
Compositing Color with Texture for Multi-Variate Visualization

Haleh. H. Shenas and Victoria Interrante

Department of Computer Science, University of Minnesota

Abstract
Multivariate data visualization requires the development of
effective techniques for simultaneously conveying multiple
different data distributions over a common domain.  Although it is
easy to successfully use color to represent the value of a single
variable at a given location, effectively using color to represent
the values of multiple variables at the same point at the same time
is a trickier business.  In this paper, we provide a comprehensive
overview of strategies for effectively combining color with texture
to represent multiple values at a single spatial location, and
present a new technique for automatically interweaving multiple
colors through the structure of an acquired texture pattern.

CR Categories and Subject Descriptors: I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism, Color,
Shading, Shadowing, and Texture; I.3m [Computer Graphics]:
Miscellaneous, Color Mixing, Perception.

Additional Keywords: color, texture, multivariate visualization.

1 Introduction

One of the important open research questions in the field of
visualization is how to effectively convey information about
multiple different data variables at the same location in a common
domain, at the same time. The need for the effective visualization
of such data arises all the time in fields such as statistics, geology,
geography, environmental science, and a host of other application
areas in which one seeks to develop an integrated understanding
of multiple different data distributions in order to gain deeper
insights into the nature of possible complex interactions between
the different variables.

Color is perhaps the most ubiquitously employed visual variable
for conveying information about the quantity of a particular data
variable at a given point.  Much effort has been devoted to the
development of guidelines for the effective use of color in
visualization [e.g. Rogowitz and Treinish 88] and the design of
effective color scales [e.g. Brewer 94, Healey 96].  A variety of
approaches have also been developed for effectively using color
to simultaneously represent more than one data distribution [e.g.
Robertson and O’Callaghan 86]; however all of these techniques
are generally limited to the representation of no more than two or
three different data values at a point.

In order to effectively convey the values of more than three
different variables simultaneously at a point, it is necessary to
augment the use of color with the use of texture [Levkowitz 91,
Healey and Enns 99].  In this paper, we describe some new
strategies for effectively using color with texture to represent
multivariate data.  We begin in section 2 by reviewing previous
work on the use of (monochrome) texture for multivariate
visualization. We also provide an overview of various strategies
for combining color and texture in procedurally generated or
hand-painted texture patterns. In section 3, we introduce a new
technique for automatically integrating multiple different colors
into the structure of an existing (acquired) texture pattern.  In
section 4 we show examples in which texture colorization is used
for data visualization.  Our ultimate goal in this paper is to show
how to achieve a rich variety of different kinds of multi-colored
patterns that can be used to accurately and intuitively convey up
to six or more different variables simultaneously over the same
spatial domain, thereby facilitating the potential discovery and
deeper understanding of complicated inter-relationships between
the multiple data variables.

2 Using Texture to Represent Multivariate Data

The first step in determining how to effectively use texture for
multivariate visualization is to understand texture perception.  A
variety of texture metrics have been proposed.  These include:
contrast, coarseness and directionality [Tamura et al. 1978]
repetitive vs. non-repetitive; low-complexity vs. high-complexity,
and high contrast and non-directional vs. low contrast and
directional [Rao and Lohse 1993a, 1993b] and periodicity,
directionality and randomness [Liu and Picard 1996]. All identify
three dimensions for texture perception, including a dimension
pertaining to directionality.  Thus we expect it to be possible to
effectively represent at least four or more variables
simultaneously via the combined use of color and texture.

Many researchers have developed methods for effectively using
texture to convey information about multiple data parameters,
particularly in the field of flow visualization. Examples of related
works include: [van Wijk 91, Ware and Knight 92, Kiu and Banks
96, Healy and Enns 99, and Sanderson et al. 04].

The most common method for combining color and texture is
color compositing, in which separate, individual color
distributions are successively applied as semi-transparent color
washes over an underlying texture pattern.  Unfortunately, color
compositing can be only successfully used to represent up to three
different data distributions, as beyond that it becomes impossible
to differentiate the individual color components that make up any
particular composite color.

As an alternative to color compositing, Urness et al. [2003]
introduced the concept of color weaving, in which an arbitrary
number of different overlapping color distributions are displayed
in a side-by-side manner. Gossett and Chen [2004] subsequently
proposed a similar but more limited technique based on the use of
Perlin noise textures.



