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REAL TIME FEATURE EXTRACTION FOR THE
ANALYSIS OF TURBULENT FLOWS

I. Marusic, G.V. Candler, V. Interrante, P.K. Subbareddy, and A. Moss

Abstract The study of fluid flow turbulence has been an active area of research for over 100
years, mainly because of its technological importance to a vast number of appli-
cations. In recent times with the advent of supercomputers and new experimental
imaging techniques, terabyte scale data sets are being generated, and hence stor-
age as well as analysis of this data has become a major issue. In this chapter we
outline a new approach to tackling these data-sets which relies on selective data
storage based on real-time feature extraction and utilizing data mining tools to
aid in the discovery and analysis of the data. Visualization results are presented
which highlight the type and number of spatially and temporally evolving coher-
ent features that can be extracted from the data sets as well as other high level
features.
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1. Introduction

Turbulence is often referred to as the last great unsolved problem in classical
physics, and all efforts to develop models to predict turbulent motion have fallen
woefully short. The difficulty comes in because turbulent motion is a result of
non-linear spatial and temporal interactions across a huge range of length and
time scales.

Turbulent flows have great practical importance because they are found in a
vast number of engineering applications. Examples include flow over aircraft,
spacecraft, and other transport vehicles, flow inside of engines and power plant
combustion systems, flow in chemical and waste processing streams, and the
flow of blood in the heart and large blood vessels. In these examples, huge cost
savings can be achieved if quantities like drag, combustion efficiency, and pol-
lutant output can be predicted accurately for prototype designs. However, these
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quantities cannot be predicted because we have an inadequate understanding of
how turbulent structures evolve and interact with one another.

Over the last few decades, a broad consensus has emerged that coherent
or organized vortical structures (eddies, whorls, or regions of swirling flow)
dominate turbulent flows and are the most important physical mechanisms for
generating and sustaining turbulent motion. These structures appear in a wide
variety of shapes and sizes.

The large scale eddying motions can be seen in nature, as for example, in
the flow of water around obstacles, or behind your spoon when you are stirring
your coffee. The smallest eddies in the flow are believed to function as sinks of
energy, dissipating kinetic energy into heat through fluid friction (or viscosity).
The larger scales interact with one another to spawn new larger or smaller scale
eddies that cause mixing between adjacent regions of the flow.

To illustrate this interaction, consider the Earth’s atmosphere where the
largest scale turbulent structures are as large as the height of the clouds or
the diameter of a hurricane, while the smallest eddies are about as large as the
thickness of a pin. As we know from the variations in the wind strength and
direction during an intense storm, the structures at various scales are not static.
The structures could be breaking up, dissipating into smaller and smaller ones
or they could be coalescing, forming larger scales1. These structures are the
essence of turbulence, and lacking the information to form a theoretical anal-
ysis of their formation and evolution, we are left with having to actually take
a deep long look at them in circumstances we believe we control. This can
be done with high-quality wind-tunnel measurements or using direct numerical
simulations (DNS). These simulations must resolve all possible length and time
scales, which results in extremely large calculations, involving the solution of
the governing equations on multi-million point grids over many thousands of
time steps. Typical calculations require a month or more on the largest paral-
lel supercomputers and are currently limited to simplified flows at unrealistic
flow conditions. (Imagine trying to resolve the motion of a large storm that
has an overall dimension covering a substantial portion of a continent, while its
smallest scale motion is the diameter of a pin!)

Because direct numerical simulations are very costly, an important goal of
fluid dynamics researchers is to develop accurate, physically-based numerical
models to predict turbulent flows. This model development depends on data
from experimental measurements and numerical simulations. With the ever

1The whole process is neatly paraphrased in the poem by Augustus DeMorgan:

Great fleas have little fleas upon their backs to bite’em,
And little fleas have lesser fleas, and so ad infinitum.
And great fleas themselves, in turn, have greater fleas to go on;
While these again have greater still, and greater still, and so on.
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Figure 1. Schematic of a conventional data analysis approach.

increasing speed of computers and the developments in advanced experimental
techniques, these methods generate vast amounts of three and four dimensional
data, and hence storage as well as analysis of these data has become a major
issue and limitation to the extraction of relevant information.

