
0272-1716/98/$10.00 © 1998 IEEE

Visualization Case Studies

IEEE Computer Graphics and Applications 49

An elegant and versatile technique, line inte-
gral convolution (LIC)1,2 represents direc-

tional information via patterns of correlation in a texture.
Although most commonly used to depict 2D flow, or flow
over a surface in 3D, LIC methods can also portray 3D
flow through a volume.1,3 However, the popularity of LIC
as a device for illustrating 3D flow has historically been
limited by the computational expense of generating and
rendering such a 3D texture and by the difficulties inher-
ent in clearly and effectively conveying the directional
information embodied in the resulting volumetric out-
put textures.

Here we discuss some factors that may underlie some
of the perceptual difficulties encountered with dense 3D
displays and describe strategies for more effectively visu-
alizing 3D flow with volume LIC. Specifically, we suggest
techniques for

■ selectively emphasizing critical regions of interest in
a flow;

■ facilitating the accurate perception of the 3D depth
and orientation of overlapping streamlines;

■ efficiently incorporating an indication of orientation
into a flow representation; and

■ conveying additional information about related scalar
quantities such as temperature or vorticity over a flow
via subtle, continuous line width and color variations.

Volume LIC
Applying LIC to a solid noise texture using a 3D vec-

tor field results in a solid 3D output texture—as shown
in Figure 1—in which the values of the voxels are every-
where locally correlated in the direction of the 3D flow.
The mechanics of the computation are straightforward,
but how can you effectively visualize such data? It can
be difficult to mentally reconstruct an accurate per-
ception of the 3D flow from any series of 2D slices
viewed sequentially. Defining an appropriate set of sur-
faces across which the 3D flow information can mean-
ingfully be shown can prove problematic and imaging
the data as a set of partial opacity values via direct-vol-
ume rendering sacrifices the inner details of the 3D tex-
ture. We believe that if appropriately defined and
rendered, a 3D LIC texture has considerable potential
to provide a full, immediate, and intuitive impression of
a 3D flow’s global and local characteristics. The chal-

lenge is to determine how to achieve such a represen-
tation. Shen et al.3 suggested complementing a volume-
rendered LIC texture with simulated dye advection.
Here we look at some other options.

Region of interest specification
In certain cases, you can use a scalar function such as

temperature or vorticity to identify,
a priori, specific critical regions in a
flow volume within which (or across
which) the depiction of flow infor-
mation is especially important.
When we used LIC in conjunction
with a region of interest (ROI) thus
defined, we were able to achieve
substantially better results by apply-
ing the ROI mask as a preprocess to
the input texture before LIC rather
than as a postprocess to the output
afterwards.

In the first case, the scalar ROI
masking function completely deter-
mines the flow texture’s visible por-
tion. Here, the ROI’s boundary
generally does not follow the direc-
tion of the flow. In the second case, where the ROI func-
tion is applied before LIC, the flow guides the apparent
ROI segmentation. When this occurs, the effective
boundaries of the ROI will be everywhere aligned with
the direction of the flow.

Figures 2 and 3 (next page) illustrate the difference
between these two approaches. These images represent
a numerical simulation of the effect of tabs on jets. The
goal of the flow research was to investigate how jet
engine noise might be reduced by adding tabs into the

Victoria Interrante
Institute for Computer Applications in Science and
Engineering

Chester Grosch
Old Dominion University

Visualizing
3D Flow

We discuss volume line

integral convolution (LIC)

techniques for effectively

visualizing 3D flow,

including using visibility-

impeding halos and efficient

asymmetric filter kernels.

1 A solid 3D
texture of ran-
dom noise
(left). The solid
texture after 3D
LIC (right).

.

jets to generate vortices that could
facilitate the mixing of the hot,
supersonic flow with the colder,
subsonic coflow. The flow data was
generated on a nearly rectangular
grid, of resolution 101 × 101 × 148.
The resolution of the input and out-
put textures was made twice as
large (202 × 202 × 296) so that the
flow’s details could be easily seen.
The difference between the meth-
ods is especially apparent in the
vicinity of the four pairs of counter-
rotating vortices that were induced
by the tabs.

