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ABSTRACT

The filtered density function (FDF) is implemented for large eddy simulation of three-dimensional, planar
jets under both non-reacting and chemically reacting conditions. In this methodology, the effects of the
unresolved scalar fluctuations are taken into account by considering the joint probability density function of
the scalar quantities in a stochastic manner. It is shown that under reacting flow conditions, the absence of
closure for the SGS scalar correlations yields results which are significantly different from those obtained
by the FDF. We visualize this data with a combination of volume and isosurface rendering, and introduce
methods for reducing the memory and time costs that have historically precluded recording the results of
the simulation at all calculated time steps.

1 INTRODUCTION

There are three general methods of implementing CFD for turbulence simulations [17]: Reynolds
averaged Navier-Stokes simulation (RANS); large eddy simulation (LES); and direct numerical
simulation (DNS). In RANS the solution of the “averaged” Navier-Stokes equations is attempted.
This procedure is based on the original idea by Reynolds[32] who suggested the decomposition
of the turbulence fields into instantaneous and fluctuating counterparts. While this approach may
be adequate in capturing some of the overall mean flow features, time sensitive details of the
flow would not be elucidated. This restricts the range of flows which can be studied. DNS in-
volves the solution of the governing equations on a computational grid fine enough to resolve
the Kolmogoroff scales[21]. Typically the number of grid points required for reliable simulation
is proportional to Re9=4; where Re is the characteristic Reynolds number. This spatial resolu-
tion, along with its corresponding temporal resolution, renders DNS prohibitively expensive [11].
Large eddy simulation (LES) facilitates the solution of the spatially (and/or temporally) filtered
governing equations [16, 1, 10, 9]. The transport variables are decomposed into the resolved grid
scale and the unresolved or sub-grid scale (SGS) quantities. A SGS closure is needed to prescribe
the non-linear interactions between the large (resolved) scales and the small (unresolved) scales
in terms of resolved scale quantities only. The presence of chemical reactions introduces addi-
tional interactions, both scalar-scalar and hydro-scalar, which need to be accounted for. In the
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context of RANS it is now widely recognized that these fluctuations are important[22, 20, 18].
Significant progress has been made with the approach based on probability density functions
(PDFs)[28, 27, 24]. With the knowledge of the joint PDF of the scalars, the effect of chemical
reaction on scalar transport is taken into account exactly. This approach has been extended to
LES in the form of the filtered density function (FDF)[26, 12, 6, 5, 19, 15].

The basic element of the FDF methodology is the accounting for the effects of unresolved
quantities in a stochastic manner. Such an approach has widespread application in both premixed
and non-premixed combustion. In these applications, fuel and oxidizer are introduced, mix, and
react. However, because of mixing and varying hydro-chemical conditions, combustion systems
are susceptible to such things as flashback, auto-ignition, and pre-detonation. Such highly time-
dependent, hydro-chemical phenomena, which are currently beyond the reach of RANS, are fully
resolvable using the FDF methodology. The FDF greatly reduces the computational cost asso-
ciated with the numerical simulation of turbulent reacting flows such as those found in internal
combustion engines, gas turbines, industrial furnaces, and other engineering applications.

A number of challenges are faced in effectively visualizing the large amounts of data that are
produced in these calculations. The most critical of these is to define a method for automatically
detecting, extracting, and efficiently storing for further processing the specific features of interest.
Because of the sheer quantity of data produced, it is infeasible to follow a strategy in which all of
the data is first stored, and then subsequently processed for visualization. The time that would be
required to simply write all of the data to disk would slow the calculations from days to weeks.
The key to the strategy that we employ is to recognize that in these terabytes of data, there is
actually only a small subset that is truly of scientific interest. By extracting and saving only the
subset of each volume, at each time step, which gives the most directly relevant insights into
the processes under investigation, we can reduce the amount of data that needs to be visualized,
both simplifying and improving the visualization process by more effectively conveying the most
important information while minimizing or eliminating the extraneous detail.

