \Delta p-T(x)=0 \longrightarrow \nabla I \frac{\partial W}{\partial p} \Delta p=T(x)-I(W(x ; p))
$$

$$
\begin{aligned}
& \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))) \\
& \text { where } H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right)
\end{aligned}
$$

3. Update $p \leftarrow p+\Delta p$

Lucas-Kanade Algorithm

1. Warp the target image $I(W(x ; p))$

$$
\begin{aligned}
& \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))) \\
& \text { where } H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right) \\
& p \leftarrow p+\Delta p
\end{aligned}
$$

Lucas-Kanade Algorithm

1. Warp the target image $I(W(x ; p))$
2. Compute the error image $T(x)-I(W(x ; p))$

$$
\begin{aligned}
& \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))) \\
& \text { where } H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right) \\
& p \leftarrow p+\Delta p
\end{aligned}
$$

Lucas-Kanade Algorithm

1. Warp the target image $I(W(x ; p))$

$$
\begin{aligned}
& \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))) \\
& \text { where } H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right) \\
& p \leftarrow p+\Delta p
\end{aligned}
$$

2. Compute the error image $T(x)-I(W(x ; p))$
3. Warp the gradient image

Lucas-Kanade Algorithm

1. Warp the target image $I(W(x ; p))$

$$
\begin{aligned}
& \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))) \\
& \text { where } H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right) \\
& p \leftarrow p+\Delta p
\end{aligned}
$$

2. Compute the error image $T(x)-I(W(x ; p))$
3. Warp the gradient image $\nabla I(W(x ; p))$
4. Compute Jacobian $\frac{\partial W}{\partial p}$

Lucas-Kanade Algorithm

1. Warp the target image $I(W(x ; p))$

$$
\begin{aligned}
& \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))) \\
& \text { where } H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right) \\
& p \leftarrow p+\Delta p
\end{aligned}
$$

2. Compute the error image $T(x)-I(W(x ; p))$
3. Warp the gradient image $\nabla I(W(x ; p))$
4. Compute Jacobian $\frac{\partial W}{\partial p}$
5. Compute steepest descent images $\nabla I \frac{\partial W}{\partial p}$

Lucas-Kanade Algorithm

1. Warp the target image $I(W(x ; p))$
2. Compute the error image $T(x)-I(W(x ; p))$
3. Warp the gradient image $\nabla I(W(x ; p))$
4. Compute Jacobian $\frac{\partial W}{\partial p}$
5. Compute steepest descent images $\nabla I \frac{\partial W}{\partial p}$
6. Compute Hessian $H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right)$
7. Compute $\quad \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p)))$

Lucas-Kanade Algorithm

1. Warp the target image $I(W(x ; p))$
2. Compute the error image $T(x)-I(W(x ; p))$
3. Warp the gradient image $\nabla I(W(x ; p))$
4. Compute Jacobian $\frac{\partial W}{\partial p}$
5. Compute steepest descent images $\nabla I \frac{\partial W}{\partial p}$
6. Compute Hessian $H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right)$
7. Compute $\quad \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p)))$
8. Update $\quad p \leftarrow p+\Delta p$
9. Goto 1 unless $\|\Delta p\|<\varepsilon$

$$
\begin{aligned}
& \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))) \\
& \text { where } H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right) \\
& p \leftarrow p+\Delta p
\end{aligned}
$$

Computation Bottleneck

1. Warp the target image $I(W(x ; p))$
2. Compute the error image $T(x)-I(W(x ; p))$
3. Warp the gradient image $\nabla I(W(x ; p))$
4. Compute Jacobian $\frac{\partial W}{\partial p}$
5. Compute steepest descent images $\nabla I \frac{\partial W}{\partial p}$
6. Compute Hessian $\quad H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{I}\left(\nabla I \frac{\partial W}{\partial p}\right)$
7. Compute $\quad \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))$
8. Update $\quad p \leftarrow p+\Delta p$
9. Goto 1 unless $\|\Delta p\|<\varepsilon$

Additive vs. Compositional

Additive mapping
$I(W(x ; p+\Delta p)) \approx I(W(x ; p))$

Additive vs. COMPOSItIONAL

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\left.\nabla I(W)\right|_{p} \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Additive vs. COMPOSItIonal