Sparse input textures
When you apply LIC to a solid

noise texture, even one that has
been masked by an ROI function,
the resulting 3D output texture is
difficult to visualize as anything
other than a solid object with fuzzy
boundaries. By applying LIC over an
input texture consisting of a sparse
set of distributed points4—taking
care to advect the “empty” space
along with the full space—you can
produce a solid texture like the kind
shown in Figure 4, which represents
a scan-converted collection of even-
ly placed, densely clustered stream-
lines. We premultiplied the input

Visualization Case Studies

50 July/August 1998

3 A 3D view of
the volume-
rendered solid
textures. Results
when the ROI
segmentation is
applied as a
postprocess
after LIC (left).
Results when
ROI masking is
applied to the
input texture
before perform-
ing LIC (right).

2 A 2D slice from a solid 3D texture generated from a
3D vector field and a solid noise input using volume LIC
(top left). The corresponding slice through an ROI mask
defined as a function of velocity magnitude (top cen-
ter). The masked LIC texture (top right). A masked
input texture for LIC (bottom left). The result after
applying LIC to the masked input (bottom right).

4 A volume-rendered 3D LIC tex-
ture that resembles a collection of
scan-converted streamlines. The
data was volume shaded according
to the direction of the flow, but the
relative spatial orientations of the
individual lines remain difficult to
see.

5 Using LIC to show 3D flow in the
vicinity of a surface of interest.
Ridges of velocity magnitude define
a thin surface between the faster
and slower moving regions of the
flow (top). The result when we
apply 3D LIC with a short filter
kernel to an input texture consist-
ing of evenly distributed points
among the voxels intersected by
this surface (bottom).

.

texture by the same ROI mask used in Figures 2 and 3
to generate the volume shown in Figure 4. This con-
strained the streamlines to originate in the more rapid-
ly moving regions of the flow, but allowed them to
extend anywhere.

You can also use LIC in conjunction with a sparse input
texture to visualize 3D flow in the vicinity of a surface of
interest. In Figure 5, we applied a ridge strength func-
tion over the velocity magnitude volume shown earlier
to define a “boundary surface” between the regions of
relatively faster and slower flow. This approach facili-
tates coherent data segmentation according to the rela-
tionships between the values, while allowing the precise
definition of “fast” and “slow” to remain fluid. Eliminat-
ing the need to project the flow directions onto the sur-
face decreases the likelihood of generating a misleading
impression of the flow, a problem addressed by Max et
al.5 in some detail. Because all calculations are per-
formed in 3D, the tufts in the output texture will accu-
rately reflect the flow’s local 3D orientation in the
immediate vicinity of the surface of interest.

Clarifying depth relations
At first glance, the problem of effectively conveying

the 3D shape and relative depth relations among the sim-
ilarly directed, densely clustered streamlines traced by
LIC appears to be a problem of simple differentiation:
Like-colored lines, existing at different depths but pro-
jected onto adjacent pixels in a particular view, appear to
coalesce into an indistinguishable clump. Phrased in this
fashion, the problem points to a seemingly obvious solu-
tion: differentiate the individual lines by rendering them
in different colors. Unfortunately, as you can see in Fig-
ure 6, merely introducing color variations does not great-
ly improve the clarity of the depth order relations among
the overlapping lines. Figure 7 shows why we should
expect this to be the case and suggests a better solution.

In ordinary binocular vision, depth discontinuities gen-
erally coincide with the presence of interocularly
unpaired regions in the views from each eye.6 Artists and
illustrators have long exploited this correspondence by
using gaps to indicate the passing of one object behind
another. In 1979, Appel et al.7 proposed one of the first
“haloed” line drawing algorithms for computer graphics.

A simple modification to the basic LIC algorithm lets
you efficiently compute a matched pair of textures that

can be used to generate images like the one in Figure 8,
in which the depth discontinuities are highlighted by
gaps. We automatically define a subtle and smoothly con-
tinuous 3D visibility-impeding “halo” region that fully
encloses each streamline in the original 3D texture. To
do this, we perform LIC simultaneously over two input
textures containing identically located spots of concen-
tric sizes. Because the streamline tracing need only be
done once for the pair of volumes, the overhead associ-
ated with creating the halos is kept to a minimum. Halos
are implemented during raycasting-volume rendering

IEEE Computer Graphics and Applications 51

6 Color varia-
tions alone are
not sufficient to
clarify the
depiction of
overlapping
streamlines.

8 A side-by-side
comparison
illustrating the
impact of visibili-
ty-impeding
halos in convey-
ing depth dis-
continuity
information and
facilitating
appreciation of
the depth extent
in the flow.

