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Abstract— A quadrupedal water runner robot inspired by
the basilisk lizard has previously demonstrated the capability
of water surface locomotion. Since the robot is aimed for the
amphibious locomotion, a compatible design on both ground
and water surface is discussed in this paper. A compliant foot-
pad which can transfer elastic energy to propulsive momentum
is introduced and modeled using a pseudo-rigid-body model.
Dynamic modeling of the footpad and the robot provides a
criterion of efficient ground locomotion. For the water surface
locomotion, drag force can be reduced by compliance of
the footpad. The optimized design taking into account two
locomotions is studied and analyzed for stability using the
Poincaré map.

I. Introduction

Small animals and insects utilize diverse techniques to

float and locomote upon the surface of water. For example,

water striders and spiders, which are very light-weight insects

and arachnids, use surface tension [1], [2]. Most heavy

animals with masses greater than one gram that stay at the

air-water interface, such as aquatic birds, rely on buoyancy.

Only basilisk lizards and shore birds dominantly use the drag

forces exerted by the fast motion of their feet on the water

to take advantage of hydrodynamics for locomotion [3].

Biologically inspired robots are those robotic systems

which imitate some aspects of living organisms. There is

considerable literature about aquatic and amphibious robots

that use buoyancy and surface tension [4]–[6]. Yet only the

water runner robot employs momentum transfer, similar to

a basilisk lizard [7]. A basilisk lizard’s ability to locomote

on both ground and water using the same legged running

mechanism would be a desirable trait for mimicry in robots.

Such ability will extend insight into both nature and potential

robotics applications. The objective is not to mimic nature,

but to understand the principles of operation, and to apply

them to accomplish challenging tasks.

The ultimate goal of the water runner is to design the

autonomous amphibious robotic systems using the legged

mechanisms. Previously, for water surface locomotion, the

running frequency required for generating enough lift force

was specified as 7-11 Hz where the air cavity is preserved

and key design parameters were discussed [8]. Moreover,

passive/active tails were proposed and tested to stabilize

the pitch motion. Eventually, the robustness of the system

for possible disturbances was investigated and experimental

models were tested to verify simulations and stability [9].

From these analyses, it was shown that stable water sur-

face locomotion with the legged mechanisms by generating

drag could be achieved. However, no compatible design

for ground and water locomotion has been studied yet. To

resolve these challenging tasks, a compatible design for

amphibious locomotion will be discussed and its stability

will be analyzed in this paper.
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Fig. 1. Photograph of the four-legged water runner robot inspired by
basilisk lizards.

II. Robot Description and Animal Locomotion

The water runner [9] has a mass of about 100g, contains

four miniature DC motors, and has four legs as shown in

Fig. 1. It is 300mm long, 125mm wide, with much of the

mass concentrated in the motors, located far from the center

of the robot, as shown in Fig. 2. Each leg is driven by

one motor, and employs four-bar mechanisms so that the

foot trajectory of the robot mimics that of basilisk lizards.

Each foot is a circle, 40mm in diameter, with directional

compliance which allows it to hit the water while flat, and

fold during pullout, reducing undesired drag effects [10].

Fig. 2. Geometry and dimensions of the robot: Lengths of the four-bar
linkage is presented in TABLE I.
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Robot Specification Link Length

Robot Length (m) 0.3 l1 (m) 0.0615

Robot Width (m) 0.125 l2 (m) 0.0218

Robot Mass (kg) 0.1 l3 (m) 0.0748

Moment of Inertia l4 (m) 0.0468

Roll (kg m2) 5.05 × 10−4 l5 (m) 0.0624

Pitch (kg m2) 1.08 × 10−3 l6 (m) 0.17325

Yaw (kg m2) 1.24 × 10−3 l7 (m) 0.18

Center of Mass (COM) and Footpad lt (m) 0.1

lCOM (m) 0.12 φt (◦) 30

hCOM (m) 0.002 rt (m) 0.03

r f (m) 0.02

TABLE I

Robot specifications and dimensions.

For an animal locomotion, the behavior of the center of

mass depends on Froude number, Fr = V2/gL, where V is

running speed, g is gravitational acceleration, and L is the

length from the center of mass to the ground. It is known

that if Fr ≈ 0.5, it shows inverted pendulum style walking. If

it is higher than 0.5, then the locomotion can be interpreted

as running like the spring-mass model in which kinetic and

potential energies are in phase [11]–[13]. For the spring-

mass model, an animal utilizes elastic energy stored in the

leg muscles to propel the center of mass. Since Fr of an adult

basilisk lizard is mostly higher than 2, when it approaches the

water surface, the spring-mass model is matched to ground

locomotion of the water runner.