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\left.\nabla I(W)\right|_{p} \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Compositional mapping I

$$
I(W(W(x ; p) ; \Delta p))
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$

Additive vs. Compositional

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\left.\nabla I(W)\right|_{p} \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Compositional mapping I

$$
I(W(W(x ; p) ; \Delta p)) \approx I(W(W(x ; p) ; 0))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$

Additive vs. Compositional

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\left.\nabla I(W)\right|_{p} \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Compositional mapping I

$$
I(W(W(x ; p) ; \Delta p)) \approx I(W(W(x ; p) ; 0))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$

Additive vs. Compositional

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Compositional mapping I

$$
I(W(W(x ; p) ; \Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

Additive vs. COMPOSItIonal

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Compositional mapping I

$$
I(W(W(x ; p) ; \Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(W(x ; 0) ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

Additive vs. COMPOSItIONAL

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Compositional mapping I

$$
I(W(W(x ; p) ; \Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

Additive vs. Compositional

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

- Location of linearization

Compositional mapping I

$$
I(W(W(x ; p) ; \Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p$
constant
Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime} \quad$ and $W(x ; 0)=\left.x \quad \frac{\partial W}{\partial p}\right|_{0}$ is constant

Additive vs. COMPOSItIonal

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Compositional mapping I

$$
I(W(W(x ; p) ; \Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

$$
\begin{aligned}
& \text { Compositional mapping II } \\
& I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\nabla I(W) \frac{\left.\partial \frac{\partial W}{\partial p}\right|_{0}}{} \Delta p \\
& \text { constant }
\end{aligned}
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

1. Warp the target image $I(W(x ; p))$
2. Compute the error image $T(x)-I(W(x ; p))$
3. Warp the gradient image $\nabla I(W(x ; p))$
4. Compute Jacobian $\frac{\partial W}{\partial p}$
5. Compute steepest descent images $\nabla I \frac{\partial W}{\partial p}$
6. Compute Hessian $H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right)$
7. Compute $\quad \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p)))$
8. Update $\quad p \leftarrow p+\Delta p$
9. Goto 1 unless $\|\Delta p\|<\varepsilon$

Additive vs. COMPOSItIonal

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

Compositional mapping I

$$
I(W(W(x ; p) ; \Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

$$
\begin{aligned}
& \text { Compositional mapping II } \\
& I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\nabla I(W) \frac{\left.\partial \frac{\partial W}{\partial p}\right|_{0}}{} \Delta p \\
& \text { constant }
\end{aligned}
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

1. Warp the target image $I(W(x ; p))$
2. Compute the error image $T(x)-I(W(x ; p))$
3. Warp the gradient image $\nabla I(W(x ; p))$

4. Compute Jacobian $\frac{\partial W}{\partial p}$

5. Compute steepest descent images $\nabla I \frac{\partial W}{\partial p}$
6. Compute Hessian $H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right)$
7. Compute $\quad \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p)))$
8. Update $\quad p \leftarrow p+\Delta p$
9. Goto 1 unless $\|\Delta p\|<\varepsilon$

Additive vs. COMPOSItIonal

$$
\begin{aligned}
& \text { Additive mapping } \\
& I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p \quad W(x ; p+\Delta p)=\left[\begin{array}{l}
u \\
v
\end{array}\right]+\left[\begin{array}{lll}
p_{1}+\Delta p_{1} & p_{2}+\Delta p_{2} & p_{3}+\Delta p_{3} \\
p_{4}+\Delta p_{4} & p_{5}+\Delta p_{5} & p_{6}+\Delta p_{6}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
\end{aligned}
$$

Compositional mapping I

$$
I(W(W(x ; p) ; \Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

$$
\begin{aligned}
& \text { Compositional mapping II } \\
& \qquad(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p \\
& \text { constant }
\end{aligned}
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

Additive vs. COMPOSItIonal

$$
\begin{aligned}
& \text { Additive mapping } \\
& I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p \quad W(x ; p+\Delta p)=\left[\begin{array}{ccc}
1+p_{1}+\Delta p_{1} & p_{2}+\Delta p_{2} & p_{3}+\Delta p_{3} \\
p_{4}+\Delta p_{4} & 1+p_{5}+\Delta p_{5} & p_{6}+\Delta p_{6}
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
\end{aligned}
$$