7 Two overlapping lines of roughly equal luminance but different hues.
Depth order relations are explicitly emphasized in the leftmost and right-
most images by introducing subtle gaps that flank the foremost line.

.

by decreasing the contribution to the final image of any
voxel encountered after a halo has been entered and sub-
sequently exited by an amount proportional to the largest
previously encountered halo opacity.

Specifically, the volume renderer takes as input two
3D textures (streamlines and halos) and traces rays
through each. As tracing proceeds simultaneously
through each volume, color and opacity values accu-
mulate along the rays through the volume of stream-
lines until the renderer notes the first exit from a halo
region. At this point, the accumulated opacity along the
ray is increased by an amount proportional to the max-
imum density encountered in the previously traversed
halo region, and tracing continues. Because each line
will be everywhere surrounded by its own halo, it is
important to let the voxels lying between the entrance
and exit points of the first-encountered halo be ren-
dered in the normal fashion. Note that this particular
implementation assumes a black background and will
not indicate the existence of depth discontinuities
between lines whose halos overlap in 3-space, even if
the lines themselves do not intersect.

Indicating directional information
Wegenkittl et al.8 recently showed how basic LIC

could be used in conjunction with an asymmetric, tri-
angular-shaped filter kernel and a sparse 2D input tex-
ture to produce images in which information about the
flow’s forward and backward direction is locally con-
veyed through variation in the intensity of the rendered
streamlets. The compelling images produced by this
method inspired us to develop a simple modification to
Stalling and Hege’s fast-LIC algorithm that would let us
efficiently compute 3D LIC textures that conveyed direc-
tional information in a similar manner (see Figure 9).
The fast-LIC method, which we’re using for 3D texture
generation, gains significant efficiency through incre-
mental calculations to compute the integrated intensi-
ty along a streamline. However, as formulated, the
fast-LIC approach requires a box filter (see Figure 10).

We quickly realized that we could achieve both the ori-
ented effect of OLIC and the computational advantage of
fast-LIC by using an asymmetric filter derived from an
exponential function of base less than one (see Figure 11).

In Figures 10 and 11, flength represents the length of
the filter kernel (or the number of weighted samples in
the forward direction along the streamline from each
point that combine to determine the value at the cor-
responding point in the output texture); vi represents
the value of the input texture that lies under the ith
sample point; and c is a constant that controls the rate
of decrease in the contribution of the samples that lie

Visualization Case Studies

52 July/August 1998

9 Tapered streamlines convey the
forward and backward direction of
the 3D flow. This depiction of orien-
tation information was inspired by
the oriented LIC (OLIC) method
previously introduced by
Wegenkittl et al.8

I0
' = vi

i = 0

flength

∑ ; I1
' = v i ;

i=1

flength +1

∑ I1
' = I0

' − v0 +v flength+1

v0 vflength

10 Box filter
for the fast-LIC
method.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

I0
' = vi c i

i = 0

flength

∑ ,c < 1

11 Exponential
filter for the
fast-OLIC
method.

12 Two differ-
ent color wash
images generat-
ed from the
same flow data.
On the top,
color varies
from red to
yellow with
increasing
temperature,
showing the
effect of fric-
tion; on the
bottom, satura-
tion increases
from grey to
purple accord-
ing to the mag-
nitude of the
streamwise
vorticity, high-
lighting
turbulence.

.

IEEE Computer Graphics and Applications 53

farther along the streamline. With this filter definition,
you can continue to use incremental calculations to
derive the integrated output texture values at subse-
quent voxels along a streamline:

We wrote the equations to reflect the fact that we suc-
cessively shift new values into an array v of fixed
bounds, so that at each step the current origin remains
denoted v0 and the intensity of the next point remains
denoted I+1 or I-1, depending on the direction of travel
along the streamline.

Conveying additional information
You can use several devices to display additional

scalar variables over a 3D flow represented by volume
LIC. As previously demonstrated,4 you can vary line
width to reflect values in an accompanying scalar field.
Color, however, remains the most powerful means to
nonintrusively convey additional information over a
flow. The volume-rendering approach makes it easy to
vary the color definition across any predefined 3D tex-
ture. Figure 12 shows two different color washes over a
flow through a rectangular aperture.