Due to the fact that the weight of the robot is critical, a

spring-like active leg may be inappropriate because adding

actuators can increase its mass significantly. Rather than

actuation, a passive compliant footpad attached at the end of

the leg which can reduce design complexity and the number

of additional parts is more suitable and is studied in this

paper. For roll and pitch stability of the ground locomotion,

the robot is assumed to have a trot gait in which diagonal

pairs are in phase and a passive tail which stabilizes pitch

motion so that only vertical and horizontal motions of the

robot are discussed. Furthermore, as the controller of the

experimental model of the water runner is used to generate

constant angular velocity at an input link of the four-bar,

an input link in simulation is also assumed to rotate at a

constant running frequency.

In addition, the robot is aimed to be autonomous for

transient locomotion. Some existing amphibious robotic sys-

tems [14] use a remote control to change behaviors for

different environments. Nevertheless, we will explore generic

dynamics which can be compatible for both environments

without changing modes manually. Thus, even though the

running speed on ground does not need to be as high as that

on the water’s surface, around 7-11 Hz, all running frequen-

cies, ωru, up to 7 Hz, which is the minimum frequency for

transition will be tested for stable ground locomotion.

III. Compliant Footpad Design Optimization

A. Ground Locomotion Modeling

For large deflection of a beam, since the Bernoulli-Euler

beam equation becomes nonlinear, force-deflection relations

cannot be solved by simple secondary ordinary differential

(a) (b)

Fig. 3. (a) Deflection of a compliant member (b) The pseudo-rigid-body
model using rigid links and a torsional spring.

equations. Meanwhile, understanding behaviors of a com-

pliant member are crucial to analyze ground locomotion

dynamics because a compliant member attached at a footpad

deflects highly for given external forces. Instead of solving

the Bernoulli-Euler beam equation, kinematic and dynamic

analyses of a compliant mechanism have been studied by

introducing the pseudo-rigid-body model (PRBM) which

simplifies to a mechanism composed of rigid body links and

torsional springs [15]–[17]. The PRBM provides effective

tools to analyze the deflection trajectory and elastic energy of

the compliant mechanism and is known to be highly accurate.

More details about the PRBM can be found in [18].

By curve fitting the trajectory of a deflected beam end,

the characteristic radius factor, γ, where a torsional spring

is located can be found in terms of the angle, θ f , in the

direction of applied force, as shown in Fig. 3. The stiffness

of the compliant member, which linearly relates with the

torsional spring constant, can also be approximated by fitting

the force-deflection curve in terms of θ f :

γ = γ(θ f ) (1)

Kc = Kc(θ f ) (2)

Kt = γKc

EI

l0
(3)

where E is Young’s modulus, I is cross-sectional area

moment of inertia of the beam, and l0 is the beam’s original

length. In addition, the beam end angular deflection, θe, can

be approximated as a function of the angular deflection of

the torsional spring, θt.

θe = θe(θt) ≈ ce(θt)θt (4)

where ce is the parametric angle coefficient found in [15].

Rotational motion of the input link of the four-bar mecha-

nism of water runner’s leg generates the footpad trajectory

and orientation shown in Fig. 4. As mentioned before,

assuming the input link, l2, rotates with a constant angular

velocity, the footpad trajectory, its orientation, and their time

derivatives can be attained by mathematical formulation [19].

When the footpad touches down on the ground, external

forces such as the ground reaction force make the compliant

members deflect so that kinetic and potential energies are

converted to elastic energy which would be used for acceler-

ating the center of mass of the robot as shown in Fig. 5. The

moment, τ j, applied at each revolute joint where the torsional
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Fig. 6. When the footpad touches down the ground, the deflection of the
compliant member starts due to the ground reaction force and when taking
off, it behaves like the spring-damper systems i.e. θt → 0.
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Fig. 7. Contact angle, θct , of the compliant member shows how the
footpad is stably contact with ground. When surface contact occurs, θct < 0,
locomotion stability can be enhanced.