Compositional mapping I

$$
I(W(W(x ; p) ; \Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

$$
\begin{aligned}
& \text { Compositional mapping II } \\
& I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\nabla I(W) \frac{\partial W}{\left.\frac{\partial p}{\partial p}\right|_{0}} \Delta p \\
& \text { constant }
\end{aligned}
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

Additive vs. COMPOSItIONAL

Abuse of notation

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

$$
W(x ; p+\Delta p)=\left[\begin{array}{ccc}
1+p_{1}+\Delta p_{1} & p_{2}+\Delta p_{2} & p_{3}+\Delta p_{3} \\
p_{4}+\Delta p_{4} & 1+p_{5}+\Delta p_{5} & p_{6}+\Delta p_{6} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Compositional mapping I } \\
& \qquad I(W(W(x ; p) ; \Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
\end{aligned}
$$

$$
\begin{aligned}
& \text { Compositional mapping II } \\
& I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\nabla I(W) \frac{\left.\partial \frac{\partial W}{\partial p}\right|_{0}}{} \Delta p \\
& \text { constant }
\end{aligned}
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

Additive vs. Compositional

Abuse of notation

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
$$

$$
W(x ; p+\Delta p)=A(p+\Delta p)\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Compositional mapping I } \\
& \qquad I(W(W(x ; p) ; \Delta p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{p} \Delta p
\end{aligned}
$$

$$
\begin{aligned}
& \text { Compositional mapping II } \\
& I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\nabla I(W) \frac{\left.\partial \frac{\partial W}{\partial p}\right|_{0}}{} \Delta p \\
& \text { constant }
\end{aligned}
$$

$$
W(W(x ; \Delta p) ; p)=A(p) A(\Delta p)\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

Lucas-Kanade

1. Warp the target image $I(W(x ; p))$
2. Compute the error image $T(x)-I(W(x ; p))$
3. Warp the gradient image $\nabla I(W(x ; p))$
4. Compute Jacobian $\frac{\partial W}{\partial p}$
5. Compute steepest descent images $\nabla I \frac{\partial W}{\partial p}$
6. Compute Hessian $H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right)$
7. Compute $\Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))$
8. Update $\quad p \leftarrow p+\Delta p$
9. Goto 1 unless $\|\Delta p\|<\varepsilon$

Compositional Alignment

1. Compute Jacobian $\frac{\partial W}{\partial p}$
2. Warp the target image $I(W(x ; p))$
3. Compute the error image $T(x)-I(W(x ; p))$
4. Warp the gradient image $\nabla I(W(x ; p))$
5. Compute steepest descent images $\nabla \tau \frac{\partial W}{\partial p}$
6. Compute Hessian $H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right)$
7. Compute $\quad \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))$
8. Update $W(x ; p) \leftarrow W(x ; p) \circ W(x ; \Delta p)$
9. Goto 2 unless $\|\Delta p\|<\varepsilon$

DUALITY

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(x)-T\left(W^{-1}(x ; p)\right)\right)^{2}
$$

Inverse Compositional

- Location of linearization

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I(W) \frac{\partial W}{\partial p} \Delta p
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime} \quad$ and $\quad W(x ; 0)=x$

Inverse Compositional

- Location of linearization

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I(W) \frac{\partial W}{\partial p} \Delta p
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p$

Inverse compositional mapping
$I(W(x ; p))$
$T(W(x ; \Delta p)) \approx T(W(x ; 0))+\left.\nabla T(x) \frac{\partial W}{\partial p}\right|_{0} \Delta p$
Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

Inverse Compositional

- Location of linearization

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I(W) \frac{\partial W}{\partial p} \Delta p
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p$

Inverse compositional mapping

$$
\begin{aligned}
& I(W(x ; p)) \\
& T(W(x ; \Delta p)) \approx T(x)+\left.\nabla T(x) \frac{\partial W}{\partial p}\right|_{0} \Delta p
\end{aligned}
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

DUALITY

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}\left(I(W(x ; p)-T(x))^{2}\right.
$$

$$
p^{*}=\underset{p}{\operatorname{minimize}} \sum_{x}(I(W(x ; p))-T(W(x ; \Delta p)))^{2}
$$

Inverse Compositional

- Location of linearization

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I(W) \frac{\partial W}{\partial p} \Delta p
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p$

