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Abstract We present an algorithm to reconstruct the 3D
trajectory of a moving point from its correspondence in
a collection of temporally non-coincidental 2D perspec-
tive images, given the time of capture that produced each
image and the relative camera poses at each time instant.
Triangulation-based solutions do not apply, as multiple views
of the point may not exist at each time instant. We represent
a 3D trajectory using a linear combination of compact tra-
jectory basis vectors, such as the discrete cosine transform
basis, that have been shown to approximate object indepen-
dence. We note that such basis vectors are also coordinate
independent, which allows us to directly use camera poses
estimated from stationary areas in the scene (in contrast to
nonrigid structure from motion techniques where cameras
are simultaneously estimated). This reduces the reconstruc-
tion optimization to a linear least squares problem, allow-
ing us to robustly handle missing data that often occur due
to motion blur, texture deformation, and self occlusion. We
present an algorithm to determine the number of trajectory
basis vectors, individually for each trajectory via a cross val-
idation scheme and refine the solution by minimizing the
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geometric error. The relationship between point and camera
motion can cause degeneracies to occur. We geometrically
analyze the problem by studying the relationship of the cam-
era motion, point motion, and trajectory basis vectors. We
define the reconstructability of a 3D trajectory under pro-
jection, and show that the estimate approaches the ground
truth when reconstructability approaches infinity. This analy-
sis enables us to precisely characterize cases when accurate
reconstruction is achievable. We present qualitative results
for the reconstruction of several real-world scenes from a
series of 2D projections where high reconstructability can be
guaranteed, and report quantitative results on motion capture
sequences.

Keywords Dynamic 3D reconstruction · Trajectory
triangulation · Trajectory space · Reconstructability

1 Introduction

It is impossible to reconstruct a 3D scene from a single
image without making prior assumptions about scene struc-
ture. Binocular stereoscopy is a solution used by both biolog-
ical and artificial systems to localize the position of a point in
3D via correspondences in two views. Classic triangulation
used in stereo reconstruction is geometrically well-posed, as
shown in Fig. 1a. The rays connecting each image location to
its corresponding camera center intersect at the true 3D loca-
tion of the point—this process is called triangulation, as the
two rays form a triangle with the baseline that connects the
two camera centers. However, the triangulation constraint
does not apply when the point moves between image cap-
tures, as shown in Fig. 1b. This case abounds as most artificial
vision systems are monocular and most real scenes contain
moving elements.
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(a) (b) (c)Static point (point in ) Moving point (trajectory in 3) Moving point (point in 3K)3

Fig. 1 a A 3D point can be triangulated from two or more views; b
3D trajectory reconstruction is impossible without any constraint on the
trajectory because any trajectory (dotted trajectories) passing through

the optical rays can be a solution; c We represent a 3D trajectory with a
linear combination of compact trajectory basis vectors, which is a point
in R3K . This enables us to linearly reconstruct the point trajectory

The 3D reconstruction of a trajectory is directly analogous
to monocular image reconstruction. Just as it is impossible to
reconstruct a 3D point from a single image without making
assumptions about scene structure, it is impossible to recon-
struct a moving point without making assumptions about the
way it moves. In this paper, we present an algorithm to recon-
struct a moving point from a series of 2D perspective projec-
tions, given the camera matrix for each projection. We repre-
sent the 3D trajectory using a linear combination of compact
trajectory basis vectors (Sidenbladh et al. 2000; Akhter et al.
2008, 2011) and demonstrate that, under this model, we can
recover 3D point motion via a linear least squares solve. We
generalize the problem of 3D point triangulation, which is a
mapping from R2 ×R2 → R3, to 3D trajectory reconstruc-
tion, as a mapping R2 ×· · ·×R2 → R3K . 3K is the number
of trajectory basis vectors required to represent the 3D point
trajectory1 as shown in Fig. 1c.

Dynamic 3D reconstruction using shape or trajectory basis
vectors requires three types of variables to be estimated (Bre-
gler et al. 1999): camera motion, model description (often
represented as shape or trajectory basis vectors), and model
parameters (often represented as basis coefficients). Simulta-
neously estimating these three types of parameters results in
a trivariate optimization, and constitutes the problem defini-
tion of nonrigid structure from motion (NRSfM). The opti-
mization suffers from suboptimality, in general, due to the
non-convex objective function, and is sensitive to noise and
missing data. Akhter et al. (2008, 2011) reduced the com-
plexity of the trilinear relationship by exploiting the fact that
trajectory basis vectors can be object independent and there-
fore, can be pre-defined. This yielded a bilinear optimization

1 Related observations have been made in Shashua and Avidan (2000)
and Hartley and Vidal (2008).

over camera motion and coefficient vectors. In this paper,
we note that the pre-defined trajectory basis is also coordi-
nate independent—the spectral distribution remains identical
under a similarity transform; as a result, we can use stationary
points in the scene to separately estimate camera poses using
classic structure from motion. Thus, unlike NRSfM, we take
cameras estimated by the stationary areas of the scene as input
into our algorithm. The resulting optimization can be solved
using a linear least squares solve providing stable, accurate,
and efficient estimates in the presence of missing data. We
demonstrate 3D reconstruction results of dynamic scenes that
include whole body motion, multiple interacting people, and
activity with significant locomotive displacement.

The stability of classic triangulation is known to depend
on the baseline between camera centers (Hartley and Zis-
serman 2004). We study the instability encountered when
interference occurs between the point trajectory and cam-
era trajectory, and characterize the cases when trajectory
reconstruction is ambiguous. In particular, we define a cri-
terion called reconstructability, a measure of reconstruction
accuracy defined by the point trajectory, camera trajectory,
and basis vectors. We show that when reconstructability
approaches infinity, the obtained solution from least squares
approaches the ground truth solution.

Building upon an earlier version of this paper (Park et al.
2010), we present an algorithm to automatically select the
number of basis vectors individually for each point, and to
refine the estimated trajectory. Different points on an object
may undergo different degrees of motion. For instance, a
point on a hand exhibits much more complicated motion dur-
ing a walk cycle than a point on the torso. Our algorithm uses
a cross validation scheme to independently select the number
of basis vectors for each trajectory that defines the degree of
motion (motion complexity). We present a nonlinear refine-
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ment algorithm that takes the trajectory solution as an ini-
tial guess and optimizes the solution based on the geometric
reprojection error. We categorize our linear least squares for-
mulation as solvable or unsolvable systems depending on the
relationship between camera and point motion, and investi-
gate degenerate cases where the reconstruction is impossible
or inaccurate.

Our core contributions include: (1) a linear least squares
formulation of 3D trajectory reconstruction, (2) a geometric
analysis of the relationship between camera motion, point
motion, and basis vectors, and (3) a cross-validation scheme
that automatically selects a per-trajectory truncation factor
depending on its motion. Our algorithm allows us to recon-
struct challenging real-world scenes where there are signifi-
cant amount of missing data and correspondence noise with
perspective cameras. Automatic selection of the basis vectors
and the trajectory refinement by geometric error minimiza-
tion allows the algorithm to handle a wider variety of realistic
motion. We identify real-world scenarios where high recon-
struction accuracy is guaranteed via the geometric analysis
and apply our algorithm to reconstruct the time-varying 3D
structure of the scenes.

2 Related Work

Reconstructing a dynamic scene in 3D from a monocular
image sequence is fundamentally an ill-posed problem. To
overcome its inherent ambiguity, a large body of work has
developed algorithms, representations, and scene constraints.
There have been two general categories of approaches: trajec-
tory triangulation and nonrigid structure from motion. Our
method falls in the first category of methods, but we also
relate it to approaches in the latter category. Related dis-
cussions on geometric analyses of the problem will also be
drawn.

2.1 Trajectory Triangulation

When correspondences are provided across 2D images in sta-
tic scenes, the method proposed by Longuet-Higgins (1981)
estimates the relative camera poses and triangulates the point
in 3D using epipolar geometry. In subsequent research, sum-
marized in Faugeras et al. (2001), Ma et al. (2003), and
Hartley and Zisserman (2004), the geometry involved in
reconstructing 3D scenes has been systematically developed.
While a static 3D point can be reconstructed by triangula-
tion as shown in Fig. 1a, when the point moves between the
capture of both images, the triangulation method becomes
inapplicable; the line segments formed by the baseline and
the rays from each camera center to the point no longer form
a closed triangle (Fig. 1b).