Future work
We demonstrated several new strategies for illustrat-

ing 3D flow with volume LIC, including visibility-imped-
ing halos to emphasize the discontinuity in depth
between overlapping lines and an asymmetric filter ker-
nel in combination with fast-LIC for efficiently comput-
ing 3D flow textures that reveal directional information.
We’re continuing to investigate methods to more effi-
ciently generate smooth, cyclic animations of 3D LIC
textures along streamlines in steady flow data. We’re
also actively working on an extension to our 3D LIC algo-
rithm to visualize unsteady flow data. ■

Acknowledgments
This work was supported by ICASE under NASA con-

tract NAS1-19480. We’re grateful to Marc Levoy for pro-
viding the original volume rendering platform that we
built upon, and to Kwan-Liu Ma, Tom Crockett, David
Banks, Hans-Christian Hege, and the anonymous
reviewers for insightful comments and suggestions for
improving this work.

References
1. B. Cabral and C. Leedom, “Imaging Vector Fields Using

Line Integral Convolution,” Computer Graphics (Proc. Sig-
graph 93), ACM Press, New York, 1993, pp. 263-269.

2. D. Stalling and H.-C. Hege, “Fast and Resolution Indepen-
dent Line Integral Convolution,” Computer Graphics (Proc.
Siggraph 95), ACM Press, New York, 1995, pp. 249-256.

3. H.-W. Shen, C.R. Johnson, and K.-L. Ma, “Visualizing Vec-
tor Fields Using Line Integral Convolution and Dye Advec-
tion,” 1996 Symp. Volume Visualization, ACM Press, New
York, 1996, pp. 63-70.

4. V. Interrante, “Illustrating Surface Shape in Volume Data
via Principal Direction-Driven 3D Line Integral Convolu-
tion,” Computer Graphics (Proc. Siggraph 97), ACM Press,
New York, 1997, pp. 109-116.

5. N. Max, R. Crawfis, and C. Grant, “Visualizing 3D Velocity
Fields Near Contour Surfaces,” Proc. IEEE Visualization 94,
IEEE CS Press, Los Alamitos, Calif., pp. 248-255.

6. S. Shimojo and K. Nakayama. “Real-World Occlusion Con-
straints and Binocular Rivalry,” Vision Research, Vol. 30,
No. 1, 1990, pp. 69-80.

7. A. Appel, F.J. Rohlf, and A. Stein, “The Haloed Line Effect
for Hidden Line Elimination,” Proc. Siggraph 79, ACM
Press, New York, pp. 151-157.

8. R. Wegenkittl, E. Gröller, and W. Purgathofer, “Animating
Flowfields: Rendering of Oriented Line Integral Convolu-
tion,” Proc. Computer Animation 97, IEEE CS Press, Los
Alamitos, Calif., June 1997, pp. 15-21.

Victoria Interrante is a staff sci-
entist at the Institute for Computer
Applications in Science and Engi-
neering (ICASE), a center of research
in applied mathematics, numerical
analysis, and computer science oper-
ated by the Universities Space

Research Association at the NASA Langley Research Cen-
ter. Her current research focuses on the application of
insights from perceptual psychology, art, and illustration
to the design of more effective techniques for visualizing
3D data. She received a PhD in computer science from the
University of North Carolina at Chapel Hill in 1996.

Chester Grosch holds joint
appointments as professor of
oceanography and professor of com-
puter science at Old Dominion Uni-
versity in Norfolk, Virginia. He
received a PhD in 1967 from Stevens
Institute of Technology in Hoboken,

New Jersey. While at the Pratt Institute, he was chair of
the Department of Computer Science and director of the
Computer Center. In 1989, he was a Royal Society guest
research fellow at the University of Cambridge, UK. Grosch
has done extensive professional consulting and currently
serves as a consultant for ICASE.

Contact Interrante at the Institute for Computer Appli-
cations in Science and Engineering, Mail Stop 403, NASA
Langley Research Center, Hampton, VA 23681-0001,
e-mail interran@icase.edu.

′ = ′ −− −I I v vflength
flength

1 0 1()c c +

 ′ = ′ − +I I v v flength
flength

1 0 0 1() / c c+

.