it enters steady state in 0.3 seconds. For lateral motion,

the friction force induces acceleration and deceleration al-

ternatingly; when contact is started, the stepping ground

accelerates the center of mass and when the footpad takes

off, it decelerates. For the spring-mass model, elastic energy

stored in the spring with various stiffness is constant due

to energy conservation law in the vertical direction; when

the spring is fully displaced, the total energy, which is

the sum of kinetic and potential energies, is converted to

elastic energy. However, propulsive momentum transfer is

different depending on the stiffness. For high stiffness, large

EI, it is low because of bouncing behavior of the contact

point. Since a small displacement of the compliant member

generates excessive ground reaction force, the contact point

does not stay on the ground but bounces whenever it touches

down, which causes insufficient contact time to accelerate

the center of mass of the robot. Thus, the robot cannot

propel effectively for a given step. Figure 9 shows how

much the robot travels per each step, sωru
, depending on the

stiffness of the compliant member. The higher the stiffness,

the less distance traveled per step. For too low stiffness,

EI = 2.83 × 10−5Pa m4, contact time of each footpad is
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Fig. 8. Position of the center of mass of the robot, x, y, are plotted for
EI = 7.65 × 10−4Pa m4 and ωru = 3 Hz. Vertical motion gets synchronized
with 2ωru (trot gait) at 0.3 second. Alternating acceleration and deceleration
of horizontal motion results that the robot can travel forward steadily.
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Fig. 9. Elastic energy stored in the compliant member is used to propel
the center of mass of the robot forward. Small stiffness transfers propulsive
momentum more effectively due to stable contact which increases contact
time for a given step. Thus, distance per step can show how effectively the
robot travels forward.

so long that contact time of both sides is overlapped (double

supporting phase), which causes reduction of acceleration by

the opposing directions of friction forces.

B. Water Surface Locomotion

As far as the locomotion on the water surface is concerned,

the compliance of a footpad can reduce the lift force because

the drag force proportional to water contact area can be

reduced due to deflection by hydrodynamic pressure. Since

water contact area is proportional to the projected length of

deflected compliant member, ld, onto original length, l0, as

shown in Fig. 3(a), the ratio ld/l0 is directly proportional

to total lift force. Solving with the finite element program,

ANSYS, deflection of the compliant member with uniformly

distributed hydrodynamic pressure is tested. Hydrodynamic

pressure for a given running frequency can be obtained by

integrating the drag, D, through infinitesimal areas divided

by total water contact area, A, as follows [8]

D =
C∗

D

∫

A
(0.5ρu2 + ρgh)dA

A
(14)
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where C∗
D
= 0.707 is the drag coefficient for a flat, circular

disk in presence of air cavity, ρ is the density of the water, u

is the normal velocity of the footpad, h is depth of the foot

below the water’s surface. Since the maximum deflection

occurs at the maximum drag, loading pressure on the beam

is chosen as the highest drag during one rotation cycle.

For boundary conditions in the analysis, the left end

of a 40 mm long beam is constrained in all degrees of

freedom with a free right end. Then uniformly distributed

load obtained from (14) is applied along the beam. Various

hydrodynamic pressures corresponding to running frequency

of 7-11 Hz are tested for different stiffnesses of the beam.

Since (1-ld/l0) is proportional to the reduction of the lift

force, which needs to be minimized, the less reduction,

the more desirable lift force for a given running frequency,

as shown in Fig. 10. When testing with lower than EI <

2.27 × 10−4Pa m4, the reduction is set to be 100% because

too much deflection results in higher than 100% reduction

which is unrealistic. As expected, higher stiffness results in

a smaller percentage of the reduction of the lift force, which

is desirable.
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Fig. 10. The compliant member attached at the end of the leg deflects when
running in water because of hydrodynamic pressure, D. Percentage of the
reduction of water contact area, 100(1 − ld/l0), can provide the lift force
reduction. Stiffness higher than 0.006Pa m4 shows almost 0% reduction.

C. Optimization

While low stiffness shows efficient and stable ground loco-

motion, it causes high reduction of the lift force for the water

interaction. Thus, the stiffness of the compliant member

should be optimized to be compatible for both environments.

On the one hand, distance per step, sωru
, normalized by

smax = max{sωru
} can represent the performance of the ground

locomotion. On the other hand, the ratio ld/l0 can be water

locomotion performance. From these, the cost function, Ψ,

can be defined as the following and the stiffness of the

compliant member can be selected by minimizing this cost.