The issue of primary concern is to assess the performance of the FDF and to appraise its
generality and extent of predictive capability, by its application to a wider range of flows. In
doing so we examine hydro-chemical structures using advanced data visualization algorithms not
only as a post-process, but also in an in situ manner, thus facilitating the investigation of highly
transient flow physics.

2 FORMULATION

2.1 Governing Equations

The flows under consideration are incompressible, turbulent, reacting jets involving Ns species.
The primary variables are the velocity vector ui(x; t)(i = 1;2;3); the fluid pressure p(x; t); and
the species mass fractions φα(x; t)(α = 1;2; :::;Ns): In addition to the conservation of mass and
momentum equations, a set of species conservation equations are solved:

∂φα

∂t
+

∂φαuj

∂x j
=�

∂Jj
α

∂x j
+ωα ; (1)

The chemical source term is represented by ωα and utilizing the Fickian diffusion assumption
the scalar flux is given by Jα

j =�Γ ∂φα
∂x j

; where Γ = µ
ρSc is the molecular diffusivity and Sc is the

molecular Schmidt Number. In LES, the filtering is accomplished by passing the flow variables
through a convolution filter,

hφ(x; t)iL =

Z ∞

�∞
hs(x� x0)φ(x0; t);dx0 (2)
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where φ(x; t) is the variable being filtered, hs(x) is an isotropic, non-negative definite, spatial filter,
and hφ(x; t)iL is the variable with the high wavenumber content removed.

The large scale component, or the “mean,” is associated with the size of the filter, ∆, which
is typically taken as some multiple of the computational mesh size. The ideal value for ∆ is one
lying just outside of the energy containing range of the spectrum [1]. Applying the filter to the
governing equations yields:

∂hujiL
∂x j

= 0 (3)

∂huiiL
∂t

+
∂huiiLhujiL

∂x j
=�

∂hpiL
∂xi

+
∂hτi jiL

∂x j
�

∂Ti j

∂x j
(4)

∂hφαiL
∂t

+
∂hujiLhφαiL

∂x j
=�

∂hJα
i iL

∂xi
�

∂Mα
j

∂x j
+ hωαiL (5)

where τi j is the viscous stress Ti j = huiu jiL�huiiLhujiL and Mα
j = hujφαiL�hujiLhφαiL denote

the SGS stress and the SGS mass flux, respectively.
The closure problem in LES of non-reacting flows is essentially one of representing the un-

resolved terms Ti j and Mα
j in terms of the large, or the resolved scale variables. In reacting flows,

the problem is compounded by the presence of the chemical source term, hωαiL, for which an
additional model is required.

2.2 Hydrodynamic Closure

For closure of the hydrodynamic SGS stress, the gradient-diffusion approximation is invoked:

Ti j� (δi j=3)Tkk =�2νthSi jiL (6)

where hSi jiL is the resolved strain rate tensor and νt is the SGS viscosity. The modified kinetic
energy model (MKEV) is used to specify this viscosity[5]:

νt =Ck∆G

q
jhu�i iLhu

�

i iL�hhu
�

i iLiL0hhu�i iLiL0 j; (7)

where u�i = ui �Ui and Ui is a reference velocity in the xi direction. The subscript L0 denotes
the filter at the secondary level which has a characteristic size (denoted by ∆G0) larger than that of
grid level filter[2].