A typical direct numerical simulation of a turbulent flow produces many
terabytes of data, of which perhaps only 0.1% is stored and analyzed. For
example in the turbulence simulations such as that of Martin & Candler[MC00],
data are generated at a rate of approximately 3 terabytes per day, every day for
about a month of computing. Typically, only every one-thousandth time step is
actually written to disk, with the final database being approximately 2 terabytes.
In particle image velocimetry (PIV) experiments data are acquired at a rate of
tens of gigabytes per hour, but management and processing of an hour’s worth
of data typically takes many days. The data-overload situation will only worsen
with further advances in computing power and experimental data acquisition
hardware. Therefore, the current paradigm in scientific data acquisition and
analysis, as represented in Figure 1, has become out-moded.

In this approach, existing visualization tools are used to take a series of
averages in an attempt to uncover some type of global information. More
recently movies are made of a particular flow variable (typically a scalar or
vector quantity) to reach a better, though essentially qualitative, understanding
of the flow physics.

Furthermore, data are stored periodically as the simulation progresses; how-
ever the interval between storage is not a phenomenological one and is usually
assigned at the start of the simulation without regard to the flow evolution. Stor-
ing data at regular intervals can only capture instantaneous snap-shots of the
flow and has little hope of capturing relevant time and space evolving dynamics.
This is not to say that researchers are performing studies incorrectly. Rather
there is presently no means of efficiently storing and analyzing the enormous
amounts of data being generated. For example, the wall turbulence simula-
tion data of Spalart(1988) is still being analyzed thirteen years after it was
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Figure 2. Coherent structures in a turbulent boundary layer flow extracted using discriminant-
based structure identification. (See section 3 for details)

generated. Several researchers are still using this data set to provide a descrip-
tion of wall turbulence and developing a better feel for turbulent fluid motion
[R91, CCB97, CC00]. Figure 2 shows a typical result from such studies where
vortical structures are identified in a turbulent channel flow. Such techniques
have been very useful in helping to identify what structural features exist in the
flow. However, without improved data analysis methods, advances in comput-
ing and data acquisition technology will not be accompanied by an improved
understanding of the underlying physical processes.

In this article we wish to outline a new approach to the analysis of large
scientific data sets involving dynamic and transient processes. Successful im-
plementation will involve developing new interactive visualization and feature
extraction tools and employing newly-developed scalable data mining methods.

2. New Approach for Data Analysis

Conventional data analysis and visualization separates the analysis of the data
from its generation. This is inadequate for the analysis of large scientific data
sets. There is simply too much data, it takes too long to make “pictures” of it,
and there is too much to look at all at once. Even if it were somehow possible to
save and look at everything, we might not necessarily want to. It can be argued
that some of the most significant advances in understanding will come, not from
showing more, but from showing less. Instead of relying on faster computers
to visualize the data we advocate a new methodology, as represented in Figure
3.

The approach involves monitoring the simulation or experiment and selec-
tively storing the data in close proximity to an event of interest – termed the
“trigger.” For example, while a wind tunnel is being run, the data would be
streamed to a multi-processor computer where it is stored temporarily and ana-
lyzed in real time. As more data are generated, the oldest data are thrown away
until an event of interest is detected through application of advanced visualiza-
tion and feature recognition techniques. Then the data remaining in memory in
the spatial and temporal vicinity of the event are identified as relevant and are



Real Time Feature Extraction for the Analysis of Turbulent Flows 227

COMPUTATION/
EXPERIMENT

TRIGGER
DISK

FEATURE
EXTRACTION

FEATURE SPECIFICATION

objects
DISK

SUPERVISED
DATA

MINING

ANALYSIS

FEATURE
EXTRACTION

 TOOLS

VISUALIZE and
VERIFY

REFINE
TEMPLATES / CRITERIA * classification

* pattern recognition
* clustering

DATA MINING

VISUALIZE OBJECTS/
INTERACT

QUANTITATIVE
CAUSAL

RELATIONSHIPS

Selective
storage

DATABASE A DATABASE B

Figure 3. Schematic of our new data analysis approach. The connected boxes enclosed by
dotted lines are essentially the same, with the larger boxes showing the internal features of the
smaller ones, and have been drawn separately for clarity.

written to disk (Database A). Specifying the trigger criteria requires a testing
period wherein the correctness of the criteria are determined by a trial and error
process. Correct trigger identification is critical since using a faulty trigger
would result in the loss of valuable data. A similar approach would be used
to detect relevant information in a numerical simulation. In this case, data are
analyzed as generated and trigger events are identified on the fly. This is in
contrast to the existing paradigm in which data are written to disk at arbitrary
intervals at a rate predetermined by the available disk storage (see Figure 1).
Using visualization and feature extraction to generate Database A is, in itself,
a major challenge in the analysis of these flows.