The principal work in ‘triangulating’ moving points from
a series of images is by Avidan and Shashua (2000), who
coined the term trajectory triangulation. They demonstrated
two cases where a moving point can be reconstructed: (1) if
the point moves along a line, or (2) if the point moves along a
conic section. This inspired a number of approaches of geo-
metrically constrained trajectory recovery. Shashua and Wolf
(2000) and Wexler and Shashua (2000) introduced homogra-
phy tensors to represent a point moving on the plane. As an
integration of the algebraic curve representation, Wolf and
Shashua (2002) classified different manifestations of related
problems, analyzing them as projections from PN to P2

where N is a factor representing the span of the trajectory
space. Kaminski and Teicher (2004) extended these ideas
to a 3D trajectory represented by a family of hypersurfaces
in the projective space P5, i.e., a homogeneous polynomial
vanishes on the Plücker coordinates of all lines intersecting
the trajectory. This method provides a general framework to
reconstruct any arbitrary trajectory that can be represented
by a polynomial. However, the algorithm is computationally
prohibitive and sensitive to noise, which we will discuss in
detail in Sect. 5.1.3.

In this paper, we investigate 3D reconstruction of a point
trajectory where the point motion can be described as a lin-
ear combination of compact trajectory basis vectors. This
representation allows far more natural motions to be linearly
reconstructed (Akhter et al. 2008, 2011). We demonstrate its
application in reconstructing moving points from a series of
image projections where no two image projections necessar-
ily occur at the same time instant.

2.2 Nonrigid Structure from Motion

Nonrigid structure from motion is another approach to
reconstructing dynamic structure in 3D from a monocu-
lar sequence. Unlike the trajectory triangulation approach,
nonrigid structure from motion approaches recover camera
motion as a part of their optimization. The seminal work
of Bregler et al. (1999) introduced linear shape models as a
representation for nonrigid 3D structures, and demonstrated
their applicability within the factorization-based paradigm
of Tomasi and Kanade (1992). They formulated the problem
as a trilinear optimization over camera motion, shape basis
vectors, and shape coefficient vectors. However, finding a
global solution of the trilinear optimization is difficult (Brand
2005; Xiao and Kanade 2004; Xiao et al. 2006; Akhter et al.
2009) because of non-convexity of the objective function.
Recent work has considered a number of optimization tech-
niques to overcome the suboptimality issue.Torresani et al.
(2001, 2008) used an alternating linear least squares tech-
nique and Brand (2001) provided a sophisticated initializa-
tion by allowing minimal shape deformation. Paladini et al.
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(2009) proposed a robust metric upgrade method by itera-
tively projecting the solution onto metric motion manifold.

Prior knowledge on shapes that regularizes deformation
can improve stability of the optimization. Xiao and Kanade
(2004), Xiao et al. (2006) added a shape basis constraint
which maximizes the basis independence leading to a closed-
form solution. An algorithm to learn shape deformation was
introduced by Torresani et al. (2003). Torresani and Bregler
(2002) and Olsen and Bartoli (2007) proposed a temporal
smoothness prior on the shape basis vectors and camera para-
meters. Yan and Pollefeys (2005) used an articulation con-
straint that can limit shape subspace. Del Bue (2008) pro-
posed a pre-computed prior which produces reliable recon-
struction when there is degeneracy of motion and Fayad et al.
(2010) introduced piecewise reconstruction by dividing the
surface into overlapping patches.

When the shape basis vectors are known, the complexity of
the trilinear optimization reduces to a bilinear optimization.
This complexity reduction results in robust camera motion
and shape estimation. A nonrigid structure registration prob-
lem given a template is one such domain. Blanz and Vetter
(1999) modeled a face using a linear combination of shape
basis vectors and registered/manipulated facial deformation
given a new face image. A surface is another target structure
that has been extensively studied. Salzmann et al. (2007) uti-
lized a low dimensional shape model made of triangle meshes
to represent nonrigid surface. Taylor et al. (2010) proposed
locally rigid structure from motion by allowing minimal tri-
angular deformation in 3D and Östlund et al. (2012) regular-
ized a deformable surface based on Laplacian matrix of the
structure.

In contrast to these methods, which represent the instan-
taneous shape of an object as a linear combination of basis
shape vectors, another line of research (Sidenbladh et al.
2000; Akhter et al. 2008, 2011) modeled each trajectory
using a linear combination of trajectory basis vectors. Akhter
et al. (Akhter et al. (2008, 2011)) noted that, unlike shape
basis approaches, this trajectory representation can be object
independent, i.e., it can express any object deformation
without prior information, while the shape representation is
restricted to the varying shapes of the observed object. This
enabled them to use a pre-defined trajectory basis vectors,
such as the discrete cosine transform (DCT). The method
also reduced the complexity of the trilinear optimization to
a bilinear optimization and showed accurate reconstruction
when shapes cannot be well modeled by compact shape basis
vectors such as articulated motion. Gotardo and Martinez
(2011) also used the DCT trajectory basis vectors to handle
missing data. Valmadre and Lucey (2012) generalized the
trajectory basis concept by formulating the regularization as
a temporal filter.

In this paper, we note that the pre-defined trajectory basis
vectors can be coordinate independent and therefore camera

poses, estimated by stationary points in the scene, can be used
directly. This enables us to further reduce the complexity of
the original trilinear optimization to a linear optimization
where we can find a global solution efficiently—in effect,
using the trajectory basis in the 3D trajectory triangulation
problem. We present a linear solution to reconstruct a mov-
ing point from a series of its image projections inspired by
the direct linear transform algorithm (Hartley and Zisserman
2004).

Our linear formulation, achieved by known camera poses
and the pre-defined trajectory basis vectors, enables us to
robustly handle problems like missing data (due to occlusion
and matching failure) and estimation instability, which most
previous approaches suffer from. The work by Torresani et al.
(2008) and Vidal and Hartley (2004) can handle missing data
using the rank constraint of the flow matrix. However, all
these algorithms remain sensitive to noise and have been
demonstrated to work only for largely rigid transformations
or constrained deformation of objects, such as faces. The use
of stationary areas of the scene to measure camera motion
is also related to the approaches proposed by Del Bue et al.
(2006) and Bartoli et al. (2008), who use rigid points on the
object to estimate the relative camera motion.

Factorization methods largely assume an orthographic
camera model while a few methods have used a perspective
camera model(Hartley and Vidal 2008; Vidal and Abretske
2006; Zhu et al. 2010; Del Bue et al. 2006; Bartoli et al.
2008; Lladó et al. 2010). We formulate reconstruction under
a perspective camera model in terms of linear least squares,
which allows us to find the globally optimal solution in the
presence of missing data.

2.3 Reconstruction Stability

As noted in the previous section, the optimization for non-
rigid structure from motion is known to be difficult because of
the non-convex objective function. Xiao et al. (2006) asserted
that the orthonormality constraints on camera rotation, which
were used in the original factorization framework by Tomasi
and Kanade (1992), were not sufficient to disambiguate solu-
tions, and presented additional constraints on the shape basis
vectors. Subsequently, Akhter et al. (2009) demonstrated that
the orthonormal constraints were theoretically sufficient, i.e.,
there exists a global solution that can be achieved only by
the orthonormality constraint up to rotation and scale. They
noted that difficulty to obtain a global solution is not origi-
nated from ambiguity but from optimization complexity. Dai
et al. (2012) confirmed this claim from their formulation via
trace-norm minimization.

Ambiguity of the problem has been widely investigated
while the stability of the obtained solution is less under-
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stood2. Consider two cases: an object deforms in front of a
stationary camera and in front of an orbiting camera around
the object. The same trilinear optimization algorithm applies
but accurate reconstruction cannot be achieved for the first
case due to a lack of camera motion, while it is achievable
for the second case. The relative camera motion plays a sig-
nificant role for accurate reconstruction3. This is analogous
to stationary point triangulation where the baseline that con-
nects two camera centers characterizes the estimation error
and its uncertainty in the presence of measurement noise. In
this paper, we provide a geometric analysis of the reconstruc-
tion problem. As a result, we find that reconstruction accu-
racy is fundamentally restricted by a criterion we refer to as
reconstructability that characterizes the relationship between
camera motion, point motion, and the trajectory basis.