Ψ =
1

ww + wg

















ww

11Hz
∑

ωru=7Hz

(

1 −
ld,ωru

l0

)2

+ wg

7Hz
∑

ωru=1Hz

(

1 −
sωru

smax

)2
















(15)

ww and wg are the weights for each locomotion, which

controls their relative importance.
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Fig. 11. In order for the compatible design of the footpad, one can
choose its stiffness which minimizes the cost function, Ψ, taking into
account distance per step and reduction of the lift force. Relative important
can be controlled by the weight, i.e. when each locomotion is equally
significant, ww = 1,wg = 1 and when water locomotion is more important,
ww = 1,wg = 1.

The cost function, Ψ, is minimized at EI = 7.65 × 10−4 ∼

1.81 × 10−3Pa m4 regardless of the choice of weights, as

shown in Fig. 11. Therefore, one can choose this range of

the stiffness of the footpad for amphibious locomotion.

IV. Stability Analysis

From the optimization, one can select the stiffness but it

cannot be said the optimized design is stable through the

amphibious locomotion. For the water surface locomotion,

we had investigated marginal lift force both in simulations

and experiments [9], which shows reduced lift force can

still support its weight. Furthermore, roll and pitch motions

become more stable if lift force is reduced because external

forces disturbing the system are reduced. However, stability

on the ground has not been studied for the optimized stiffness

of the footpad. Therefore, we will explore the stability of

the ground locomotion within the optimized stiffness where

7.65× 10−4Pa m4 ≤ EI ≤ 1.81× 10−3Pa m4 and find a stable

regime for the system.

A. Poincaré Map and Floquet Multiplier

Since the system shows nonlinear oscillatory behavior,

finding an analytic solution, which is essential to stability

analysis, is hard to achieve. Contact forces are nonlinear

and oscillatory leg rotation disturbs the system with running

frequency. However, a numerical solution from dynamic

modeling can provide a trend of the system’s behavior. Based

on numerical data, we will quantify the stability of the system

and find the desirable motion for the amphibious locomotion.

Let us define a state variable, X = [y ẏ yi ẏi θt θ̇t]
T. y

shows how the robot’s vertical motion behaves and yi shows

how y is synchronized with running frequency. If there is a

time dependent function, Φ, such that

Φ(X, t0)|t = Φ(X, t0)|t+T (16)
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for some minimum period T > 0, then this becomes a limit

cycle in state space. If there exists a limit cycle that attracts

all nearby trajectories for a given initial state, the system can

be said asymptotically stable in Lyapunov sense.

For the 6th-order non-autonomous periodic system, the dy-

namics can be converted to the 7th-order autonomous system

by extending a phase state, Θ ∈ [0 2π), as following [21]

Θ := mod(2πt/T, 2π) (17)

where mod is the function that restricts to [0 2π). To be stable,

the phase portrait of X for every period, T , which is when

Θ = Θ0, should show limiting behavior as t → ∞ where Θ0 is

a certain phase in [0 2π). Define a 6-dimensional hyperplane,

σ, a so called Poincaré section, with σ := {(X,Θ)|Θ = Θ0}

and let P be the map between discretized time sequence of

trajectory which intersects the Poincaré section i.e.

P : σ→ σ, Xi ∈ σ

Xi+1 = P(Xi) (18)

where Xi is the state of the ith intersection of the Poincaré

section. P is called the Poincaré map. For a certain state

such that X f = P(X f ), X f is called the fixed point. Then, the

trajectory of the system is asymptotically stable if and only

if the fixed point, X f , is asymptotically stable [22].

By linearizing the Poincaré map in vicinity of X f , a 6× 6

Jacobian matrix, J, maps

∆Xi+1 = J(X f )∆Xi (19)

where ∆Xi = Xi − X f . The eigenvalues of J, called the

Floquet multipliers, determine discretized system dynamics.

If the largest magnitude of the Floquet multiplier is bigger

than 1, the system is unstable because any small perturbation

yields higher sequential displacement from X f . If it is strictly

smaller than 1, X f can be said to be asymptotically stable.

Thus, if one can find J, it is possible to quantify stability of

the system by the magnitude of the Floquet multipliers.