2.3 Scalar Closures

The gradient-diffusion approximation is also used for closure of the SGS mass fluxes[8]:

Mα
j =�Γt

∂hφαiL
∂x j

(8)

where Γt = νt=Sct , and Sct is the SGS Schmidt number and is assumed constant.
To take the effects of chemical reaction into account, we consider the transport of scalar array

φ(x; t) = [φ1;φ2; : : :φNs ] in a probabilistic manner. For that we use the “filtered density function”
(FDF), denoted by fL;[31]:

fL(ψ;x; t)�
Z +∞

�∞
ε
h
ψ;φ(x0; t)

i
hs(x

0� x)dx0; (9)

ε
h
ψ;φ(x; t)

i
= δ[ψ�φ(x; t)]�

Ns

∏
α=1

δ[ψα �φα(x; t)] (10)
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where δ denotes the delta function and ψ denotes the composition domain counterpart of the
scalar vector φ. The term ε[φ�ψ(x; t)] is defined as the “fine-grained” density [25, 27], and Eq.
(10) states that the FDF is the spatially filtered fine-grained density. Thus, fL gives the density in
the composition space of the fluid around x weighted by the filter hs. Choosing a positive definite
filter[34], ensures that fL has all the properties of the PDF[30]. The FDF transport equation is
derived by taking the time derivative of Eq. (9):

∂ fL

∂t
+

∂hujiL fL

∂x j
=�

∂[hujjψiL�hujiL] fL

∂x j
+

∂
∂ψα

��∂Jα
j

∂x j
jψ
�

L

fL

�
�

∂[bSα(ψ) fL]

∂ψα
: (11)

where bSα(ψ) is the composition domain representation of the source term, and the unclosed,
conditionally filtered velocity is decomposed into its resolved and unresolved counterparts. This
is an exact, transport equation for the FDF. The last term on the RHS is due to chemical reaction
and is in a closed form. The second term on the left hand side represents the filtered convection
of the FDF in physical space and is also closed (provided huiiL is known). The unclosed terms
are the first two terms on the RHS which represents the transport of the FDF via SGS convection,
and the effects of diffusion in compositional space, due to molecular action. The SGS convective
flux is modeled via the gradient-diffusion

[hujjψiL�hujiL] fL =�Γt
∂ fL

∂x j
: (12)

With the decomposition of the conditionally filtered velocity and the subsequent model (Eq. (12))
results similar to that in conventional LES for the first moment of the FDF are obtained:

hujφαiL = hujiLhφαiL +[hujφαiL�hujiLhφαiL]; (13)

[hujφαiL�hujiLhφαiL] =�Γt
∂hφαiL

∂x j
: (14)

The term in brackets in Eq. (13) is the generalized scalar flux in the form considered in conven-
tional LES [16, 13]. Consequently, Eq. (14) becomes identical to Eq. (8).

The closure for the conditional SGS diffusion is based on the linear mean square estimation
(LMSE) model [27, 7], which is also known as the interaction by exchange with the mean[3].
This is an entirely deterministic model and acts to relax the scalar values towards their ensemble
mean. As input, the LMSE model requires the “frequency of mixing within the sub-grid,” Ωm;
which is not known a priori. Analogous to the procedures in RANS, this frequency can be related
to the SGS diffusion coefficient and the filter length: Ωm =CΩ(Γ +Γt)=∆2

G. With these closures
the modeled FDF transport equation is given by

∂ fL

∂t
+

∂[huiiL fL]

∂xi
=

∂
∂xi

�
(Γ +Γt)

∂ fL

∂xi

�
+

∂
∂ψα

[Ωm(ψα �hφαiL) fL]�
∂[bSα(ψ) fL]

∂ψα
: (15)

This equation may be integrated to obtain transport equations for the SGS moments. The first
moment, hφαiL, or the filtered mean is given by

∂hφαiL
∂t

+
∂huiiLhφαiL

∂x j
=

∂
∂x j

�
(Γ +Γt)

∂hφαiL
∂xi

�
+ hωαiL: (16)