3 Method

In this section, we present an algorithm to reconstruct the
3D trajectory of a moving point from 2D perspective pro-
jections given the 3D camera poses4 and the time of capture
of the cameras. We represent each trajectory using a linear
combination of compact trajectory basis vectors and solve
for the trajectory coefficient vector via linear least squares in
Sect. 3.1. The number of trajectory basis vectors is automati-
cally chosen by a cross validation scheme (Sect. 3.2) and the
estimated trajectory is refined by minimizing the geometric
error (Sect. 3.3).

3.1 Linear Reconstruction of a 3D Point Trajectory

For a given i th camera projection matrix, Pi ∈ R3×4, let a

point in 3D, Xi = [
Xi Yi Zi

]T
, be imaged as xi = [

xi yi
]T

.
The index i represents the i th time sample. This projection
is defined up to scale,
[

xi

1

]

� Pi

[
Xi

1

]

, or

[
xi

1

]

×
Pi

[
Xi

1

]

= 0, (1)

where [·]× is the skew symmetric representation of the cross
product (Hartley and Zisserman 2004). This can be rewritten
as an inhomogeneous equation,
[

xi

1

]

×
Pi,1:3Xi = −

[
xi

1

]

×
Pi,4 ,

2 For the purposes of this discussion, it should be noted that any global
rigid motion of the object is equivalent to relative camera motion.
3 Related empiricial observations have been made by Ozden et al.
(2004) and Akhter et al. (2008).
4 We estimate camera poses automatically via structure from motion.
See Sect. 5.2 for a description of the camera pose estimation algorithm.

where Pi,1:3 and Pi,4 are the matrices made of the first three
columns and the last column of Pi , respectively, or simply as
Qi Xi = qi , where,

Qi =
([

xi

1

]

×
Pi,1:3

)

1:2
, qi = −

([
xi

1

]

×
Pi,4

)

1:2
,

and (·)1:2 is the matrix made of first two rows from (·). By
taking into account all time instances, the 3D point trajectory,
X, can be written as,
⎡

⎢
⎢
⎣

Q1

. . .

QF

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

X1

...

XF

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

q1

...

qF

⎤

⎥
⎥
⎦ , or QX = q, (2)

where F is the number of time samples in the trajectory.
Since Eq. (2) is an underconstrained system (i.e., Q ∈

R2F×3F ), there are an infinite number of solutions for a given
set of measurements (2D projections). We constrain the solu-
tion space in which X lies by approximating the point trajec-
tory using a linear combination of compact trajectory basis
vectors,

X = [
XT

1 · · · XT
F

]T

≈ �1β1 + · · · + �3K β3K

= �β, (3)

where � j ∈ R3F is a trajectory basis vector, � =[
�1 . . . �3K

] ∈ R3F×3K is the trajectory basis matrix,

β = [
β1 . . . β3K

]T ∈ R3K is a trajectory coefficient vec-
tor, and K is the number of the trajectory basis vectors per
coordinate.

From Eqs. (2) and (3), we can derive the following system
of equations,

Q�β = q. (4)

To reconstruct moving points in 3D, we have to solve the
following trilinear system (Bregler et al. 1999),

argmin
{Pi }i=1,··· ,F ,�,β

‖Q�β − q‖2, (5)

given 2D projections, {xi }i=1,··· ,F . Akhter et al. (2008) iden-
tified that the trajectory basis vectors are object independent.
This allowed them to use pre-defined trajectory basis vectors
such as the DCT and to remove � from the trilinear opti-
mization. This reduced the optimization to a bilinear system,

argmin
{Pi }i=1,··· ,F ,β

‖Q�DCTβ − q‖2, (6)

where �DCT is the pre-defined DCT trajectory basis vectors.
We note that these trajectory basis vectors are also coor-

dinate independent, i.e., the trajectory basis vectors can
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(a) (b)Trajectory reconstruction from Equation (7) Comparison with the ground truth

Fig. 2 We reconstruct a trajectory using linear least squares. a The
reconstructed trajectory is illustrated in two views. The trajectory, which
is represented by a linear combination of trajectory basis vectors, passes
through all lines of projections. The blue pyramids are camera poses. b

We project the ground truth trajectory and the reconstructed trajectory
into the X , Y , and Z axis to show the accuracy of trajectory recon-
struction. Trajectory reconstruction via Eq. (7) produces an accurate
solution

compactly represent a trajectory equally well in any arbi-
trary orthogonal world coordinate system via the following
Result 1.

Result 1 The spectral distribution of a 3D trajectory basis
is invariant to 3D similarity transforms.

See the Appendix for a proof. The consequence of Result 1 is
that we can estimate the camera motion, PSfM, independently,
using structure from motion on the stationary points in a
scene (Hartley and Zisserman 2004) as discussed in Sect. 5.2.
This further reduces the bilinear system to a linear system as
follows,

argmin
β

‖QSfM�DCTβ − qSfM‖2. (7)

Solving Eq. (7) for the trajectory coefficient vector, β, is a
linear least squares system if 2F ≥ 3K , which provides an
efficient, numerically stable, and globally optimal solution.
Figure 2 shows 3D trajectory reconstruction via Eq. (7) in
the presence of measurement noise. Figure 2a illustrates the
camera trajectory and point trajectory with the lines of pro-
jections from two perspectives. The reconstructed trajectory
is a trajectory that passes through all lines of projections and
that is represented by a linear combination of the trajectory
basis vectors. Figure 2b shows how the reconstructed trajec-
tory and ground truth trajectory are similar.

If there are missing data by self-occlusion or measurement
noise, the corresponding rows in Q and q may be dropped in
Eq. (7). As long as the resulting Q� matrix satisfies the least
squares criterion, i.e., 2F̂ > 3K where F̂ is the remaining
number of measurements, the estimation of β is robust. This
allows us to handle the problem of missing data.

3.2 Selection of the Number of Basis Vectors

Our approach requires the selection of the number of basis
vectors, K . In Akhter et al. (2008, 2011) and Park et al.
(2010), the number of the DCT basis vectors was manually
tuned and all trajectories were reconstructed with the same
number of the basis vectors. This is undesirable because dif-
ferent points may undergo different degrees of motion. The
number of the basis vectors controls the complexity of the tra-
jectory motion. For example, a point that undergoes complex
motion such as hands in the dance scene shown in Fig. 13a,
requires higher K , i.e., high frequency DCT trajectory basis
vectors are needed to represent and reconstruct the complex
motion; a point that undergoes simple motion such as the
left leg can be represented by more aggressive truncation,
retaining only low frequency DCT trajectory basis vectors.
If K is too high, the algorithm overfits measurement noise,
and conversely, if it is too low, the reconstructed trajectory
cannot express the detail of the point motion. In this section,
we present an approach to automatically select Ki for the i th
trajectory rather than manually setting a global value of K .
Bartoli et al. (2008) also presented a method to select K for
shape basis vectors via coarse-to-fine reconstruction; their
approach selects a global truncation factor for all the points,
while our method can determine it per point.

