
Directional Enhancement in Texture-based Vector Field Visualization

Francesca Taponecco ∗

GRIS Dept.

Darmstadt University

Timothy Urness †

Mathematics and Computer Science Dept.

Drake University

Victoria Interrante ‡

Computer Science and Engineering Dept.

University of Minnesota

Abstract

The use of textures provides a rich and diverse set of possibilities
for the visualization of flow data. In this paper, we present methods
designed to produce oriented and controlled textures that accurately
reflect the complex patterns that occur in vector field visualizations.
We offer new insights based on the specification and classification
of neighborhood models for synthesizing a texture that accurately
depicts a vector field. Secondly, we introduce a computationally
efficient method of texture mapping streamlines utilizing outlining
textures to depict flow orientation.

Keywords: Texture Synthesis, Flow Visualization

1 Introduction and Motivation

Textures have traditionally been used to visualize vector fields for
the purpose of analyzing the form and behavior of flow consis-
tent with theoretical models and to infer the underlying behavior
of experimentally-generated flow fields. The use of textures allows
for a consistent and highly-detailed representation of a vector field,
allowing an observer to both analyze and better understand fluid
dynamics.

Line Integral Convolution (LIC) [Cabral and Leedom 1993] is the
predominantly used technique in 2D flow visualizations. While
quite effective, LIC textures represent only one particular choice
from among the vast spectrum of possible texture patterns that
could be used to convey flow information. By exploring methods
for conveying flow data using features derived from natural texture
patterns, we seek to profoundly expand the range of possibilities in
texture-based flow representation, and to introduce the possibility
of using texture type itself as a visual variable for conveying infor-
mation about the flow.

In addition to traditional texture synthesis, recent research have pro-
vided algorithms in which textures can be deformed, curved, mod-
ified and controlled to follow given directions and orientations. In
these techniques, a variety of deformation operations must be used
to align a given pattern along a newly specified direction. Current
texture synthesis techniques, however, do not adequately highlight
the anisotropy of a texture when synthesized in this fashion. We
propose the use of a new family of specified neighborhood mod-
els which can significantly improve the results of texture synthesis
along vector fields. Additionally, we introduce a computationally

∗e-mail: francesca.taponecco@gris.informatik.tu-darmstadt.de
†e-mail: timothy.urness@drake.edu
‡e-mail: interran@cs.umn.edu

efficient method of texture mapping streamlines utilizing outlining
textures to depict flow orientation.

In the following, we review related work which deals with non-
homogeneous textures, oriented textures, and textures applied to
vector field visualizations. We then introduce new classes of neigh-
borhood models and weighting functions for enhancing vector field
direction in a synthesized, texture-based visualization (section 3).
In section 4, we present an efficient, texture mapping technique to
create an effective visualization of a flow field. In section 5, we
compare the two complimentary techniques. Finally, we conclude
addressing possible future extensions.

2 Related work

There have been many texture-based techniques developed for flow
visualization. Spot Noise [van Wijk 1991] synthesizes a high-
resolution image by deforming an input image of random spots
according to the vector field. LIC [Cabral and Leedom 1993] con-
volves a white-noise input texture according to calculated stream-
lines. There have been several extension to these original meth-
ods improving running time and image quality [de Leeuw and van
Wijk 1995; Stalling and Hege 1995]. Effective visualization of 2D
fluid flow is also possible by techniques that animate textures in ac-
cordance with the advection of a given flow field [van Wijk 2002;
Wang et al. 2005].

Texture synthesis methods allow for an unlimited quantity of tex-
ture patterns to be generated that are perceptually equivalent to a
sample input texture. The classical algorithms [Efros and Leung
1999; Wei and Levoy 2000] construct the output image in a pixel-
by-pixel scan line order in which a pixel is synthesized by com-
paring a similarly shaped neighborhood with the original sample.
Along these lines, Ashikhmin [Ashikhmin 2001] presents a tech-
nique for synthesizing natural textures based on repeating patterns
consisting of small objects of familiar but irregular sizes such as
flowers and pebbles. Efros and Freeman [Efros and Freeman 2001]
introduce image quilting to produce an effective texture synthesis
pattern for a wide variety of input textures. This works by essen-
tially piecing together small patches of the input texture which al-
lows the output to maintain both continuity and coherence across
the entire pattern. Approaches for synthesizing textures on sur-
faces have been proposed adapting the direction field for the textur-
ing [Turk 2001], and seamlessly covering the surface with patches
[Gorla et al. 2002].