3 NUMERICAL FORMULATION

The numerical solution of the hydro-scalar fields is a two step procedure. Utilizing a hybrid deter-
ministic Eulerian hydrodynamic solver, and a stochastic Lagrangian species solver, the solution
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proceeds in an explicit manner. The discretized equations are advanced in time until the desired
time level is reached. Each time step consists of two parts. The first part is the advancement
of the hydrodynamic equations, in the Eulerian reference frame. This is accomplished via high-
order finite difference techniques. The second part is the advancement of the FDF. A Lagrangian
Monte-Carlo technique is used for this purpose. Monte Carlo methods have been used with suc-
cess in RANS calculations[30]. These methods involve the representation of the FDF with an
ensemble of elements, distributed throughout the flow-field, from which the moments of interest
may be calculated. There are two frameworks in which the elements are distributed: Eulerian and
Lagrangian. In the Eulerian framework, elements are distributed at fixed nodes throughout the
flow-field. The composition of these elements change due to the effects of convection, diffusion,
mixing, and reaction. However, the number of the elements within a node and the location of the
elements remain fixed[29]. In the Lagrangian framework, the elements are free to roam the phys-
ical domain as dictated by the hydrodynamic field, and the composition of the elements change
only due to mixing and reaction.

Considering the spatial transport terms only, the FDF equation, Eq. (15), reduces to the
Fokker-Planck, or Smoluchowski equation. The Fokker-Planck equation corresponds to the ran-
dom diffusion process[14], represented by the stochastic differential equation (SDE)

dXi(t) = Di(X(t); t)dt +E1=2(X(t); t)dWi(t); (17)

where Xi is the Lagrangian position, and Wi represents the Wiener-Lévy process[33]. Thus the
spatial transport of the FDF is given by a Langevin equation The numerical implementation of the
FDF consists of representing the FDF with a set of scalars φ(n)α (X(n)(t); t) assigned on the particles
throughout the flow-field. The location of the notional particles are given by X(n). The numerical
solution is facilitated via the Euler - Maruyamma integration scheme:

X (n)
i (tk+1) = X (n)

i (tk)+D(n)
i (tk)∆t +

�
E(n)(tk)∆t

�1=2
ξ(n)i (tk); (18)

where D(n)
i (tk) = Di(X(n)(tk); t), E(n)(tk) = E(X(n)(tk); t) and ξ(n)i is a random variable with the

standard Gaussian PDF. The coefficients Di and E require the knowledge of the filtered mean
velocity and the diffusivity. These are provided by the solution of Eqs. (3)-(4) by a finite difference
LES then interpolated to the particle location. In obtaining these values, a 2nd order Lagrangian
interpolation scheme is used. The scalar composition of each particle changes due to the effects
of chemical reaction, and mixing, both of which are implemented deterministically.

4 RESULTS AND DISCUSSION

4.1 Numerical Specifications

Computations are performed on a domain of 14 jet exit diameters, (D); by 7 diameters by 3:5
diameters in the streamwise, cross-stream, and spanwise directions, respectively. The computa-
tional grid is evenly spaced, ∆x = ∆y = ∆z = ∆, and is comprised of 101�51�25 points. With
this resolution, a Reynolds number of ReD = UoD

ν = 5;000 is simulated, where ν is the kinematic
viscosity. The value of the SGS viscosity constant is not optimized and is chosen to be Ck = 0:015:
The grid filter size is taken to be ∆G = 2∆ and the ratio of the secondary filter width to that of
the grid filter ∆G

0=∆G is 3: The value of the molecular Schmidt and Prandtl numbers are chosen
to be Sc = Pr = 1 and the SGS Schmidt and Prandtl numbers are chosen to be Sct = Prt = 0:7:
In order to avoid large computational times, particles are clustered about the shear regions of the
jet. This is the Lagrangian equivalent of grid clustering in Eulerian simulations. To preserve the
statistics, each particle is given a weight which depends on the region of the flow into which it
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Fig. 1 Volume rendered vorticity magnitude.

is introduced. In evaluating the local value of the moments the particle weights are taken into
account via:

hφiL =
∑Np

i=1 φiWi

∑Np

i=1Wi

; (19)

where Wi is the weight of the i-th particle, and Np is the number of stochastic particles in the en-
semble contained in volume ∆V = ∆E