With all the relevant data stored to disk, feature extraction and visualization
techniques are then used to further analyze the data. The feature specifica-
tion criteria need to be formulated to identify and extract “objects” of interest
from the database. An object quantifies the key features of each relevant tur-
bulent structure, such as its strength, spatial extent, persistence, and location
in space-time. This is where strong collaboration and interaction between the
engineering and computer science/visualization experts is needed. An iterative
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process is required, in which the extraction criteria are refined to identify the
features relating to the event. Once the module has been trained, the feature
extraction can be run to produce a new compact database of objects along with
their parametrizations.

This new database of objects (Database B) is then analyzed by using data
mining techniques to search for patterns of interest and provide high-level in-
formation about the objects, and thus help unravel the physical mechanisms and
causal relationships in the flow. Again, this requires close interactions between
the engineering and computer science experts. Successful implementation of
these tools would result in a powerful new means to visualize and interpret
mechanisms which are currently elusive. It will allow us to pose an entirely
new class of questions concerning how one event causes another in turbulent
flows.

3. Case study: a Mach 4 turbulent boundary layer

Let us consider a specific turbulent flow, which is illustrated in Figure 4:
the turbulent boundary layer created on the Space Shuttle during re-entry into
the atmosphere. The turbulence is generated in the narrow region between
the surface of the Shuttle and the high-speed external flow. In this boundary
layer, there are extreme velocity and temperature gradients that cause the flow
to become turbulent. The turbulent motion affects the aerodynamic forces
acting on the Shuttle, but more importantly for this application, the turbulence
significantly increases the aerodynamic heating of the Shuttle.

Boundary layer flows also determine the lift and drag performance of aero-
dynamic surfaces such as wings, propellers, and turbine blades. The turbulent
motion determines if a flow will separate, which results in sudden loss of lift and
substantial drag losses. A large portion of the engine power of aircraft, trains,
and automobiles goes into overcoming turbulent drag losses. Boundary layers
also occur on combustor surfaces and they are often the site of combustion
inefficiencies and quenching that result in unwanted pollutant formation.

Visualization studies have provided a good qualitative appreciation of the
structures that exist in wall turbulence and have changed the traditional notion
that turbulence is a completely random phenomenon. As discussed above, it is
now clear that turbulent boundary layers are largely made up of organized and
quasi-deterministic, coherent vortex structures; an example is seen in Figure 2.
Physical models for the kinematic state of the flow have been proposed based on
these ideas using a statistical distribution of vortex structures [PM95, MP95].
These formulations have been largely successful in reproducing second-order
statistics of the turbulence, given the mean flow distribution. Unfortunately,
being kinematic stochastic models, they say nothing about the dynamic inter-
action between the turbulent structures, and we still need to understand how
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Figure 4. Illustration of a turbulent boundary layer flow on the Space Shuttle during re-entry.
Because of the huge computational cost, only a small portion of the flow can be simulated; this
is denoted by the boxed region. The plots in the lower half of the figure illustrate the average
velocity (on the left) and average temperature as a function of the distance from the wall, �.

these structures are generated and evolve. Thus, information on the dynamic in-
teraction between between structures would greatly improve our understanding
of turbulence.