From numerical data, we can construct Y1 and Y2 matrices

and derive the relation between them [23], [24]:

Y1 =
[

X1 X2 · · · Xn

]T
(20)

Y2 =
[

X2 X3 · · · Xn+1

]T
(21)

Y2 = Y1JT + B

= [Y11n×1]

[

JT

B

]

(22)

where B = XT
f
(I − J)T, and 1n×1 is an n-dimensional vector

where all elements are 1. From the linear least square

algorithm,
[

JT

B

]

= (KTK)−1KTY2 (23)

λ = eig(J) (24)

where K = [Y11n×1], J can be solved and the Floquet

multiplier, λ can be obtained.
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Fig. 12. 2-dimensional phase plots of a state, X, are illustrated for EI =

1.22 × 10−3Pa m4, ωru = 5 Hz, and Kd = 0.003Nm s. Each state shows
limiting behavior and converges to the limit cycle after a few initial transient
cycles, which all Floquet multipliers stay inside of unitary circle in complex
plane (λ = −0.2286, 0.003, 0.1782, 0.4910, 0.0792 ± 0.3017i). Therefore,
this system converges to limit cycle asymptotically in finite time.

B. Stable Locomotion Regime

Figure 12 illustrates the phase plot and Floquet multipliers

for EI = 1.22×10−3Pa m4, ωru = 5Hz, and Kd = 0.003Nm s.

Each state converges to the limit cycle and sampled points

show asymptotic behavior approaching to the fixed point.

The settling time when percentage error, ∆Xi/max{∆Xi},

becomes less than 2% is 0.8 second. All Floquet multipliers

stay in a unitary circle in the complex plane so that this

system can be said asymptotically stable.
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Fig. 13. Stable/Unstable points which there exists a limit cycle and
max{λ} < 1 through whole running frequency (1-7 Hz) are plotted. Stability
of the systems depends on stiffness, damping coefficient, and running
frequency.

The damping coefficient (Kd = 0.003Nm s) at the joint was

selected in such a way that the PRBM can be represented

as similar to the actual compliant member as possible by

observing its settling time for a given load. Since there may

be error in observations, various damping coefficients are

tested for guaranteeing stability; dynamics of the system can

be affected by the damping coefficient.
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As varying stiffness, damping coefficient, asymptotically

stable/unstable points which there exists a limit cycle and

the magnitude of Floquet multipliers are strictly less than

1 through whole running frequency (1-7 Hz) are plotted in

Fig. 13. Most unstable systems show chaotic motion rather

than diverging, i.e. supt→∞{|y|} < ∞. This means that the

behavior of the system is bounded but there is no stable limit

set, which everything is unpredictable. For the amphibious

locomotion, the system with stiffness and damping coefficient

such that it is asymptotically stable through all running

frequencies is desirable.

V. Discussions and FutureWorks

Depending on the gait of the robot, pitch and roll stabilities

can vary on the ground. As discussed before, it is assumed

that the robot uses the trot gait, in which the roll motion

is always stable. In reality, a micro-controller controls the

phase of each motor with respect to the phase of the

reference motor. However, as the running frequency gets

higher, precise position level control which enables a gait

pattern becomes difficult to achieve because of limits of

control/sensor frequency. For water surface locomotion, it

is known that the running frequency is even more important

than the gait since the lift force purely depends on it. Thus,

a velocity level controller that does not take into account the

phase of each motor was implemented. Nevertheless, to hold

assumptions in this paper, either a new controller which can

control the phase at high speed or an analysis of a design

which can be stabilized in spite of the gait that is unstable in

the roll direction is needed. Since the former has technical

problems currently, the latter can be discussed in a future

work. For the pitch motion, the geometry of locomotion

makes it unstable so a passive tail is implemented, which

prevents it falling back. Compliance at the tail also can

help pitch motion stability like the footpad and can be

studied using the Poincaré map in the future. In addition,

for realization of the compliant footpad, polymers such as

TC-8772 which has proper range of strain for given stress

can be used. Damping coefficient and spring constant for

PRBM will be investigated in future works.

VI. Conclusions

The water runner devised for amphibious locomotion with

the same legged mechanisms can use a compliant mechanism

on the feet to run at high speed. A passive compliant member

attached at the end of each leg is introduced, modeled,

and analyzed. Modeling of the ground locomotion can be

done with the PRBM which simplifies the dynamics of the

compliant member and the ground reaction force modeling

which uses geometry and kinematics of the contact point.

From the equations of motion, dynamic motions of the angle

deflection and the contact angle are obtained. For the water

surface locomotion, the reduction of the lift force caused by

hydrodynamic pressure is tested as varying running frequen-

cies. As a result, the stiffness of the compliant member can

be optimized, which is compatible for both environments.

Within the optimized stiffness of the compliant member,

stability of motion is quantified by the Floquet multiplier

derived by the Poincaré map. It shows asymptotically stable

regime depending on stiffness and damping coefficient.
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