Taponecco and Alexa [Taponecco and Alexa 2003] introduced an
algorithm that used a Markov model approach to synthesize a tex-
ture according to a flow field. The method also has been extended to
the temporal domain, permitting the visualization of unsteady vec-
tor fields. This technique uses a strongly directional texture that is
rotated according to the vector field. The resulting image is created
in a pixel-by-pixel manner using Markov Random Field (MRF) tex-
ture synthesis. Verma, Kao, and Pang presented a method for gen-
erating LIC-like images through texture-mapped streamlines called
PLIC (Pseudo-LIC) [Verma et al. 1999]. By experimenting with
different input textures, both LIC-like images and streamline-like
images can be produced. Shen, Li, and Bordoloi [Shen et al. 2004]



utilize texture mapping in addition to analysis of three dimensional
geometric properties to volume render three-dimensional unsteady
flow fields.

3 Texture Synthesis Approach

Techniques that control texture generation for vector field visual-
ization use deformation operations to shear, curve and align a given
pattern along specified directions (figure 1). These operations nec-
essarily modify the texture color, resolution, and appearance in gen-
eral. This procedure adapts to varying conditions by using different
input samples at different output orientations at each step in the al-
gorithm [Taponecco and Alexa 2003].

Using a standard texture synthesis approach, however, does not ad-
equately highlight the isotropy that may be displayed in the sample
input texture. For this reason, we build a new class of neighbor-
hoods, based on different pixel weighting functions. In this section,
novel schemes to non-uniformly weight the pixels of the neighbor-
hoods are introduced and used during the synthesis process. El-
liptical schemes result to be particularly beneficial to preserve and
enhance the directionality of the samples; the goal is to provide an
accurate synthesis of controlled textures along vector fields, using
such novel specifications to maintain good resolution while chang-
ing the pattern alignment.

Figure 1: Standard texture synthesis (top). Controlled texture syn-
thesis (bottom). The controlled, field-driven synthesis algorithm
requires the input pattern to be synthesized along new directions.

3.1 Synthesis Neighborhoods

3.1.1 Standard squared and L-shaped neighborhoods

In standard pixel-based texture synthesis [Efros and Leung 1999;
Wei and Levoy 2000], the output texture is commonly generated
in raster scan order using either the squared or L-shaped neighbor-
hood structures. These structures are illustrated in figure 2.

Since the main problem in standard texture synthesis is to repro-
duce the characteristics of a small texture sample in a larger do-
main, the neighborhood kernel must include sufficient surrounding
information about the pixels in order to reproduce the given pattern

in a perceptually similar way. Consequently, the neighborhood size
is crucial and directly depends on the pattern structure complexity.
The neighboring pixels around the current point serve to build an
array of color values, which have to be compared to similar neigh-
borhoods, leading to the measurement of a probability. Such a mea-
sure, usually a distance function based on the L2−norm, is used to
find the neighborhood that is most similar for the selection of the
best matching pixel.

Experimentations with different kernel sizes indicate that the output
image quality is largely dependent on finding a suitable neighbor-
hood size for both the sample pattern structure and the vector field.
The image quality is often enhanced using longer kernel lengths, as
the structure characteristics of the sample pattern can better repro-
duce the statistics of the texture. However, a large kernel size can
be detrimental in the case of vector field that contains strong cur-
vatures (short curvature radius), as the resulting texture will have
significant deviations from the vector field. Often times, a compro-
mise is required to obtain the best kernel size to accurately reflect
the texture sample and the vector field.