To select the number of basis vectors automatically and
individually, we use an N -fold cross validation scheme to
check the consistency of the reconstructed trajectory. The
2D trajectory is divided into N sets such that each set con-
tains F/N samples that are uniformly distributed in time
across the 2D trajectory. When the j th set, S j , is considered,
the reprojection error, e j , is evaluated from a 3D trajectory
reconstructed from the rest of the N − 1 sets for a given
Ki . This is iterated until all N sets are tested. When Ki is too
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Fig. 3 We select the number of the DCT basis vectors using a cross
validation scheme. As the number of the basis vectors, K , increases,
reprojection error decreases in general, because a larger K can express
the detail of the point trajectory. The purple line with markers shows
reprojection error as K increases (reprojection error decreases). The
purple line without markers shows reprojection error measured by our
cross validation scheme. When K = 12, reprojection error is minimized
and the most consistent trajectory through all image measurements is
achieved. This also minimizes 3D reconstruction error. Note that the
graph has two-sided Y axes, where the left and right Y axes represent
reprojection error and 3D reconstruction error in log scale, respectively

high, the trajectory overfits measurement noise, which results
in high reprojection error. When Ki is too low, the reprojec-
tion error is also high because of limited expressiveness of
the basis vectors. We choose the number of the basis vec-
tors for the i th trajectory, which minimizes cross-validated
reprojection error, i.e.,

K ∗
i = argmin

Ki

N∑

j=1

e j (Ki ), (8)

where Ki = 1, 2, . . . , 	2F/3
,

e j (Ki ) =
∑

s∈S j

(
P1

s X Ki
s

P3
s X Ki

s

− xs

)2

+
(

P2
s X Ki

s

P3
s X Ki

s

− ys

)2

,

X Ki
s =

[
�(s)Ki βKi

1

]

,

where 	·
 is the floor operator (the largest integer not greater
than ·). �(s)Ki ∈ R3×3Ki is the trajectory basis vectors eval-
uated at the sth time instant with the 3Ki trajectory basis
vectors and Pl is the lth row of the matrix P. xs and ys are a
2D measurement at the sth time instant. In Fig. 3, the purple
line with markers plots the reprojection error as Ki increases.
The higher the truncation factor Ki , the lower the reprojection
error because the details of the trajectory can be expressed.
However, a higher Ki may overfit measurement noise of the
trajectory. From our cross validation scheme, we are able
to automatically select Ki that is the most expressible but

the least overfitted. The purple line without markers shows
reprojection error and Ki = 12 produces the most consistent
trajectory for all image measurements (minimum reprojec-
tion error) in the presence of measurement noise. This Ki

also minimizes 3D reconstruction error.

3.3 3D Trajectory Refinement

Trajectory reconstruction from Eq. (7) minimizes the alge-
braic error (Hartley and Zisserman 2004). The solution, β,
is not necessarily the maximum likelihood solution under
Gaussian measurement noise. We refine the linearly recon-
structed trajectory by minimizing the reprojection error, i.e.,

argmin
β

F∑

i=1

(
P1

i Xi

P3
i Xi

− xi

)2

+
(

P2
i Xi

P3
i Xi

− yi

)2

, (9)

where Xi =
[

�(i)β

1

]

,

�(i) ∈ R3×3K is the trajectory basis vectors evaluated at i th
time instant.

4 Geometric Analysis of 3D Trajectory Reconstruction

In practice, we observe the point trajectory reconstruction
approaches the ground truth if the camera motion in relation
to the point motion is sufficiently large when the DCT trajec-
tory basis vectors are used. Conversely, if the camera motion
is small in relation to the point motion, the solution tends
to deviate from the ground truth (Ozden et al. 2004; Akhter
et al. 2009). In this section, we analyze the stability of tra-
jectory reconstruction from Eq. (7) by considering the geo-
metric relationship between the point trajectory, the camera
center trajectory, and the trajectory basis vectors. We catego-
rize trajectory reconstruction as a solvable or unsolvable sys-
tem. Trajectory reconstruction is possible only when our least
squares system is solvable. More importantly, a solvable sys-
tem does not guarantee an accurate estimate of the trajectory
parameters. We define a measure of reconstruction accuracy,
reconstructability, for solvable systems. Reconstructability
enables us to precisely characterize when accurate recon-
struction of a 3D trajectory is possible.5

5 Ambiguity analyses have been investigated by Xiao et al. (2006),
Vidal and Abretske (2006), Hartley and Vidal (2008), and Akhter et al.
(2009). However, these analyses consider the ambiguity with the use of a
shape basis representation, which utilizes the correlation across multiple
points. In this section, we consider the case of the reconstruction of a
single 3D point trajectory.
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4.1 Geometry of Camera Trajectory, Point Trajectory,
and Trajectory Basis Vectors

Let X and X̂ be a ground truth trajectory and an estimated
point trajectory, respectively. The camera matrix can, with-
out loss of generality, be normalized by intrinsic and rota-
tion matrices, K and R, respectively, (as all camera matri-
ces are known), i.e., RT

i K−1
i Pi = [

I3 −Ci
]
, where Pi =

Ki Ri
[

I3 −Ci
]
, Ci is the camera center, and I3 is a 3 × 3

identity matrix. This follows from the fact that triangula-
tion and 3D trajectory reconstruction are both geometrically
unaffected by the rotation of the camera about its center. All
Pi subsequently used in this analysis are normalized camera
matrices, i.e., Pi = [

I3 −Ci
]
. Then, a measurement is a

projection of Xi onto the image plane from Eq. (1). Since
Eq. (1) is defined up to scale, the measurement, xi , can be
replaced as follows,
[

Pi

[
Xi

1

]]

×
Pi

[
X̂i

1

]

= 0. (10)

Inserting Pi = [
I3 −Ci

]
results in,

[Xi − Ci ]×
(
X̂i − Ci

) = 0, (11)

or equivalently,

[Xi − Ci ]× X̂i = [Xi ]× Ci . (12)

To satisfy Eq. (12), X̂i has to lie in the space spanned by Xi

and Ci , or X̂i = a1Xi + a2Ci . It can be easily verified that
a2 = 1 − a1 by substituting in Eq. (12). Thus, the solution
of Eq. (12) is,

X̂i = ai Xi + (1 − ai )Ci , (13)

where ai is an arbitrary scalar. Geometrically, Eq. (13) is a
constraint for the perspective camera model that enforces the
solution to lie on the ray joining the camera center and the
point in 3D. By generalizing the i th point to a point trajectory,
Eq. (13) becomes,

X̂ = AX + (I − A)C, (14)

where A = D ⊗ I3
6.

From Eq. (3), Eq. (14) can be rewritten as �β̂ ≈ AX +
(I − A)C.

Figure 4 illustrates the geometry of the solution of Eq. (7).
Let the subspace, p, be the space spanned by the trajectory
basis vectors, col(�). The solution �β̂, has to simultane-
ously lie in l and col(�) where l is a hyperplane that con-
tains the camera trajectory and the point trajectory. Thus,
�β̂ is the intersection of the hyperplane l and the subspace

6 ⊗ is the Kronecker product and D is a diagonal matrix which consists
of {a1, . . . , aF }, the scalar for each point along the trajectory.

X

C

XΘβ

CΘβ

ˆΘβ

col( )⊥Θ

= col( )p Θ

( )l = +AX I - A C

X : Point trajectory
: Camera trajectory
: Coefficient vector
: Estimated coefficient vector

C Θ
col( )⋅

β
β̂

: Column space
: Trajectory basis vectors
: Null space of trajectory basis vectors

3F

⊥ ⊥
CΘ β

⊥ ⊥
XΘ β

⊥Θ

Fig. 4 Geometric illustration of the least squares solution of Eq. (7).
The trajectory �β̂ is placed at the intersection between the hyperplane
l containing the camera trajectory space and the point trajectory, and
the p space spanned by the trajectory basis vectors, col(�)

p. Note that the line and the plane are a conceptual 3D vec-
tor space representation for the 3F-dimensional space. The

camera center trajectory, C = [
CT

1 . . . CT
F

]T
, and the point

trajectory, X, are projected onto col(�) as �βC and �βX,
respectively.

4.2 Characterization of Trajectory Reconstruction

Recovering β depends on the camera trajectory as shown in
Fig. 4. We study the degeneracy of the solution of Eq. (7)
to characterize the cases when trajectory reconstruction is
impossible. The least squares system of Eq. (7) is solvable if
rank(Q�) = 3K (i.e., it has full column rank).

4.2.1 Unsolvable Systems

When the system is unsolvable, there is a space of solutions
where trajectory estimation is ambiguous. We characterize
such unsolvable systems as follows,

Result 2 Trajectory reconstruction via Eq. (7) is unsolvable
if

(i) X, C ∈ col(�), or
(ii) X = cC + 1 ⊗ d where c is a nonzero scalar, 1 is an F

dimensional vector whose entries are all ones, and d ∈ R3

is an arbitrary vector.

Proof (i) If X, C ∈ col(�), X = �βX and C = �βC.
Then,

null(Q�)

= null

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

[X1 − C1]×
. . .

[XF − CF ]×

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

�1

.

.

.