Inverse compositional mapping

$$
\begin{aligned}
& I(W(x ; p)) \quad \text { constant } \\
& T(W(x ; \Delta p)) \approx T(x)+\left.\nabla T(x) \frac{\partial W}{\partial p}\right|_{0} \Delta p
\end{aligned}
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

Inverse Compositional

- Location of linearization

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I(W) \frac{\partial W}{\partial p} \Delta p
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p$

Inverse compositional mapping

$$
\begin{aligned}
& I(W(x ; p)) \quad \text { constant } \\
& T(W(x ; \Delta p)) \approx T(x)+\left.\nabla T(x) \frac{\partial W}{\partial p}\right|_{0} \Delta p
\end{aligned}
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

Inverse Compositional

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I(W) \frac{\partial W}{\partial p} \Delta p
$$

$$
W(x ; p+\Delta p)=A(p+\Delta p)\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+$
Inverse compositional mapping

$$
\begin{aligned}
& I(W(x ; p)) \quad \text { constant } \\
& T(W(x ; \Delta p)) \approx T(x)+\left.\nabla T(x) \frac{\partial W}{\partial p}\right|_{0} \Delta p
\end{aligned}
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

Inverse Compositional

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I(W) \frac{\partial W}{\partial p} \Delta p
$$

$$
W(x ; p+\Delta p)=A(p+\Delta p)\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p$

$$
W(x ; p) \circ W(x ; \Delta p)=A(p) A(\Delta p)\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Inverse compositional mapping

$$
\begin{aligned}
& I(W(x ; p)) \quad \text { constant } \\
& T(W(x ; \Delta p)) \approx T(x)+\left.\nabla T(x) \frac{\partial W}{\partial p}\right|_{0} \Delta p
\end{aligned}
$$

$$
W(x ; p) \circ W^{-1}(x ; \Delta p)=A(p) A^{-1}(\Delta p)\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

Inverse Compositional

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I(W) \frac{\partial W}{\partial p} \Delta p
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p$
Inverse compositional mapping

$$
\begin{aligned}
& I(W(x ; p)) \quad \text { constant } \\
& T(W(x ; \Delta p)) \approx T(x)+\left.\nabla T(x) \frac{\partial W}{\partial p}\right|_{0} \Delta p
\end{aligned}
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

1. Compute Jacobian $\frac{\partial W}{\partial p}$
2. Warp the target image $I(W(x ; p))$
3. Compute the error image $T(x)-I(W(x ; p))$
4. Warp the gradient image $\nabla I(W(x ; p))$
5. Compute steepest descent images $\nabla I \frac{\partial W}{\partial p}$
6. Compute Hessian $H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right)$
7. Compute $\quad \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p)))$
8. Update $\quad W(x ; p) \leftarrow W(x ; p) \circ W(x ; \Delta p)$
9. Goto 2 unless $\|\Delta p\|<\varepsilon$

Inverse Compositional

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I(W) \frac{\partial W}{\partial p} \Delta p
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p$
Inverse compositional mapping

$$
\begin{aligned}
& I(W(x ; p)) \quad \text { constant } \\
& T(W(x ; \Delta p)) \approx T(x)+\left.\nabla T(x) \frac{\partial W}{\partial p}\right|_{0} \Delta p
\end{aligned}
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

1. Compute Jacobian $\frac{\partial W}{\partial p}$
2. Warp the target image $I(W(x ; p))$
3. Compute the error image $T(x)-I(W(x ; p))$
4. The gradient image $\nabla T(x)$
5. Compute steepest descent images $\nabla T \frac{\partial W}{\partial p}$
6. Compute Hessian $H=\sum_{x}\left(\nabla T \frac{\partial W}{\partial p}\right)^{T}\left(\nabla T \frac{\partial W}{\partial p}\right)$
7. Compute $\quad \Delta p=H^{-1} \sum_{x}\left(\nabla T \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p)))$
8. Update $\quad W(x ; p) \leftarrow W(x ; p) \circ W^{-1}(x ; \Delta p)$
9. Goto 2 unless $\|\Delta p\|<\varepsilon$

Inverse Compositional

Additive mapping

$$
I(W(x ; p+\Delta p)) \approx I(W(x ; p))+\nabla I(W) \frac{\partial W}{\partial p} \Delta p
$$