Figure 2: Standard texture synthesis: the enlarged picture shows
the L-shaped “causal neighborhood” structure (yellow) around the
current pixel to synthesize (green). The light-blue portion of the
image still needs to be completed.

3.1.2 Different neighborhood shapes

In the course of our research, we have examined several novel
shapes (such as rectangular, half-rectangular, trapezoidal, or rhom-
boidal) for neighborhoods that could possibly better communicate
directional characteristics than a squared (or L-shaped) neighbor-
hood. Insights from these experiments have lead to the use of
asymmetric instead of symmetric neighborhoods. The asymmetric
neighborhoods lead to improvements, stressing orientation in addi-
tion to directionality, or highlighting topological features extracted
from the vector data. This also can be beneficial for the synthesis
of textures whose structure presents a secondary minor direction in
addition to its principal anisotropic direction. For these textures, an
asymmetric (e.g. trapezoidal) weighting scheme is able to account
for the two existing pattern directions. Although it is straightfor-
ward to model and use irregular structures, we mainly prefer, in
order to maintain algorithm consistency, to use regularly-shaped
neighborhoods (eventually setting the weights for the edges/corners
to be zero), and to use the weighting schemes introduced later to
simulate different behaviors and neighborhood shapes.

3.2 Non-uniform neighborhood filtering

3.2.1 Anisotropic neighborhood model specifications

Using a MRF-based approach to vector field visualization, we use
samples that are weighted heavily or oriented in a principal direc-
tion. The method is easily adaptable to rotations and changes of



curvature that often occur in a vector field. In order to maintain
and enhance the properties of the vector field during the synthe-
sis, the pixels that build a neighborhood should not be uniformly
weighted (as in the standard texture synthesis case). An anisotropic
weighting scheme is better suited to preserve the directionality and
to enhance continuity along the field direction.

3.2.2 Bilateral filtering

Bilateral filtering has been introduced by Tomasi and Manduchi
[Tomasi and Manduchi 1998] and later applied in several appli-
cations, see for instance [Durand and Dorsey 2002]. It is a non-
iterative scheme for edge-preserving smoothing.

The basic idea of bilateral filtering is to operate in the range of an
image in the same manner traditional filters do in the domain. Two
pixels can be close to one another by occupying nearby spatial loca-
tion, or they can be similar to one another by having nearby values
in a perceptually meaningful fashion. Closeness refers to vicinity
in the domain (geometric closeness), similarity refers to vicinity
in the range (photometric similarity). A possibility for measuring
pixel similarity is to use the CIE-Lab color space [CIE CIE-Lab
System 1976], which enables a measure of color similarity that is
correlated with human color discrimination performance.

The bilateral filter was designed to maximally suppress image noise
with minimal impact on the underlying signal image [Tomasi and
Manduchi 1998]. The kernel of a bilateral filter is composed of
an inner product of two low-pass filters in real space. The first
is a normal low-pass filter, which averages the neighboring pixel
values with decreasing weights for pixels at larger distances. The
second kernel is also a type of low-pass filter, but the weights for the
neighboring pixels are derived from the pixel value differences from
the center pixel, instead of being related to geometric distances. The
larger pixel difference, the smaller the pixels’ contribution during
filtering, resulting in a measure of similarity.

We utilize concepts from bilateral filtering in our weighting
schemes approach as illustrated below. The feature of edge-
preserving smoothing is particularly advantageous to enhance di-
rectionality in texture-based vector field visualization. We use the
measures of Euclidean distances (domain) and intensity differences
(range) as similarity metrics. The bilateral filter kernels take a form
that depend on the weighting function. We use the Gaussian case;
hence, the combination of the two filtering operators (product of
Gaussians) leads to coefficients that fall off with distance and dis-
similarity from the central pixel of the weighted neighborhood.