The general technique of using a side-by-side color display rather
than color mixing can of course be easily integrated into the
synthesis of any procedurally generated texture pattern, through
the definition of appropriate mappings between individual texture
features and individual color distributions.  Figure 1 shows a
series of hand-constructed examples in which this ‘color weaving’
effect is demonstrated using two different procedurally-based
texture patterns as a starting point, with the results of color
compositing also shown for comparison.

    

Figure 1: Two different methods of integrating color into
procedurally-defined texture patterns.  Left: high frequency noise
texture; Middle: stripe texture; Right: color compositing.

3 Combining Color with Arbitrary Textures

Although it is fairly straightforward to imagine a variety of
methods for integrating the representation of multiple color
distributions into a procedurally-defined texture pattern, it is less
clear how, apart from resorting to hand-painting, we might
effectively ‘weave’ the representation of multiple color
distributions into an arbitrary acquired pattern.  In this section, we
describe two different approaches that can be used to
automatically achieve this aim.

3.1 Intensity-based Texture Segmentation

The simplest method for arbitrarily colorizing a monochrome
texture pattern is to use the histogram of the texture pattern
intensities to subdivide the texture image into a number of
sections equal to the number of different colors, while ensuring
that each section contains the same number of pixels.  This
method works best when the number of colors is small (our
experience shows that using 2 or 3 colors generally produces
satisfying results) and when the grayscale distribution of the
texture has enough variety to allow for a reasonable segmentation.
If n is the number of different colors we would like to represent
over a texture swatch, we first divide the histogram of that texture
image into n sections, each time stopping before the bin (we call
this bin i) that would bring the total number of pixels in the
section to more than 1/n of the total number of pixels.  If the
number of pixels at this division is exactly 1/n we can record this
point and continue dividing the rest of the histogram.  Otherwise,
we randomly select pixels from the bin i and add them to the
current section until the total number of pixels in the section
exactly reaches 1/n.  The remainder of the pixels belonging to bin
i are added to the subsequent section.  This process continues until
n different sections have been defined and all pixels of the image
have been assigned to a section.

In figure 2 we show three texture patterns for which this
histogram division technique has worked fairly well.  However,
we note that significant important weakness of this approach is
that the different regions thus defined will not necessarily
represent an intuitive segmentation of the underlying pattern. This
shortcoming will impede our ability to successfully use this
method in future work to map data variables to perceptually
meaningful texture dimensions, such as local pattern orientation.

      

      

      
Figure 2. From top to bottom, patterns d052, d064 and d001 from
the Brodatz album [1966]. Left column: the original grey scale
images; Middle column: colorization based on the intensity
histogram of the pattern; Right column: colorization applied using
an orientation-based segmentation of the pattern.

3.2 Texture Segmentation into Meaningful Blobs

An alternative approach, also shown in figure 2, is to decompose a
texture pattern into multiple components based on the local
orientation of directional elements of the pattern.  For texture
patterns containing foreground and background elements, we
started by applying a region-growing algorithm to thresholded
images of texture patches in order to differentiate the foreground
and background elements in the patterns.  For all texture patterns,
we then applied a set of ‘steerable pyramid’ filters [Simoncelli
and Freeman 1995] to each texture image. The steerable pyramid
performs a polar-separable decomposition of the texture pattern in
the frequency domain. This produces an independent
representation of each of the sought-after scale and orientation
components in the input image. To create the images shown in
this paper, we used a pyramid that consisted of four different
orientations (45°, 90°, 135° and 180°) at two different scales.  As
might be expected, we found that the filter responses for shaded
natural textures presented a challenge for segmentation and
filtering due to the inconsistent nature of the patterns.  We found
that the directional regions identified by the coarsest filters did not
closely coincide with the structure of the texture within those
regions, except for a small part close to the edges, while the
directional regions identified by the finest filters did not exhibit
strong continuity.  In order to obtain a more desirable
segmentation, we first combined the filter responses over multiple
scales to obtain a stronger filter response for each direction with
more accurate localization.  We then used a region growing
algorithm to find all the connected blobs in each of the desired
directions. After deleting the blobs that were too small in size to
be reliable and merging the blobs (in each of the separate
directions) that were reasonably close to each other, we finished
by using a Gaussian filter to smooth the segmentation result.