3: Results are presented from the LES of three-dimensional
(3D), planar jets under chemically reacting conditions. The configuration consists of a fluid is-
suing from jet slot of width D into a co-flowing stream. The space coordinates are x = [x;y;z];
where x is the streamwise direction, y is the cross-stream direction and z is the spanwise direction.
The velocity is initialized with a top-hat profile in the cross-stream direction, and is uniform in
the spanwise direction. The initial speeds are Uo and U∞ for the jet and the co-flowing stream,
respectively. The velocity ratio is chosen to be Uo=U∞ = 2: The jet contains species A and the
co-flowing stream contains species B . Species A is initialized to be zero in the co-flowing streams
and of unity mass fraction in the jet. Species B is initialized to be of unity mass fraction in the
co-flowing streams and zero in the jet. In non-reacting flows species A ; and B are conserved
and passive scalars. In reacting flows, the species undergo a one-step, isothermal reaction of type
A +B ! P : With these assumptions, the chemical source term is given by ωA = ωB =�k fYAYB,
where kf is the reaction rate constant and YA; and YB denote the mass fractions of species A
and B ; respectively. The rate of chemical reaction is characterized by the Damköhler number,
Da =

k f D
Uo

: The limit Da = 0 corresponds to no reaction. Simulations are conducted in the infi-
nite rate chemistry regime with Da = 0:5; and Da = 2: All species are assumed to have identical
thermodynamic properties and the fluid is assumed to be a calorically perfect gas.

4.2 Non-reacting Flow

Simulations are conducted by (1) finite-difference, in which the SGS scalar-scalar interactions are
neglected, and (2) the FDF methodology; Results obtained via the former are denoted LES-FD
and results obtained via the latter are denoted FDF. A non-reacting simulation is performed in
order to establish the consistency of the FDF methodology. That is, in the absence of chemical
reaction, the results obtained by both methodologies should be similar. An instantaneous snap-
shot featuring the vorticity magnitude is shown in Fig. 1. This is accomplished using traditional
raycasting techniques[23]. Rays are traced from the eye position through each pixel in the image
plane and beyond, through the 3D data, to form a perspective projection of the dataset. Values at
the evenly spaced grid points in the 3D vorticity magnitude volume are trilinearly interpolated to
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evenly spaced sample locations along each viewing ray, shaded intensity and opacity values are
computed at each sample point, a color wash is applied, and the results are composited in front-
to-back order. The color and opacity mappings are defined to highlight roughly 33% of the peak
value. The 3D coherent structures are evident as the fluid rolls up and begin to pair[4]. Figure

Fig. 2 Monte Carlo particles.

2 portrays the spatial distribution of the Monte Carlo particle at one instant in time. The particle
number density ranges from 100 in the free stream to over 300 in the shear and core regions of
the jet, with a total of roughly 1;400;000 particles throughout the domain (for purposes of clarity
only 2% of the particles illustrated). This is sufficient to keep statistical errors in predicting the
scalar moments at sufficiently low levels. Fewer particles are placed in the free-stream region of
the flow where no chemical reaction is anticipated. These particles are accordingly are “heavier.”
The consistency of the methodology is established by considering the scatter plot of the instan-
taneous means predicted by both methodologies shown in Fig. 3a. A linear regression analysis
performed on the instantaneous, filtered, scalar mean yields a correlation coefficient of 0:99 and
a slope of 1:

0.0 0.2 0.4 0.6 0.8 1.0
(YA)LES-FD

0.0

0.2

0.4

0.6

0.8

1.0

(YA)
FDF

0.0 5.0 10.0 15.0
x

0.0

4.0

8.0

12.0

δp

LESFD (Da=0.5)
FDF (Da=0.5)
LESFD (Da=2.0)
FDF (Da=2.0)

(b)(a)