3.2.3 Gaussian filtering and kernel coefficients

Gaussian low-pass filtering computes a weighted average of pixel
values in the neighborhood, in which the weights decrease with dis-
tance from the center. To derive the kernel coefficients, digital fil-
ters can be designed using a direct (FIR) or recursive (IIR) form.
The direct form is obtained as a finite number of samples of the de-
sired impulse response. The recursive form is designed as a ratio
of polynomials in the z domain. Further, binomial filters provide a
third method for designing Gaussian filters; they are obtained with
cascaded convolution of a kernel filter composed of [1,1] (auto-
convolution). The set of filter coefficients is known as binomial
series, and can be computed using the Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

(1)

where the coefficients Cn,k (n representing the row in the triangle,
and k the coefficient count in the row) are given by:

Cn,k =

(

n

k

)

=
n!

k! · (n− k)!
(2)

Cn,k =

{

1 i f k = 0,k = n
Cn−1,k−1 +Cn−1,k ∀ k 6= 0,n

(3)

3.3 Isotropic and anisotropic weighting schemes

As opposed to storing the pixels of the neighborhoods in a uniform
fashion, it is possible to adopt non-uniform weighting scheme to
give more relevance to pixels near to the center (circular isotropic
weighting scheme) or to particularly enhance directionality proper-
ties in the synthesis (elliptical anisotropic weighting scheme).

Figure 3: Circular and elliptical weighting schemes.

3.3.1 Circular neighborhood

The circular neighborhood model can enhance the information
contained in the current pixel in a simple way, letting the value of
the surrounding pixels decrease with respect to the distance from
the center.

Unlike standard texture synthesis, this approach (seen as field-
driven texture synthesis) constantly uses different input samples
[Taponecco and Alexa 2004]. These samples are commonly mod-
ified versions of an original input pattern, which are derived from
different conditions that depend on the control vector field. Thus,
the neighbor search for the best match is dynamic; the best fitting
pixel selection does not constantly take place inside the same in-
put sample and therefore the pixels chosen to synthesize the output
could produce visual artifacts in the resulting texture.

To avoid these artifacts, we use a pixel-centered approach where
the weighting function considers the pixels in a circular manner.
The values of the pixels near the pixel being considered are given a
stronger weight, while the edges and corners are assigned a less sig-
nificant weight. In case of strong curvatures in vector field, the pix-
els in the neighborhood of the pixel under consideration still con-
tribute to describe the field direction, while the pixels at the corners
or edges of the neighborhood are derived from a previous synthesis
using rotated versions of the neighborhood. The influence of the



pixels on the outside of the filter needs to be constrained as they
could lead to discontinuities in the resulting image. This motivates
the synthesis algorithm to not operate in scanline order, as is tradi-
tionally done, but instead in the direction given by the vector field
[Gorla et al. 2002]. This ensures that the the algorithm maintains
the pattern continuity in the principal direction.

The functions that are most suited for such weighting are monoton-
ically descending functions, such as Gaussian functions or decreas-
ing exponential functions, where the decay factor can be specified
in dependence of the field velocity and curvature radius. Again,
there exists a tradeoff between computation efficiency and image
accuracy. A simple radially symmetric weighting function using a
2d Gaussian leads to the weighting scheme illustrated in figure 3
(left).

Figure 4: Directional enhancement using the elliptical weighting
scheme.

3.3.2 Elliptical neighborhood

Next, we adapt the circular neighborhood structure to a more di-
rectionality sensitive one: the elliptical structure. We specify this
family of neighborhood models for use in controlled oriented tex-
ture synthesis. The relative structure is elliptically shaped (figure 3
right). In other words, the weights of the neighboring pixels are
weighted using an elliptical scheme. Similar to the circular neigh-
borhood, the intensity of the weights decreases from the central
pixel to the external borders of the neighborhood. In contrast to
the circular neighborhood, the pixel weights do not isotropically
decrease from the center. Instead, the weights more rapidly de-
crease in the direction of the minor axis and more slowly in the
major axis direction of the ellipse. The major axis of the elliptical
neighborhood is oriented in the direction of the vector field that de-
fines the new pattern orientation and controls the deformation of the
resulting textured image (figure 4). Orientating the major direction
of the elliptical neighborhood along the deformation or the vector
field allows for a better control the output texture generation. This
direction is given by the phase of the control vector field.