Of particular practical interest is the phenomenon known as “bursting”, which
is characterized by a violent ejection of near-wall fluid into the outer part of
the boundary layer, resulting in large drag and heat transfer. The frequency
of bursting is directly related to the skin friction drag [LB98] and if we could
devise schemes that reduce the average time between bursts, significant benefits
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Figure 5. Example of “bursting” shown in spanwise planes from the Mach 4.0 adiabatic wall
boundary layer simulation of Martin & Candler [MC00].

would result. For example, for every 1% reduction in skin friction achieved,
the US aviation industry would save an estimated $200 million per year in fuel
consumption. An example of the bursting phenomenon was captured in the high
Mach number boundary layer simulation by Martin & Candler [MC00] and is
shown in Figure 5. Here representative spanwise planes (the flow is into the
page) are shown at one time step and temperature is the variable plotted. We see
large coherent structures that lift the high temperature near-wall fluid (white and
red in Figure 5) into the cool free-stream (blue). Apart from large drag, these
bursting events are responsible for increasing the heat transfer rate by a factor
of about four compared to a non-turbulent laminar boundary layer. If we could
understand how the events are generated, it may be possible to develop actuators
to suppress or stimulate their formation, depending on whether decreased or
increased heat transfer is desired.

3.1. Details of simulation

The flow conditions for this case study are characteristic of a turbulent su-
personic boundary layer at high altitude flight conditions. The data are from a
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large direct numerical simulation (DNS) data set of Martin & Candler [MC00]
for a Mach 4 turbulent boundary layer with an edge temperature of ����� and
density of ��� �����. These conditions are representative of the flow sketched
in Figure 4.

The DNS solves the discretized time-dependent compressible Navier-Stokes
equations, which essentially represent the conservation of mass, momentum,
and energy. This was done using a high-accuracy, low-dissipation, shock-
capturing finite difference method specifically designed for this type of prob-
lem [WC97]. The time integration uses a parallelizable second-order accurate
implicit method [OC97].

The grid in the streamwise and spanwise directions is equispaced and the
wall-normal direction is geometrically stretched from the wall. The domain
size is measured in units of the boundary layer thickness Æ, and for this case is
�Æ��Æ���Æ [MC00]. The grid resolution is 	�� 
 ��, where the superscript
denotes normalization using the viscous length scale (���� ), 	�� 
 ��, with
	�� varying from ���� to �� across the boundary layer. To achieve adequate
resolution for this domain size, the DNS was performed on a grid with �� �
��� � ��� points in the streamwise, spanwise, and wall normal directions,
respectively.

The calculations were performed using a 256 processor Cray T3E at the
University of Minnesota Army High Performance Computing Research Center
(AHPCRC). There are no detailed experimental data for these flow conditions,
but the results of the DNS agree very well with theoretical and experimental
correlations. It should be noted that the DNS results are statistically exact and
any variable of interest can be constructed from the solution at any given time.

3.2. Identification of structures

The structures that form the basis of turbulent motion are believed to be
composed of regions of high vorticity, or angular velocity, which very roughly
speaking means that the fluid particles are spinning around themselves and
other fluid particles. The picture is confused however, by the fact that there are
regions of flow with high vorticity, but are not part of what are believed to be
coherent structures.

In order to separate the “spurious” vorticity from that within the structures of
interest, we must consider an appropriate frame of reference. For example, the
wake behind a boat appears to be highly disorganized when seen from the shore,
but if one is on the boat, the wake assumes an organized structure. Similarly, if
we move with a particle of fluid in the flow, it becomes clear whether the fluid
is swirling about that point and is part of a coherent vortical structure.

It is also useful to consider the local streamline pattern at a point, which is
computed using the gradients of each of the components of the velocity. This
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velocity gradient tensor ( ������� , where 	 and 
 run over all three of the spatial
dimensions) contains all nine possible velocity derivatives. Visualizing a field
made up of nine quantities at each point is usually a futile exercise, and we
must distill one number out of this matrix that quantifies the swirling vortical
motion. Quite naturally, we are led to the eigenvalue problem for the matrix.
Being a � matrix, it has 3 eigenvalues which are either all real or have a pair
of complex roots and one real root. A little analysis shows that the latter case
is when the local streamlines exhibit the swirling pattern that we were looking
for, and in fact, the complex part of the eigenvalues indicates the strength of the
swirl. The number that determines whether there are real or complex roots is
the discriminant (�) of the characteristic equation of the eigenvalue problem.
If � � �, we have a swirling flow, and a connected region of positive values
of � would be an unambiguous definition for a coherent structure. It is this
parameter, �, that we currently use to identify the structures in the flow.