�F

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠
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Reconstructed trajectories

(c)

Point trajectory

Camera trajectory

Reconstructed trajectories

(d)C,X ∈ col(Θ) C,X ∈ col(Θ) and
X = cC + 1 ⊗ d

C,X /∈ col(Θ) and
X = cC + 1 ⊗ d

C,X /∈ col(Θ) and
X = C + 1 ⊗ d

Fig. 5 We illustrate unsolvable systems that produce an infinite num-
ber of solutions or a trivial solution. a Trajectory reconstruction is
ambiguous when C, X ∈ col(�) because there exists null(Q�), which
is an unsolvable system. Plausible reconstructed trajectories that satisfy
Eq. (7) are illustrated. b Plausible reconstructed trajectories that satisfy

Eq. (7) when C, X ∈ col(�) and X = cC + 1 ⊗ d are shown. c When
X = cC + 1 ⊗ d where c �= 1, the solution of the system is always
1 ⊗ d/(1 − c), which is trivial. d When X = C + 1 ⊗ d, the system is
unsolvable because rank(Q�) = 2K

= null

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

[
�1(βX − βC)

]
×

. . .
[
�F (βX − βC)

]
×

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

�1

.

.

.

�F

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

= null

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

[
�1(βX − βC)

]
× �1

.

.

.
[
�F (βX − βC)

]
× �F

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

 βX − βC, (15)

where � = [
�T

1 · · · �T
F

]T
. Since there exists a null space

of Q�, rank(Q�) < 3K .
(ii) Let us consider two cases where c �= 1 and c = 1.
When c �= 1, by plugging X = cC + 1 ⊗ d into the

Eq. (12), it becomes,

[(c − 1)Ci + d]× X̂i = [cCi + d]× Ci

= [d]× Ci . (16)

From Eq. (16), X̂i = αCi + (1 − α)d/(1 − c) where α is
a scalar. When C ∈ col(�), it is the case where the first
condition (i) holds, where the system is unsolvable. When
C /∈ col(�), α = 0 because any component of C that cannot
be expressed by the trajectory basis vectors results in the
residual error of Eq. (3). Only 1 ⊗ d/(1 − c) nullifies the
residual error of Eq. (7) but it is still a trivial solution (i.e.,
a reconstructed trajectory, X̂ = 1 ⊗ d/(1 − c), is simply a
stationary point even though the point undergoes motion.).

When c = 1, d/(1−c) term in X̂i = αCi +(1−α)d/(1−
c) is indeterminate. It is the case where the camera moves
exactly the same way the point moves with some offset and
rank(Q�) = 2K because from Eq. (12) and X = C+1⊗d,

rank(Q�)

= rank

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

[d]×
. . .

[d]×

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

�1

.

.

.

�F

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

= rank

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0 −d3θ1 d2θ1

d3θ1 0 −d1θ1

.

.

.
.
.
.

.

.

.

0 −d3θF d2θF

d3θF 0 −d1θF

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎦

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

= rank

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

0 −d3θ1 d2θ1

.

.

.
.
.
.

.

.

.

0 −d3θF d2θF

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠ + rank

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

d3θ1 0 −d1θ1

.

.

.
.
.
.

.

.

.

d3θF 0 −d1θF

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

= 2K ,

where d = [
d1 d2 d3

]T
and �i = blkdiag{θi , θi , θi }. The

trajectory basis vectors for each coordinate (x, y, and z) are
the same. Since the rank of the system is 2K , the system is
unsolvable. ��

Figure 5 illustrates solutions of unsolvable systems. For
Result 2.i, Fig. 5a shows an ambiguous solution of Eq. (7)
when X, C ∈ col(�). All reconstructed trajectories lie in
one dimensional subspace βX − βC. When X = cC + 1 ⊗ d
(i.e., Result 2.ii), the system is also unsolvable. When c �= 1,
the solution is αCi + (1 − α)/(1 − c)d. α can be nonzero
only when C ∈ col(�). Figure 5b illustrates the space of
solutions by varying α. When C /∈ col(�), α = 0 and
the solution is always 1 ⊗ d/(1 − c) (i.e., stationary point)
which is a trivial solution as shown in Fig. 5c. Figure 5(d)
shows trajectory reconstruction when c = 1, which results in
rank(Q�) = 2K . Any trajectory in K dimensional subspace
(i.e., null(Q�)) is a solution lying on a surface made by the
point trajectory and the camera trajectory, which is shown by
gray dotted lines.

4.2.2 Solvable Systems

Result 2 considers an unsolvable system or a system result-
ing in a trivial solution. For a solvable system, Eq. (7) can
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Fig. 6 a As the null component of the camera trajectory eC decreases,
the solution of Eq. (7) deviates from the ground truth. b The recon-
structability η provides the degree of interference between the camera

trajectory and point trajectory. Reconstructability is inversely propor-
tional to 3D reconstruction error

be solved without ambiguity in a least squares sense and
there exists a unique solution, β̂. However, the solvable sys-
tem does not guarantee an accurate solution: how much β̂

deviates from βX. We observe that the accuracy of trajectory
reconstruction depends on the relationship between the cam-
era center’s 3D trajectory, the 3D point trajectory, and the
trajectory basis vectors. Given this observation, we charac-
terize the case when reconstruction is accurate.

Solving the least squares system, X̂ = �β̂, minimizes the
residual error by Eq. (14),

argmin
β̂,A

∥
∥�β̂ − AX − (I − A) C

∥
∥2

. (17)

Let us decompose the point trajectory and the camera trajec-
tory into the column space of � and that of the null space,
�⊥ as follows, X = �βX + �⊥β⊥

X, C = �βC + �⊥β⊥
C ,

where β⊥ is the coefficient vector for the null space. Let us
also define a measure of reconstructability, η, of the 3D point
trajectory reconstruction,

η (�) =
∥∥�⊥β⊥

C

∥∥
∥∥�⊥β⊥

X

∥∥ � How poorly � describes C
How poorly � describes X

. (18)

Reconstructability enables us to define the accuracy of the
trajectory reconstruction by the following result.

Result 3 lim
η→∞β̂ = βX.

Proof From the triangle inequality, the square root of
the objective function of Eq. (17) is bounded by (when∥∥�⊥β⊥

X

∥∥ → 0),
∥
∥∥�β̂ − A�βX − (I − A) �βC − A�⊥β⊥

X

− (I − A) �⊥β⊥
C

∥∥
∥ (19)

≤ ∥
∥�β̂ − A�βX − (I − A) �βC

∥
∥ +

∥
∥∥A�⊥β⊥

X

∥
∥∥

+
∥
∥
∥(I − A) �⊥β⊥

C

∥
∥
∥

≤
∥
∥
∥�⊥β⊥

C

∥
∥
∥

(∥∥�β̂ − A�βX − (I − A) �βC
∥∥

∥
∥�⊥β⊥

C

∥
∥

+ ‖A‖
η

+ ‖I − A‖
)

, (20)

or when
∥∥�⊥β⊥

C

∥∥ → ∞,

≤
∥
∥∥�⊥β⊥

X

∥
∥∥

(∥
∥�β̂ − A�βX − (I − A) �βC

∥
∥

∥∥�⊥β⊥
X

∥∥

+ ‖A‖ + ‖I − A‖ η) . (21)

As η approaches infinity, ‖A‖ /η in Eq. (20) becomes zero or
‖I − A‖ η in Eq. (21) becomes infinity. To minimize either
Eq. (20) or Eq. (21), A = I because it leaves the last term
zero and β̂ = βX because it cancels the first term. This
causes the minimum of Eq. (20) or Eq. (21) to become zero,
which upper-bounds the minimum of Eq. (19). Thus, as η

approaches infinity, β̂ approaches βX. ��
Figure 6a shows how reconstructability is related to the

accuracy of the 3D reconstruction error. In each reconstruc-
tion, the residual error (null components) of the point tra-
jectory, eX = ∥∥�⊥β⊥