The range of values, angles, and orientations depend on the size
of the neighborhood structure. Smaller neighborhood models can
define just a few independent directions, as the two principal axis
cannot greatly differentiate in orientation if the size is limited. On
the contrary, neighborhoods characterized by having large size can
better distribute anisotropic weights, specifying several possible di-
rections and orientations for the major axis. The amount of such
degrees of rotation is directly related to the radius of the neighbor-
hood model.

In figure 5, we show for simplicity the case of a 3-sized neighbor-
hood, where possible orientation spanning in the range [0◦,360◦]
and where the 4 principal orientations for elliptical weighting are
circled. Note that in case the original pattern only presents charac-
teristics of directionality, the orientations that differ by 180 degrees
are identical. In case the original pattern additionally presents di-
rectionality (e.g. directional glyphs), we can also distinguish be-
tween opposite aligned cases.

In squared circular elliptical

Table 1: Controlled texture synthesis (fabric and green-scale pat-
terns) along curved vector fields. Using a five-sized kernel, our
elliptical weighting scheme (right) shows significant improvements
with respect to the circular and the standard squared neighborhood.

Table 1 shows a comparison of results obtained using the different
neighborhood structures. For each example, we generated the tex-
tures using the same input sample and the same neighborhood size.
The anisotropic elliptical weighting scheme (right column) proves
to achieve significant improvements in the quality of the images
with respect to the standard approach based on squared neighbor-
hoods (left) and also to the circular scheme (middle). We found
that elliptical and circular schemes typically produce more detailed
images with fewer artifacts than the squared neighborhood. Addi-
tionally, we can say that the more directional the pattern the more
significant improvements are achieved with the elliptical scheme.

Figure 5: Anisotropic weighting of a 3-sized neighborhood, where
grey pixels are assigned stronger weights to stress the direction of
the vector field. The 4 orientation instances circled in yellow are
usually sufficient to produce good results.



Table 2: Examples of a variety of textures synthesized for the ef-
fective visualization of flow fields.

It is necessary to note that good results can be obtained using stan-
dard neighborhood structures as well (examples can be seen in some
previous work [Taponecco and Alexa 2004]); however, in order to
achieve results with the same quality of those obtained with the el-
liptical scheme, larger neighborhoods are needed, leading to longer
computational times and complexity.

4 Texture Mapping Streamlines

The computational complexity of a texture synthesis algorithm, par-
ticularly with a large search neighborhood, can be significant. In
this section, we present an alternative to texture synthesis, texture
mapping, for the display of textures for the representation of a vec-
tor field. We also examine using isotropic textures for flow visu-
alization and the capabilities of textures and texture attributes to
represent vector fields and correlated data, such as vector magni-
tude.

4.1 Geometry

Applying a texture to a streamline requires that the streamline be
extended to include width as textures are inherently 2D and do not
project well to streamlines or single pixels [de Leeuw and van Wijk
1995; Verma et al. 1999]. We construct a thick streamline by first
calculating a 1D streamline given the vector field that defines the
flow to be visualized. The streamline is then given width by con-
sidering the normal component to the streamline at each point. A
user-specified width is multiplied by the normal component to give
the location for each point of the thick streamline. This amount

is added to both sides of every pixel in the streamline resulting in a
thick, 2D streamline (figure 6). The coordinates of the thick stream-
line are used to construct polygons in which a texture can be easily
applied using standard texture mapping techniques. Segmenting the
thick streamline into polygons allows a texture-mapped streamline
to effectively bend and curve in any direction.

Figure 6: A thick streamline is constructed by calculating a 1D
streamline (top). The normal component at each point in the
streamline is multiplied by a user-defined width to calculate the co-
ordinates for the thick streamline (bottom).