3.3. Visualization tools and results

The DNS data are rendered using a classical ray-casting volume renderer
(Levoy [L88]). At each time step, the 3D normalized level-set data are first
resampled into a high resolution uniform grid ����� � ��� � ���, and then
to minimize disk space and memory requirements quantized into 8-bit values
spanning the range 0-255, such that the remapping is uniform across all time
steps. Images are created by tracing a bundle of rays from the eye point through
the 3D data, such that each ray passes through the center of a pixel in the
image plane, and returns the color value to be assigned to that pixel. The final
pixel color is obtained by compositing local color and opacity values trilinearly
interpolated from the uniform grid to sample points at evenly spaced intervals
along the ray.

Local color values are computed at each grid point using a simple two-sided
Phong illumination model (Foley et al. [FDFH90]):

������ ����� 
 � � � � �� � ��� � � �� �����

where�, � and� are the ambient, diffuse and specular reflectivities multiplied
by the intensity of illuminant, respectively; which together with the exponent
� are defined by the user. � is a unit vector in the direction of the data value
gradient, which can be interpreted as the unit normal to the level surface at the
grid point, � is the direction of the parallel illumination from an infinitely distant
light source, and � is the vector halfway between � and the line of sight, or
direction of projection. Local opacity values are defined at each grid point as a
gradient magnitude-weighted linear function of the input data values according
to a user-specified data-to-opacity correspondence given at key breakpoints.
The volume rendering approach in effect finesses the definition of the apparent
surfaces, allowing greater flexibility to portray the structures of interest in a
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form that is robust to the local effects of isolated samples and minor fluctuations
or nonuniformities in the distribution of the chosen level-set. Our experience
shows that this volume rendering yields more clearly connected structures than
the usual iso-surface rendering. Examples of a volume rendering using the
discriminant, �, to specify the illuminant for one time step from the DNS are
shown in Figures 2 and 6.

In order to isolate a particular structure from the forest of other structures
in the flow field, we use a volume filling method. A seed is placed within a
structure of interest that is usually identified from an image such as shown in
Figures 6 and 7. Then a nearest-neighbor search is done to find all connected
voxels where the variable of interest (� here) is greater than a user-specified
value. This connected region is then visualized as a colored rendering. A more
sophisticated volume filling method that uses gradient information may result
in more consistent connectivity of structures; this extension is being pursued in
continuing work.

The volume filling approach can be used to construct a database of relevant
objects for data mining analysis. For example, it would be straight-forward
to identify all locations within a flow domain where the discriminant is above
a certain value; these locations are used as seeds for the volume filling. The
structures are then filled and any duplicate structures are eliminated. This results
in a finite number of connected regions; the number of which depends on the
specified seed and connectivity thresholds. Each structure can be parameterized
by its location, size, volume-averaged swirl strength, or many other possible
variables.

We would like to determine how these structures evolve in time. Figure
7 shows a typical evolution of one large-sized volume-filled structure over
approximately 90 time-steps in the simulation. Since the structures move long
with the flow, we can estimate to high accuracy where they will be located at the
next time step. The volume filling can then be repeated, but with a very good
estimate of the location and extent of the connected regions. Thus, once we
have performed an initial volume filling and structure identification, updating
the database of structure connectivity and parameters is straight-forward. The
only concern with this approach is that entirely new structures can be born, or
two structures can merge. Appropriate logic must be included to allow these
processes to occur. However from our current visualizations, the frequency of
large structure birth and merging appears to be quite low (this is not true for the
smaller structures).

In any case, the volume filling can be used to construct a database of objects
of interest. The database will contain a space-time trajectory of each structure,
including all relevant parameters. Because each entry in the database represents
a large ensemble of relevant voxels, it will be very significantly smaller than
the raw data. For example, a representative number of large-scale structures
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Figure 6. An isometric view of the boundary layer from the Mach 4.0 adiabatic wall simulation.

may be several hundred; if each structure is parameterized by 10 quantities, a
single time step will require only on the order of ��� real variables per time
step. This is contrasted with the  � ��� real variables required to describe
the entire domain. This represents a compression of a factor of ���; but more
importantly, the small database contains only the relevant data.