At the colorization stage, the intersection of the texture blobs with
each of the directions is found and the region is colored based on
the color value corresponding to the particular data variable being



represented over that region.  Best results are achieved when the
directions selected for in the segmentation correspond to
perceptually dominant directions in the texture pattern.  For
example, one can see that pattern d052 consists of intrinsic parts
that follow four different directions, while pattern d064 has two
perceptually prominent directions (vertical and horizontal), as
does pattern d01. When applicable, each of the oriented regions
extracted from a pattern can be subdivided into smaller
subsections to allow the representation of more colors. An
example is of such a situation is shown in Figure 3.

Figure 3. Interweaving colors over four and six different regions
in patterns d052 (top) and d064 (bottom), respectively, from the
Brodatz album [1966].

4 Applications of Texture Colorization

In this section we present some results in which we use
combinations of color and texture to represent multiple variables
on a 2D map. Figures 4–6 show a more dataset consisting of five
different scalar distributions.  We use the methods described in
section 3 to produce a unified map in which the presence or
absence of a significant quantity of each of the five different
variables is represented across each region.  One variable is
mapped to the choice of texture pattern (d052 or d064) and the
other four variables are mapped to the presence or absence of
colors that follow the vertical, horizontal and/or diagonal
directions.

It is necessary to note that the choice of texture to be used within
each of these areas was made based on the number of variables
that we would eventually want to display in each of the regions
that were to be filled with the texture in question.  For example,
for the data shown in figures 4–6, because a close inspection of
the four variables to be represented by oriented components
revealed that only two of these variables had values above the
threshold in the smaller area, we determined that it was possible
to use pattern d064 in that area, even though this pattern only
contains two different perceptually salient directions. However,
because we would need to simultaneously represent significant

quantities of four different variables at certain places in the
larger area, we needed to use a pattern that has four different
perceptual direction components for filling that area. In all areas
of the final map, the color blue (representing trait 3) follows the
vertical direction of the texture, trait 4 is shown with the color
green following the horizontal direction, and the colors red and
black, showing traits 5 and 6, follow the 45° and 135° directions
respectively.

Clearly we could easily have used artificial line textures in place
of d064 and d052. However, by providing an automatic
technique for incorporating color into nearly any arbitrary
texture, we give the visualization designer the freedom to choose
from among a far greater variety of aesthetically pleasing
multidirectional patterns, with the added benefit that the
designer is free to use different texture patterns over different
regions of the map.

5 Discussion

The techniques described in this paper are suitable for
visualizing any kind of data which naturally covers an area, such
as data defined over a 2D map.  By choosing to display the
multiple colors representing the values of multiple co-located
distributions side-by-side, rather than as a simple color mixture,
this method inherently requires that a finite area of pixels be
available for the representation of a set of data values at a point,
rather than requiring a minimum footprint size of only one pixel.
In order to successfully use texture for data visualization, it is
important to choose a pattern whose spatial frequency is
relatively high in comparison with the spatial frequency of the
variations in the values of the data being represented.  By using
a finer texture we can more accurately convey detailed
information in smaller regions.  In addition, a higher resolution
display may be helpful when using these techniques to visualize
data in which many small regions are present. This is
particularly the case in applications such as geophysics, in which
scientists routinely rely on printed maps that are two to three
feet tall to visualize their data.

Figure 4: Trait 1 and trait 2 are distinguished by texture type in
this map.  The area corresponding to Kansas is subsequently
colored in two directions, to show traits 3 and 4. The larger area
is colored in four directions, to show traits 3, 4, 5 and 6.

Figure 5. An area of the final map in which 5 variables overlap
(four colors and the texture d052).



6 Conclusions and Future Work

In this paper we have discussed several different techniques for
easily and automatically compositing color into a texture pattern
for the purposes of multivariate visualization.  In particular we
showed how, through conventional and widely used algorithms,
it is possible to map different colors to different oriented
components of in existing texture image, in order to visualize
multiple overlapping data distributions.  We provided several
examples based on real data obtained from cartographic maps.
By compositing color with texture, we can increase the number
of co-located variables that can be effectively visualized, beyond
what would be possible using either just texture or just color
compositing alone. Although using a combination of texture and
color sometimes is not the most effective way to visualize all
types of data, we do believe that these methods can be
particularly useful when one needs to visualize a handful of
different variables over a map-like domain containing relatively
large uniformly valued regions.  In future work, we would like
to find a quantitative method for choosing the optimum level of
color saturation and value that can be used along with textures
without affecting the accuracy of perception among different
variables.
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  Figure 6: Visualizing multivariate data using the presented techniques.