X

∥∥, and the camera trajectory, eC =∥∥�⊥β⊥
C

∥∥, are measured. Increasing eC for a given point
trajectory enhances the accuracy of the 3D reconstruction,
while increasing eX lowers accuracy. Even though we cannot
directly measure the reconstructability (we do not know the
true point trajectory in a real example), it is useful to under-
stand the direct relation with 3D reconstruction accuracy.
Figure 6b illustrates that the reconstructability is inversely
proportional to the 3D reconstruction error.
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Fig. 7 The stability of trajectory reconstruction depends on recon-
structability. We reconstruct the same point trajectory with the same
camera location but with different ordering. Note that the DCT trajec-
tory basis vectors are used for reconstruction. a The order of capture
forms a smooth camera trajectory (left column), which results in low
reconstructability (η = 0.77) as the camera trajectory can be well rep-
resented by the DCT trajectory basis vectors. The reconstructed point

trajectory is inaccurate and the covariance of the trajectory is large
(right column). b We shuffle the order of capture to produces a camera
trajectory that cannot be well spanned by the DCT trajectory basis vec-
tors while the camera poses remain the same (see the camera trajectory
on left column). This results in high reconstructability (η = 54.78).
The reconstructed point trajectory is accurate and the covariance of the
trajectory is small (right column)

4.2.3 Discussion on Reconstructability

Reconstructability provides key insights into the fundamen-
tal relationship between the camera trajectory, point trajec-
tory, and trajectory basis vectors for trajectory reconstruction
in 3D and it explains why certain types of the camera motion
produce high 3D reconstruction error. Although the number
of views is sufficiently large to overconstrain the linear sys-
tems in Eq. (7), the reconstructed trajectory can deviate from
the ground truth trajectory due to interference of the cam-
era motion. This explains our earlier observations: when the
DCT trajectory basis vectors are used, larger camera motion
produces larger null components of the camera trajectory,
i.e., ‖�⊥β⊥

C‖, which increases reconstructibility according
to Eq. (18), and vice versa. Similar observations can be also
found in Akhter et al. (2008). As a truncated DCT basis essen-
tially encode smooth motion, by retaining the low frequencies
of motion, the basis usually represents the motion of natural
points well, but it is likely to capture the motion of cameras
equally well. This is a key limitation exposed by our analysis
in representing a trajectory using a linear combination of tra-
jectory basis vectors. An important direction of future work
is to leverage the knowledge of camera motion to design an
optimal subspace to capture low frequency motion.

Reconstructibility is analogous to the baseline which con-
nects two camera centers in classic triangulation as shown
Fig. 1a. Stability or uncertainty of point reconstruction is
dependent on the baseline between camera centers. If the
baseline is wide, the uncertainty of the 3D reconstructed point
is small and the stability of estimation is high. If the base-
line is narrow, reconstructing the point is highly unstable (i.e.,

high uncertainty along the rays of projections) in the presence
of Gaussian noise. Thus, the baseline provides a key insight
of the stability of the reconstruction. Reconstructability is the
corresponding concept of the baseline for nonrigid structure
from motion in trajectory space.

Figure 7 illustrates how reconstructability relates with
reconstruction accuracy and the covariance of the recon-
structed trajectory when the DCT trajectory basis vectors
are used. We generate a smooth camera trajectory and point
trajectory as shown in the left column of Fig. 7a. The smooth
camera trajectory forms low reconstructability (η = 0.77)
as the camera trajectory can be well represented by the DCT
trajectory basis vectors. Trajectory reconstruction is inaccu-
rate and the covariance of the reconstructed trajectory is large
(the right column of Fig. 7a). In Fig. 7b, we shuffle the order
of capture to produce a camera trajectory that cannot be well
spanned by the DCT trajectory basis vectors while the cam-
era poses remain the same in Fig. 7a. Note that the locations
of the camera centers are the same but the camera motion is
larger in the left column of Fig. 7b. The large camera motion
results in high reconstructability (η = 54.78). This camera
trajectory reconstructs the accurate point trajectory with low
covariance as shown in the right column of Fig. 7b.

In practice, the infinite reconstructability criterion is diffi-
cult to satisfy because the actual X is unknown. To enhance
reconstructability we can maximize eC with constant eX.
Thus, the best camera trajectory for a given trajectory basis
matrix is the one that lives in the null space, col(�⊥).
This explains our observation about small and large camera
motion described at the beginning of this section. When the
camera motion is small comparing to the point motion, the
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Fig. 8 Reconstructability and the cross validation scheme are highly
related; when reconstructability is maximized, the reprojection error
used for the cross validation is minimized. a The magnitude of coeffi-
cient vectors of the point and camera trajectories is plotted and recon-
structability when K basis vectors are used is overlaid. Reconstructabil-

ity is maximized when the magnitude of coefficients of the point tra-
jectory is diminished (K = 12). b Reprojection error for the cross vali-
dation is minimized where reconstructability is maximized (K ∗ = 12)
because that number of basis vectors is the most expressible and the
least overfitted

camera trajectory is likely to be represented well by the DCT
basis vectors, which results in low reconstructability and vice
versa. However, for a given camera trajectory, there is no
deterministic way to define trajectory basis vectors because
it is coupled with both the camera trajectory and the point
trajectory. If one simply finds orthogonal space to the cam-
era trajectory, in general, it is likely to nullify space that
also spans the point trajectory space. Geometrically, simply
changing the orientation of p in Fig. 4 may result in a greater
deviation between �βX and �β̂.

Reconstructability is highly related to the selection of
the number of basis vectors via our cross validation scheme
described in Sect. 3.2. Given camera motion, reconstructabil-
ity varies as the number of basis vectors changes as shown
in Fig. 8. Figure 8a shows the relationship between the mag-
nitude of the coefficient vectors used to reconstruct the point
and camera trajectories, and the reconstructability principle.
The selected K ∗ = 12 is the minimum number of trajectory
basis vectors that also minimizes the 3D reconstruction error.
K ∗ is the automatically selected number of basis vectors via
the cross validation scheme. When K < K ∗, ||�⊥β⊥

X || is
not minimized because there are some coefficients at higher
than the K frequency. When K > K ∗, ||�⊥β⊥

X || is already
minimized but ||�⊥β⊥

C || is not maximized. When K = K ∗,
reconstructability is maximized and reprojection error that is
used for the cross validation is simultaneously minimized as
shown in Fig. 8b.

5 Results

In this section, we evaluate our algorithm quantitatively
on motion capture data and qualitatively on real data. In

all cases, the trajectory basis vectors are the first Ki DCT
basis vectors in order of increasing frequency where Ki

is determined by our cross validation scheme. The DCT
basis vectors have been shown to provide optimal perfor-
mance in encoding a signal under the first order Markov
process (Hamidi and Pearl 1976) and demonstrated to accu-
rately and compactly model point trajectories (Akhter et al.
2008, 2011). If a 3D trajectory is continuous and smooth,
the DCT basis vectors can represent it accurately with rela-
tively few low frequency components. We make the realis-
tic assumption that each point trajectory is continuous and
smooth and use the DCT basis as the trajectory basis, �.
Also for numerical stability, we normalize 2D measurements
of the each trajectory such that the mean of 2D measure-
ments is 0 and the average distance from the origin is

√
2

before solving Eq. (7) (Hartley 1997). We obtained cor-
respondences of moving points across images, manually.
3D trajectories of moving points are estimated linearly as
described in Sect. 3.1. The number of basis vectors is cho-
sen per point using the cross validation method and each
linearly estimated trajectory is refined by the nonlinear opti-
mization as described in Sect. 3.2 and in Sect. 3.3, respec-
tively. The results, data, and the code of real data are avail-
able on the webpage, http://www.cs.cmu.edu/~hyunsoop/
trajectory_reconstruction.html.