An adaptive step size is used during the streamline integration
computation to construct polygons that can effectively represent
the streamline around areas of high curvature [Stalling and Hege
1995]. Using the fourth-order Runge-Kutta formula and given a
user-defined error tolerance, an adaptive step size approach chooses
a large enough step size to define each polygon while observing the
tolerance specified by the user. The effect of this approach is that
smaller polygons are generated in areas of high curvature (figure 7).

Figure 7: Polygons are generated according to an adaptive step-size
algorithm that allows for smaller polygons to be generated around
areas of high curvature.

4.2 Flow Fields

Controlling streamline density allows an entire field of thick
streamlines to be created and equally spaced so that applied tex-
tures can be perceived. Turk and Banks [Turk and Banks 1996]
first address the issue of streamline density. We employ the algo-
rithm developed by Jobard and Lefer [Jobard and Lefer 1997] for
ease of implementation and efficiency purposes.

Once an initial seed point in the 2D domain is selected randomly, a
streamline is calculated in both the positive and negative direction.



The streamline is traced in each direction until one of the follow-
ing occurs: a singularity is reached, the streamline reaches the edge
of the domain, or the streamline comes within some user-defined
distance of another streamline that has already been calculated. A
new seed point is generated by randomly selecting a point on the
defined streamline and moving it a distance greater than the width
of the thick streamline in the direction normal to the flow at this
point. Controlling the distance of a new seed point from the previ-
ous streamline allows flexibility in the density of the streamlines of
the resulting image. To generate an image of dense streamlines,
the seed point should be at a distance that is approximately the
thick streamline width from the previously defined streamline. A
distance that is greater than the streamline width will create more
space between streamlines and result in a sparse final image. The
algorithm continues by placing seed points in this manner until no
more valid seed points can be found.

We have found it beneficial to construct streamlines with maximum
possible length when creating the final images presented. Stream-
lines that do not have a sufficient length are not displayed and an-
other seed point is calculated.

Several artifacts can occur when texture mapping streamlines. To
avoid artifacts that may occur with a repeated texture on the same
streamline, a sufficiently large texture sample is used. To avoid
artifacts that may occur with repeated texture being applied at the
same interval on neighboring streamlines, a random texture offset
is used when constructing the first texture-mapped polygon of the
thick streamline. Additionally, where portions of streamlines over-
lap, pixels are assigned an opacity value of zero, giving priority to
streamlines already defined. The result is the ability for streamlines
to effectively “merge” due to convergence or divergence of the flow
but not to obstruct a previously placed streamline (figure 8).

Figure 8: Using texture-mapped thick streamlines to visualize a
flow field.

4.3 Texture Outline

Texture mapping a texture to a field of thick streamlines may not
create an effective visualization if the orientation of the applied tex-
ture is not obvious. Figure 9 (top) shows the result of applying an
isotropic texture to streamlines and the ambiguous orientation of

Figure 9: An illustration of texture outlining used to disambiguate
streamline orientation. Top: a birdseed texture applied to stream-
lines. Middle: the outlining texture applied to streamlines. Bottom:
combination of the above two images.

streamlines that results. The orientation of the streamlines can be
specified by combining the texture with an outline of the calcu-
lated streamlines. The outline of the streamlines is constructed by
mapping an outlining texture to the calculated streamlines defined
by the vector field. The outlining texture consists of a luminance
ramp, from black to white, emanating from each side of the texture.
The intention is to mimic a diffuse lighting effect that would be cre-
ated if the thick streamline were three dimensional and tubular in
shape. The effect of applying this outlining texture to streamlines
is displayed in figure 9 (middle). Finally, the two images can be
overlaid allowing the orientation of the flow field to be displayed
(figure 9 bottom).

It is important to limit the proximity between streamlines in creat-
ing the outlined streamlines texture. If the outlines of thick stream-
lines are allowed to overlap, areas of high overlap produce distract-
ing regions when the luminance ramp of the streamline is abruptly
halted where one streamline overlaps another. To avoid this artifact,
the computation of a streamline is stopped if it approaches another
streamline within one half the width of the thick streamline.