4. Data Mining Issues

A primary issue with mining of the turbulent flow data set is the interface
between the fluid dynamicists and the data miners. Fluids investigators would
like to be able to ask quite abstract questions, such as “What causes a burst
event?” or “Do structures group themselves together, or are they random?”
These questions need to be converted into a form that is appropriate for data
mining, and of course the compact database discussed above must contain the
relevant information to answer a given question. Likewise, it is important for
the data mining investigators to make clear what classes of questions data min-
ing algorithms can actually answer. Thus, once we have crossed the hurdle of
generating a compact data set, probably the main issue is a matter of commu-
nication between the fluid dynamicists and the data miners.

Another issue is that the turbulence is extremely complicated with a very
large number of vortical structures across a very large range of length scales, as
seen in Figure 6. This complexity in the flow field results in having to consider
many possible mechanisms to explain a given event or process. For example,
consider the problem of understanding burst formation as indicated in Figure 5.
It is expected that to predict burst formation in boundary layer turbulent flow,
a model will involve both physical properties (temperature, pressure, vorticity,
etc.), as well as spatial and temporal relations between the different vortical
structures in the flow. Unfortunately, with our present understanding of turbu-
lence, we do not know what these relations may be, and there is a very large
number of possible correlations between these variables and their history. For
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Figure 7. Figures above show the time evolution of a typical structure seen in the simulation.

example there are a number of higher level characteristics which are speculated
to cause burst formation. These include the organization of vortices into coher-
ent spatial clusters and spatial coherence among vortices or clusters of vortices
[AMT00, ZABK99, M01]. Thus, models discovered by data mining techniques
need to be able to express such relations.

As an initial approach, training sets need to be established. In a steady-state
turbulent flow, bursts occur at unpredictable times during a simulation. Using
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the intelligent data filtering techniques discussed above, we can obtain objects
describing the state of the flow at a time interval around the occurrence of each
burst. These observations will become the positive instances in our training set.
At the same time, we can construct a large number of objects describing the
state of the flow during time intervals in which no bursts occur; these become
the negative instances in our training set. From this training set, we can begin
developing explanatory models that will yield quantitative insight into burst
formation. These models can then be evaluated using simulation data that has
not been used in the training of the model.

Unfortunately, even though the feature extraction techniques can provide us
with higher order objects rather than just raw flow information, the information
content of these objects is still too low to allow us to express the higher order
relations that are needed. Thus, the need exists for data mining techniques
based on clustering and pattern discovery that will analyze the low level objects
and extract higher order features present in the data set that will aid in the
development of explanatory models for the phenomena of interest.

There are several characteristics of the objects extracted from scientific data
sets that makes clustering and pattern discovery challenging. Irrespective of the
sophistication of the feature extraction tools, the objects extracted from the raw
flow information will unavoidably have a certain degree of noise and impreci-
sion. Similarly, the number of objects in the database can easily run to several
thousands and increases as the simulation/experiment duration increases. At
the same time, the parametric description of these objects can easily involve
tens of features, and since the objects arise in a three dimensional time varying
simulation, they have spatial as well as temporal features. Existing data mining
techniques do not appear to be well suited to operate on data sets that combine
the above characteristics.

Developing clustering algorithms for scientific data sets poses a number of
challenges due to both the characteristics of the data itself as well as the types
of the desired clusters. The clusters of objects may be of variable sizes and
densities, and may be of arbitrary shapes. The need exists to develop clustering
algorithms that are capable of accommodating different clustering objectives.
For example, the problem of finding a cluster that is a packet of vortices is
entirely different than that of finding a cluster that contains vortices of the same
size.

In the context of pattern discovery algorithms, the patterns to be considered
here involve spatial, temporal, or spatio-temporal relations among objects. For
example, interesting patterns may involve vortices oriented in a certain way, or
a certain type of vortices formed after another type, or a set of small vortices
evolving to create larger vortices.

The problem of finding these patterns becomes even more challenging when
the objects are higher order features such as clusters. In this case establishing
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relationship among clusters from different events itself can be non-trivial. The
need therefore exists to extend existing pattern discovery algorithms by allowing
them to discover arbitrarily complex patterns that represent the relationships
among events.

Some preliminary results of Data Mining in turbulent flows are discussed in
the accompanying chapter by Han,Karypis and Kumar.
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