5.1 Simulation

To quantitatively evaluate our method, we generate synthetic
2D images from 3D motion capture data and test it from
three perspectives: reconstructability, robustness, and accu-
racy. For reconstructability, we compare reconstruction by
increasing the null component, eC, of the camera trajec-
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(a)

(b)

(c)

Trajectory reconstruction at zero reconstructability

Trajectory reconstruction with low reconstructability

Trajectory reconstruction with high reconstructability

Fig. 9 Qualitative comparison of trajectory reconstruction from var-
ious reconstructability. Black ground truth, red reconstructed trajec-
tory. a Zero reconstructability, η = 0. The relative camera trajectory
is stationary and the reconstructed trajectory is exactly the same as the

camera trajectory. b Low reconstructability, η = 0.32 results in inaccu-
rate reconstruction at the beginning and the end of the sequence. c All
trajectories are reconstructed accurately under high reconstructability,
η = 5.31
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Fig. 10 a While a large number of basis vectors results in low 3D
reconstruction error in general, reconstruction instability is observed
when there is missing data. Reconstruction instability results from
overfitting of trajectories. Nevertheless, our algorithm can handle 40 %

missing data with 19 basis vectors, which results in relatively low 3D
reconstruction error. b As frame rate increases, visibility of motion also
increases, which results in low 3D reconstruction error

tory. For robustness, we test with missing data and lower
sampling rates. Finally, for accuracy, we compare our algo-
rithm with a state-of-the-art algorithm (trajectory triangu-

lation) by Kaminski and Teicher (2004) to the best of our
knowledge. The results show our method outperforms their
method according to these metrics.
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Fig. 11 a The minimal number of linear equations increases exponen-
tially as the degree of polynomial (degree of motion) increases for the
method by Kaminski and Teicher (2004) while it increases linearly for
our method. This computationally precludes them to reconstruct a tra-

jectory with high complexity. b We compare reconstruction accuracy
by varying reconstructability. Both methods show inverse relationship
between 3D reconstruction error and reconstructability. Our method
produces smaller error than their method
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Fig. 12 We compare our algorithm with the method proposed by
Kaminski and Teicher (2004). We measure reconstruction error as func-
tion of error in the input parameters. a We show our algorithm can
reconstruct a trajectory with high accuracy although the number of basis
vectors is mis-estimated while their method cannot. �K and �d are
difference between ground truth parameters and estimated parameters.
b We illustrate the cases where camera poses or 2D projections are inac-

curate. c We show how much our method can tolerate a trajectory that
cannot be modeled by its representation, i.e., non-smooth trajectories.
For all cases, our method outperforms their method, i.e., less error and
more stable reconstruction. Also, our method exhibits graceful degrada-
tion when the error of input parameters increases. Note that the shaded
area represents standard deviation of each 3D reconstruction error

5.1.1 Reconstructability

Earlier, we defined the reconstructability of a 3D trajectory
as the trade off between the ability of the chosen trajectory
basis vectors to accurately describe the point trajectory versus
its ability to describe the camera trajectory. To evaluate this
effect empirically we relative generate camera trajectories by
varying eC and measure the 3D reconstruction error as shown
in Fig. 6. Each trajectory is normalized to have zero mean and
unit variance so that errors can be compared across different

sequences. Figure 9 shows examples (walking sequences) of
trajectory reconstructions under various reconstructability.
When the reconstructability is zero shown in Fig. 9a, the
reconstructed trajectories are exactly the same as the camera
motions because the camera trajectory is the intersection of
the hyperplane, l, and the space of trajectory basis vectors,
col(�), in Fig. 4. When reconstructability is low, η = 0.32,
shown in Fig. 9b, the reconstruction deviates from the ground
truth because there is interference from the camera trajectory.
High estimation error can be observed at the beginning and
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Fig. 13 Reprojections of trajectories from manually selected K and
automatically selected Ki are shown for the dance scene. a Red cross
measurement, cyan circle manually selected K , and green triangle auto-
matically and individually selected Ki . Trajectory from Ki has smaller

reprojection error. Average reprojections for K and Ki are 11.55 and
6.47, respectively. b The number of basis vectors per point is color-
coded. The points on the hands require many basis vectors while the
points on the left leg which barely move requires few basis vectors

the end of the sequence. If the reconstructability is high,
η = 5.31, reconstruction is very close to the ground truth.

5.1.2 Handling Missing Data

We test for the effects of missing data and low frame rate
(sparse measurements) with high reconstructability. Missing
samples occur in practice due to occlusion, self-occlusion,
or measurement failure.

In general, as the number of the basis vectors K increases,
the 3D reconstruction error decreases because the high fre-
quency components of a point trajectory can be described by
the basis vectors. However, when there is occlusion, recon-
struction instability occurs due to measurement noise. Fig-
ure 10a shows the reconstruction error as the amount of occlu-
sion varies (0, 20, 40, and 60 % of the sequence) for different
numbers of the DCT basis vectors, K . A walking motion cap-
ture sequence was used and each experiment was repeated
10 times with random occlusion. As long as the visibility of a
point in a sequence is sufficient to overconstrain Eq. (7), the
solution is robust to moderate occlusion. Figure 10a shows
that our algorithm can handle relatively high number of miss-
ing data (40 %) with K = 19.

Figure 10b evaluates the robustness to the frequency of
input samples, i.e., varying the effective frame rate of the
input sequence given camera motion and point motion. Note
that since the camera motion and point motion are fixed, rel-
ative motion, or reconstructability, is constant. Visibility of
moving points is important to avoid poor conditioning of the
solution, and intuitively more frequent visibility results in
better reconstruction. The results confirm this observation.
As was observed in the occlusion experiment, the higher
the truncation factor K , the less the reconstruction error, but
reconstruction instability can be observed when frame rate
is low (1 fps).

5.1.3 Accuracy

We evaluate our algorithm by comparing with a trajectory
recontruction algorithm proposed by Kaminski and Teicher
(2004)7. The result of this comparison indicates that their
method is computationally prohibitive and less fault tolerant.

They represented a trajectory (algebraic curve) as a hyper-
surface in P5 where all lines of projections intersect, i.e., a
homogeneous polynomial vanishes on Plücker coordinates
of 3D lines intersecting the trajectory. The algorithm is com-
posed of two optimizations: to estimate the Chow polynomial
from lines of projections and to find points on a trajectory that
satisfy the Chow polynomial. To solve the Chow polynomi-

als from lines of projections, Nd =
(

d + 5

d

)
−

(
d + 3

d − 2

)
−1

measurements have to be made, and each measurement pro-
duces one linear equation. Therefore, Nd linear equations has
to be solved8 while our method needs to solve NK = �3K/2�
linear equations. d is the degree of the homogeneous poly-
nomial that determines degree of motion (complexity of the
trajectory), which is equivalent to the number of trajectory
basis vectors, K , for our method. Nd increases exponen-
tially while NK increases linearly as shown in Fig. 11a.
This indicates that their method is computationally pro-
hibitive as the degree of motion, d, increases. Inaccurate
trajectory reconstruction caused by low reconstructability is
also observed from their method as shown in Fig. 11b. 3D
reconstruction error is inversely related to reconstructabil-
ity while their method is more sensitive to reconstructabil-

7 The method by Avidan and Shashua (2000) can only reconstruct a
linear or conic trajectory.
8 To solve the second part of the optimization, they have to additionally

solve

(
d + 2

d

)

linear equations.
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Table 1 Parameters of real data sequences

F (s) # of photos # of photographers

Rock climbing 39 107 5
Handshake 10 32 3
Speech 24 67 4
Greeting 24 66 4
Dance 16 49 4
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Fig. 14 The distribution of the number of basis vectors. Scenes which
are long or contain complex trajectories such as the rock climbing scene
or the speech scene (complex hand motions), require the high number of
basis vectors while short or simple motion scenes such as the hand shake
scene or the greeting scene require the low number of basis vectors. In
the greeting scene, there are several trajectories that exhibit a relatively
the high number of basis vectors (14–15), which correspond to the hand
motion (there is hand waving motion.)

ity than ours, which is shown as a heavy-tailed distribu-
tion.

We evaluate both algorithms based on an error tolerance
criterion: to what extent can the systems tolerate erroneous
input parameters in Fig. 12. Three sources of error are tested:
degree of motion error, camera pose estimation error, and a
point trajectory model error. Mis-estimated degree of motion,
d or K , results in inaccurate reconstruction, i.e., the recon-
structed trajectory can be overfitted or oversmoothed. We
randomly generate a trajectory with K basis vectors or d
degree of polynomial and reconstruct it with Kr and dr . Fig-
ure 12a shows that their algorithm breaks when the trajectory
is reconstructed with smaller dr , i.e., �d = dr −d < 0, while
our method does not break significantly for �K = Kr −K <

0. When �d > 0 and �K > 0, the reconstruction is com-
parable with dr = d and Kr = K . Inaccurate camera pose
estimation can produce 2D image measurement noise. We
measure 3D reconstruction error as varying Gaussian noise
of the projections. Their method easily breaks in the pres-
ence of the image noise while our method can reconstruct
with high accuracy as shown in Fig. 12b. Finally, we test
how much an algorithm can handle a trajectory that cannot be
modeled by its representation. Both algorithms model point
motion as a smooth trajectory. We generate a 3D smooth tra-
jectory and mix with Gaussian noise to create a non-smooth

trajectory. Our algorithm is more tolerant on a non-smooth
trajectory with high accuracy than their algorithm, as shown
in Fig. 12c. For all cases, our method degrades gracefully as
the error of input parameters increases while their method
tends to produce erroneous output.