4.4 Texture Attributes

We have the ability to show a scalar field in addition to the flow
field by changing how the texture is mapped to the streamline. The
ability to choose texture parameters freely independent of polyg-
onal geometry provides a great amount of flexibility in depicting
scalar quantities.

Starting at the beginning of the streamline, the geometric coordi-



Figure 10: Texture parameters can be adjusted to display a scalar
distribution in addition to the vector field. The thickness of the
pine texture directly corresponds to the velocity magnitude along
the streamline.

Figure 11: Illustration of using texture attributes to represent a
scalar distribution. The scale of the texture is directly related to
Reynolds shear stress – a scalar field used to characterize regions
where drag is generated in turbulent boundary layers.

nates for the thick streamline are calculated and vertices for the first
polygon are defined. The length of the texture, u, or the width of the
texture, v, can be scaled according to the a scalar value and applied
to the polygon. Texture continuity between polygons is preserved
by ensuring that each polygon starts with the texture coordinates
most recently used by an adjacent polygon. Proportionally varying
both the u and v components of the texture influences the relative
scale of the texture (figure 10). This technique creates a difference
in the spatial frequency of the texture, reflecting the magnitude of
a scalar distribution. Figure 11 shows how the scale of a texture
can be used to display the magnitude of Reynolds shear stress – a
scalar field used to characterize regions where drag is generated in
turbulent boundary layers.

4.5 Multiple Textures

Texture mapping streamlines gives great flexibility in the number
of different appearances that a vector field representation can have.

Figure 12 shows a sample of how textures are capable of many dif-
ferent appearances as applied to streamlines.

Figure 12: Examples of the diversity of natural textures that can be
applied to a vector field. A circular flow is used demonstrate each
example.

5 Comparison of Techniques

We have presented two complimentary techniques for using tex-
tures for the visualization of 2D vector fields and the generation of
user-controlled textures: texture synthesis (section 3) and texture
mapping (section 4). Both are effective methods for creating a tex-
ture that accurately define the complex patterns that occur in vector
field visualizations.



The texture synthesis algorithm presented allows for a controlled,
pixel-by-pixel approach that mimics the sample texture effectively
in areas of high curvature as well as throughout the entire domain.
By using an elliptical kernel oriented in the principal direction of
flow, the texture synthesis approach effectively captures the flow
orientation, minimizing artifacts, while maintaining the statistical
properties and appearance of the input texture. A potential limi-
tation of the synthesis technique is that the quality of the output
texture is largely dependent on the size of the search neighborhood.
While the elliptical kernel allows for a high-quality image to be pro-
duced and uses a smaller neighborhood than traditional techniques,
the algorithm is not yet interactive.

The texture mapping approach allows for an efficient, interactive
visualization of a vector field. Through the use of modern graphics
hardware, textures can be applied to a vector field interactively –
giving the user the ability to create many different appearances for
the same flow field. Also, as described in section 4.3, the use of an
outlining texture allows textures samples that do not have an inher-
ent principal direction to be used in the visualization. The outline of
the thick streamline depicts the flow orientation while various com-
ponents of isotropic textures can be used to depict scalar variables
of the flow (e.g. Reynold’s stress, vorticity magnitude, or velocity
magnitude).

6 Conclusions and future work

The use of textures allows for a consistent and highly-detailed rep-
resentation of a vector field, allowing an observer to both analyze
and better understand the dynamics of fluid flow. We introduce
textures to convey this information in a way that preserves the in-
tegrity of the vector field while also taking advantage of the many
perceptual dimensions that textures can contribute such as regular-
ity, directionality, contrast, and spatial frequency.

We have presented two techniques that allow for textures to ac-
curately reflect the form and behavior of a flow field. We have
presented the use of an anisotropic filter for texture synthesis that,
unlike conventional algorithms, results in a higher quality texture
as it is synthesized over a vector field. This technique allows the in-
tegrity of the texture to be maintained while it accurately reflects the
underlying curvature of the flow. We have also analyzed the use of
texture mapping to accurately depict flow fields. We discussed how
texture mapping allows anisotropic textures can be utilized for flow
visualization and how variables within the flow can be represented.