Fig. 3 Predicted mass fractions: (a) conserved scalar, YA; Da = 0; (b) time-averaged product
thickness.
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4.3 Reacting Flows

The results for reacting flows can be summarized by Fig. 3b which shows the integrated total
product - δP(x) =

R ∞
�∞

R ∞
�∞ hYPiL(x;y;z)dydz throughout the domain. This reveals that LES-FD

over-predicts the rate of reactant conversion in comparison to the FDF. In addition, it shows
that, as the Damköhler number increases, the discrepancy between the two methodologies also
increases. The LES-FD over predicts the FDF by as much as 60% and 80% at Da = 0:5; and
Da = 2:0; respectively. This reveals that unresolved scalar correlations play a significant role at
higher reaction rates. Figure 4 shows the volume rendered, instantaneous, product mass fraction
as predicted by both the LES-FD and the FDF. We use a moment-value-to-opacity mapping that
favors the display of voxels whose values are in the vicinity of the target iso-surface but does not
strictly preclude the visibility of voxels of other, more distant values. This allows us to visualize
each of the surfaces within the slightly larger global context of the entire 3D moment distribution.
To facilitate comparison, we used identical value-to-color and opacity mappings in the rendering
of each dataset. Because the mean of the values in the FDF distribution was smaller than the
mean of the values in the LES-FD distribution it was difficult to define a single mapping function
that showed each volume to its greatest advantage. It is evident that in addition to a higher rate of
reactant conversion, the LES-FD calculation yields a 3D spatial structure which is very different
in comparison to the FDF.

4.4 Extraction and Visualization of Dynamic Features

One of the greatest challenges that we face in visualizing the results of these simulations is posed
by the sheer quantity of data produced. A typical three-dimensional DNS of turbulent flow may
require a computational mesh consisting of 800� 400� 200 grid points. Such a calculation
will produce 1:6GB of data at each time step. However only a fraction of the data produced
at each time step, the data that indicates the location of the iso-surface, is of final interest; the
remainder only provides the global context that supports the evolution of the simulation. Current
practice, which is to save the data over the full grid at every 100 time steps, is straightforward but
extraordinarily inefficient. We are currently exploring alternative approaches to saving the data,
in which only the specific subportions of the volume that are necessary for reconstructing the
location of the flame surface are written out to disk. However there are many challenges in saving
the data in a form that allows easy reconstruction of the pertinent information without excessive
overhead. For example, when the data is saved across an entire uniform grid, one needs only a 6
byte header to store the dimensions of the grid, in addition to the 4 bytes per grid point required
to store the actual data. The potential exists to save both time and space by recording the data
only at a select subset of the grid points; however the locations of these grid points must then also
be explicitly recorded, requiring a 6 byte overhead per point. In tests conducted on a 150 second
FDF simulation, it was found that, on average, data at only 4% of the grid points at each time

(b)(a)

Fig. 4 Instantaneous, volume rendered product mass fraction, YP : (a) LES-FD; (b) FDF.
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step were critical to the reconstruction of the flame surface. For a similar LES-FD simulation
over the same grid, data at an average of 15% of the grid points was pertinent. By recording
only the necessary minimum of data values, space savings of over 90% could be achieved for
the FDF data using this approach. In the case of the LES-FD simulation, where the number of
relevant grid points exceeds 8% of the total, it becomes more efficient rather than to record the
locations of the points on an individual basis, to use a binary map to encode the occupancy of
the full grid. Space savings of 76% and 74% was achieved in the LES-FD and FDF simulations,
respectively, using this method. Combined, these techniques facilitate the visualization of large
three-dimensional datasets. Figure 5 portrays both the iso-surface defined by Yp = 0:5; and the
volume rendered vorticity magnitude. Such representation helps to elucidate the nature of the
underlying hydrochemical interactions.

(a) (b)

Fig. 5 Three-dimensional hydroscalar structure: (a) LES-FD; (b) FDF.
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