5.2 Experiments with Real Data

The theory of reconstructability states that it is possible to
reconstruct 3D point trajectories using the DCT basis vectors
if the camera motion relation to the point motion is large. An
interesting real world example of this case occurs when many
independent photographers take temporally non-coincidental
images of the same event from different locations. A collec-
tion of these images can be interpreted as the large motion of
a camera center that cannot be represented by the DCT tra-
jectory basis vectors. Using multiple photographers, we col-
lected data in several ‘media event’ scenarios: a person rock
climbing, a photo-op hand shake, a public speech, greeting,
and dance (Fig. 13).

The parameters for each scenario are summarized in
Table 1. We were able to use the DCT basis vectors for all
scenes. The required number of the basis vectors implies the
complexity of the trajectory. A long sequence such as the
rock climbing scene requires generally the higher number
of basis vectors than a short sequence such as hand shake
scene as shown in Fig. 14. Figures 15, 16, 17, 18, and 19
show some of input images and reconstructed point trajec-
tories (the number of basis vectors is color-coded into a
trajectory).

5.2.1 Camera Pose Estimation

The static scene reconstruction is based on the structure from
motion pipeline described in Snavely et al. (2006). Keypoints
are extracted by SIFT (Lowe 2004) and all possible pairs of
images are considered to find matches using the fundamen-
tal matrix. The RANSAC (Fischler and Bolles 1981) based
matching enables us to automatically obtain scene corre-
spondences of static points. These correspondences are used
to estimate camera poses using structure from motion with
incremental bundle adjustment to the image collection. From
the first image pair, relative camera pose is estimated from the
essential matrix, and then the static correspondences are tri-
angulated. To estimate an additional camera pose we compare
the keypoints registered in 3D with new keypoints observed
by the target camera and apply a perspective-n-point algo-
rithm (Moreno-Noguer et al. 2007) to estimate the camera
pose. If there are unregistered keypoints which are also visi-
ble from any of the registered cameras, their 3D locations are
estimated through triangulation. This procedure is repeated
until no image remains. Camera poses and static structures
are also refined by sparse bundle adjustment (Lourakis and
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Fig. 15 Results of the rock climbing scene. Top row sampled image input, second row five snap shots of 3D reconstruction of motion of the rock
climber, and bottom row reconstructed trajectories in different views. The number of basis vectors is color-coded

Argyros 2009) at each time a new camera is registered. We
also extracted time and the focal length of each photo from
its EXIF tag.

5.2.2 Selection of the Number of Basis Vectors

To validate the proposed method of selecting the number
of basis vectors described in Sect. 3.2, we tested on static
points of real scenes where we know Ki = 1. As a result,
static points of most scenes are classified as Ki = 1 (>96 %)
except for the speech scene (>70 %). For the speech scene,
since the baselines between photographers are very small
uncertainty of the depth of points is relatively high. This
causes some static points in the speech scene to be classified
as moving points in depth direction. Figure 13 shows results

of automatic selection of the number of basis vectors for the
dance scene. It is compared with K = 14 which is set manu-
ally for all trajectories. Automatic selection produces smaller
reprojection error and it describes point motions better than
manual selection.

6 Discussion

We present an algorithm to robustly estimate the general
motion of a 3D point from monocular perspective projec-
tions. The algorithm is stable in the presence of missing data
and measurement error. We characterize the cases when 3D
reconstruction is possible and how accurate it can be, based
on the relationship between camera motion and point motion.
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Fig. 16 Results of the handshake scene. Top row sampled image input, second and third row five snap shots of 3D reconstruction in different
views, and bottom row reconstructed trajectories. The number of basis vectors is color-coded

We also categorize systems as solvable or unsolvable and fur-
ther define a criterion called reconstructability to character-
ize the stability of solvable systems. The algorithm presented
by Park et al. (2010) is extended to automatically select the
number of trajectory basis vectors for each trajectory indi-
vidually using a cross validation scheme, so as to maximize
reconstructability. In addition, we refine the trajectories ini-
tialized by the least squares system by minimizing image
reprojection error directly.

Our algorithm takes as input the camera pose at each
time instant, and pre-defined trajectory basis vectors. These
requirements are met in practice when we reconstruct a
dynamic scene from collections of images captured by a
number of photographers. We estimate the relative camera
pose by applying robust structure from motion to the static
points in the scene. The DCT is used as pre-defined basis
vectors, which we demonstrate is coordinate independent,

i.e., remains compact under similarity transforms. Because
the effective camera motion in relation to the point motion is
sufficiently large, we are able to obtain accurate 3D recon-
structions of the dynamic scenes.

Since all points are reconstructed independently, when
there are mis-matched correspondences or high depth ambi-
guity is observed because of small baseline, for instance, the
speech scene in Fig. 17, the reconstructed trajectory can be
inaccurate. This can be resolved by applying spatial con-
straints on structure at a given time instant if prior informa-
tion about 3D structure is available such as a human skeleton
model. Future work can explore how spatial constraints may
correct trajectories effectively so that the system can reduce
the ambiguity of motion.

Our algorithm assumes that the correspondences of mov-
ing points are given. We manually specified point correspon-
dences across images for our experiments. From a practical
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Fig. 17 Results of the speech scene. Top row sampled image input, and bottom row reconstructed trajectories in different views. The number of
basis vectors is color-coded
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Fig. 18 Results of the greeting scene. Top row sampled image input and bottom row reconstructed trajectories in different views. The number of
basis vectors is color-coded

stand point, this is undesirable. However, as camera optics
and sensors improve, and more sophisticated point corre-
spondence methods are developed, the ability to automati-
cally obtain correspondences will likely become achievable.
Future directions of this work include making the correspon-
dence process entirely automatic, and applying the method

to reconstruct longer sequences where the frequency of
photographs, and therefore quality of reconstruction, varies
within a sequence. We are also interested in applying stronger
priors to recognizable objects like people and faces to con-
struct denser representations.
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Fig. 19 Results of the dance scene. Top row sampled image input, and bottom row reconstructed trajectories in different views. The number of
basis vectors is color-coded
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Appendix

To prove Result 1, we need to show that the transformed
trajectory basis, S(�), span the same space spanned by the
original trajectory basis vectors where S(·) is a similarity
transformation, i.e., col(S(�)) = col(�) where col(�) is a
space spanned by the column space of �.

Proof (i) scale col(s�) = col(�) where s is a scalar.
(ii) translation translation is spanned by the DC compo-

nent of �DCT.
(iii) rotation without loss of generality, the trajectory basis

can be rearranged as �̄ = blkdiag{θ, θ , θ} where θ ∈ RF×K

is the DCT trajectory basis for each trajectory. The rotated
trajectory basis, (R⊗ IF )�̄ span the original trajectory basis
vectors �̄ because,

col
(
(R ⊗ IF )�̄

)

= col

⎛

⎜
⎝

⎡

⎢
⎣

R11IF R12IF R13IF

R21IF R22IF R23IF

R31IF R32IF R33IF

⎤

⎥
⎦

⎡

⎢
⎣

θ

θ

θ

⎤

⎥
⎦

⎞

⎟
⎠

= col

⎛

⎜
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⎢
⎣

R11θ R12θ R13θ
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⎤

⎥
⎦

⎞

⎟
⎠

= col

⎛

⎜
⎝

⎡

⎢
⎣

θ

θ

θ

⎤

⎥
⎦

⎡

⎢
⎣

R11IK R12IK R13IK

R21IK R22IK R23IK

R31IK R32IK R33IK

⎤

⎥
⎦

⎞

⎟
⎠

= col
(
�̄(R ⊗ IK )

)

= col(�̄)

where ⊗ is the Kronecker product, R is a 3×3 rotation matrix
and, IK is a K × K identity matrix. ��
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