Our current and future work deals with the use of such techniques,
streamline-based as well as pixel-based, to better represent multi-
parameter data sets taking advantage of the perceptual dimensions
of textures.

Additional areas of future research include extending the proposed
neighborhood specifications for texture synthesis to the three-
dimensional domain, where the weighting functions can be usefully
adapted adding a third extra dimension. Additional fields of appli-
cations can be found in the visualization of tensors, as well as in
generating solid textures. Furthermore, we are interested in visual-
izing multi-fields within the same image.

References

ASHIKHMIN, M. 2001. Synthesizing natural textures. Proceedings
of 2001 Symposium on Interactive 3D Graphics, 217–226.

CABRAL, B., AND LEEDOM, C. 1993. Imaging vector fields using
line integral convolution. Proc. of SIGGRAPH 93, 263–269.

CIE-Lab System 1976. Commission International de l’ Éclairage,
CIE.

DE LEEUW, W. C., AND VAN WIJK, J. J. 1995. Enhanced spot
noise for vector field visualization. Proceedings of IEEE Visual-
ization 95, 233–239.

DURAND, F., AND DORSEY, J. 2002. Fast bilateral filtering for the
display of high-dynamic-range images. Proceedings of Siggraph
21, 3, 257–266.

EFROS, A. A., AND FREEMAN, W. T. 2001. Image quilting for
texture synthesis and transfer. Proceedings of SIGGRAPH 2001,
341–346.

EFROS, A. A., AND LEUNG, T. K. 1999. Texture synthesis by
non-parametric sampling. International Conference on Com-
puter Vision, 1033–1038.

GORLA, G., INTERRANTE, V., AND SAPIRO, G. 2002. Texture
synthesis for 3d shape representation. IEEE Transactions on Vi-
sualization and Computer Graphics, 512–524.

JOBARD, B., AND LEFER, W. 1997. Creating evenly-spaced
streamlines of arbitrary density. Proc. of the 8th Eurographics
Workshop on Visualization in Scientific Computing, 43–55.

SHEN, H.-W., LI, G., AND BORDOLOI, U. 2004. Interative visu-
alization of three-dimensional vector fields with flexible appear-
ance control. IEEE Transactions on Visualization and Computer
Graphics 10, 4, 434–445.

STALLING, D., AND HEGE, H.-C. 1995. Fast and resolution-
independent line integral convolution. Proceedings of SIG-
GRAPH 95, 249–256.

TAPONECCO, F., AND ALEXA, M. 2003. Vector field visualization
using markov random field texture synthesis. Proceedings of
Eurographics / IEEE TCVG, 195–202.

TAPONECCO, F., AND ALEXA, M. 2004. Steerable texture syn-
thesis. Proceedings of Eurographics 2004, 57–60.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. Proceedings of the 1998 IEEE Interna-
tional Conference on Computer Vision, 839–846.

TURK, G., AND BANKS, D. 1996. Image-guided streamline place-
ment. Proceedings of SIGGRAPH 96, 453–460.

TURK, G. 2001. Texture synthesis on surfaces. Proceedings of
ACM Siggraph, 347–354.

VAN WIJK, J. J. 1991. Spot noise: Texture synthesis for data
visualization. Proceedings of SIGGRAPH 91, 309–318.

VAN WIJK, J. J. 2002. Image based flow visualization. ACM
Transactions on Graphics 21, 3, 745–754.

VERMA, V., KAO, D., AND PANG, A. 1999. Plic: Bridging the
gap between streamlines and lic. Proc. Symposium on Data Vi-
sualization 1999, 341–348.

WANG, B., WANG, W., YONG, J., AND SUN, J. 2005. Synthe-
sizing 2d directional moving texture. In SCCG ’05: Proc. of the
21st spring conference on Computer graphics, 177–183.

WEI, L.-Y., AND LEVOY, M. 2000. Fast texture synthesis using
tree-structured vector quantization. Proceedings of SIGGRAPH
2000, 479–488.