Compositional mapping II
$I(W(W(x ; \Delta p) ; p)) \approx I(W(x ; p))+\left.\nabla I(W) \frac{\partial W}{\partial p}\right|_{0} \Delta p$
Inverse compositional mapping

$$
\begin{aligned}
& I(W(x ; p)) \quad \text { constant } \\
& T(W(x ; \Delta p)) \approx T(x)+\left.\nabla T(x) \frac{\partial W}{\partial p}\right|_{0} \Delta p
\end{aligned}
$$

Note) $(f \circ g)^{\prime}=\left(f^{\prime} \circ g\right) g^{\prime}$ and $W(x ; 0)=x$

1. Compute Jacobian $\frac{\partial W}{\partial p}$
2. Warp the target image $I(W(x ; p))$
3. Compute the error image $T(x)-I(W(x ; p))$
4. The gradient image $\nabla T(x)$
5. Compute steepest descent images $\nabla T \frac{\partial W}{\partial p}$
6. Compute Hessian $H=\sum_{x}\left(\nabla T \frac{\partial W}{\partial p}\right)^{T}\left(\nabla T \frac{\partial W}{\partial p}\right)$
7. Compute $\quad \Delta p=H^{-1} \sum_{x}\left(\nabla T \frac{\partial W}{\partial p}\right)^{i}(T(x)-I(W(x ; p)))$
8. Update $\quad W(x ; p) \leftarrow W(x ; p) \circ W^{-1}(x ; \Delta p)$
9. Goto 2 unless $\|\Delta p\|<\varepsilon$

Compositional Alignment

1. Compute Jacobian $\frac{\partial W}{\partial p}$
2. Warp the target image $I(W(x ; p))$
3. Compute the error image $T(x)-I(W(x ; p))$
4. Warp the gradient image $\nabla I(W(x ; p))$
5. Compute steepest descent images $\nabla I \frac{\partial W}{\partial p}$
6. Compute Hessian $H=\sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}\left(\nabla I \frac{\partial W}{\partial p}\right)$
7. Compute $\quad \Delta p=H^{-1} \sum_{x}\left(\nabla I \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p)))$
8. Update $W(x ; p) \leftarrow W(x ; p) \circ W(x ; \Delta p)$
9. Goto 2 unless $\|\Delta p\|<\varepsilon$

Inv. COMPOSItIONAL Alignment

1. Compute Jacobian $\frac{\partial W}{\partial p}$
2. Warp the gradient image $\nabla T(x)$
3. Compute steepest descent images $\nabla T \frac{\partial W}{\partial p}$
4. Compute Hessian $H=\sum_{x}\left(\nabla T \frac{\partial W}{\partial p}\right)^{T}\left(\nabla T \frac{\partial W}{\partial p}\right)$
5. Warp the target image $I(W(x ; p))$
6. Compute the error image $T(x)-I(W(x ; p))$
7. Compute $\quad \Delta p=H^{-1} \sum_{x}\left(\nabla T \frac{\partial W}{\partial p}\right)^{T}(T(x)-I(W(x ; p))$
8. Update $W(x ; p) \leftarrow W(x ; p) \circ W^{-1}(x ; \Delta p)$
9. Goto 2 unless $\|\Delta p\|<\varepsilon$

(e) Example Convergence for an Affine Warp

(f) Example Convergence for a Homography

Table 5. Timing results for our Matlab implementation of the four algorithms in milliseconds. These results are for the 6-parameter affine warp using a 100×100 pixel template on a 933 MHz Pentium-IV.

				Step 3		Step 4	Step 5		Step 6	Total
Pre-computation:										
Forwards Additive (FA)				-		-	-		-	0.0
Forwards Compositional (FC)				-		17.4	-		-	17.4
Inverse Additive (IA)				8.30		17.1	27.5		37.0	89.9
Inverse Compositional (IC)				8.31		17.1	27.5		37.0	90.0
	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7	Step 8	Step 9	Total
					Per itera	tion:				
FA	1.88	0.740	36.1	17.4	27.7	37.2	6.32	0.111	0.108	127
FC	1.88	0.736	8.17	-	27.6	37.0	6.03	0.106	0.253	81.7
IA	1.79	0.688	-	-	-	-	6.22	0.106	0.624	9.43
IC	1.79	0.687	-	-	-	-	6.22	0.106	0.409	9.21

https://www.youtube.com/watch?v=qeZ7H40BQv4

