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Abstract. We study scenarios where mobile hubs are charged with
building a communication bridge between two given points s and t. We
introduce a new bi-criteria optimization problem where the objectives
are minimizing the number of hubs on the bridge and either the maxi-
mum or the total distance traveled by the hubs. For a geometric version
of the problem where the hubs must move onto the line segment [s, t],
we present algorithms which achieve the minimum number of hubs while
remaining within a constant factor of a given motion constraint.

1 Introduction

The task of building a communication bridge connecting two locations arises
frequently. For example, when fighting forest fires, a high capacity connection
between the command center and a temporary base may be needed. When there
is no underlying communication infrastructure (which is typically the case in
emergency response scenarios), mobile entities with communication capabilities
can be used to build a communication bridge. In particular, with recent advances
in robotics, using autonomous agents for this purpose is becoming feasible.

In this work, we address the problem of building a communication bridge in
an efficient fashion. Imagine that we are given a source s and a destination t
(the two locations that need to be connected), and initial locations of n robots
(or mobile hubs). The goal is to pick a subset of these robots and determine
final locations for them, so that when the robots arrive at their final locations,
there is a path between s and t in the underlying communication graph. In this
case, we say that a communication bridge between s and t has been established.
Throughout the paper, we assume that two entities can communicate if and only
if they are within a given communication radius r. See also Figure 1(a).

We focus on two measures of efficiency. The first one is the distance traveled
by the robots to establish the communication bridge. Relevant objectives are
minimizing the maximum or the total Euclidean (L2) distance traveled. This
measure is important when the robots have limited battery power. The maximum
distance traveled also determines how quickly the bridge can be established. The
second measure is the number of robots required to establish the communication
bridge. This is an important parameter because if we use a small number of
robots for the given task, then the remaining robots can be used for other tasks.
In addition, a communication bridge with a small number of hubs is desirable
in order to minimize the delay.
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(b) An instance where the ordering
property does not hold.

Fig. 1. (a): Initial locations of the robots are xi, i = 1, . . . , 6; s and t cannot commu-
nicate. By moving x2 → x′

2, x3 → x′

3, x4 → x′

4 and x5 → x′

5 a communication bridge
with four hubs connecting s and t is established. The circles around the nodes illus-
trate the communication radius. (b): Robot a (resp. robot b) can reach points inside
the line segment [la, ra] (resp. segment [lb, rb] ). Although a is to the left of b, a must
move to the right of b, to ra, and b must move to the left of a, to lb, to establish a
communication bridge. The final locations of robots are shown by unfilled circles.

Our results and techniques. We believe that the two metrics mentioned
above are equally important. Therefore, we study the resulting bi-criteria opti-
mization problem. Specifically, we present algorithms to minimize the number of
hubs in the communication bridge for a given maximum (or total) travel distance
in L2 metric. Surprisingly, these problems have not been studied previously.

In this paper, we focus on a geometric version where the underlying environ-
ment is the Euclidean plane, and the chosen robots are required to move onto the
straight line segment [s, t] to form a communication bridge. This special case is
important from a practical standpoint because moving the robots onto this line
segment yields the minimum number of hubs in the communication bridge, as
compared to any other curve joining s and t. Another motivation for this model
is low power, inexpensive infra-red communication which is becoming a popu-
lar choice for small robots: In an extreme case, if each robot is equipped with
only two IR receivers/transmitters such that the pairs are placed 180 degrees
apart, a straight line communication is necessary to establish a communication
bridge between s and t. From a theoretical perspective, these problems turn out
to be quite challenging. One of the major sources of difficulty is the lack of an
“ordering property” in the optimal solution (We make the ordering property
explicit in Section 2.1.). As an example, consider the version where we are given
a maximum travel distance for each robot. Suppose robot a (resp. robot b) can
reach points inside the line segment [la, ra] (resp. [lb, rb]). It is possible to build
instances where ra is to the left of rb but in the optimal solution robot a moves
to the right of robot b (Figure 1(b)).

For the maximum distance version (MaxDist), we overcome this hurdle by
relaxing the distance requirement: if the optimal algorithm can build a commu-
nication bridge with at most k hubs by moving each robot at most distance d,
we present an approximation algorithm which builds a communication bridge
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with k hubs by moving each robot at most distance
√

2d (Section 2.1). The key
result enabling the algorithm is the presence of an ordering property for the re-
laxed version. For the sum version (SumDist), we show that there is an ordering
property but for the L1 metric (sum of absolute values of coordinate differences).
We present an algorithm which exploits this ordering property and returns the
optimal solution for the L1 metric. This in turn yields a

√
2 approximation plus

a small additive error due to discretization (Section 2.2).
The algorithms we present are dynamic programming solutions which exploit

the ordering property. However, even with the ordering property, the dynamic
programming solutions are not straight-forward. This is mainly because the final
locations of the robots must be chosen from the continuous set of points on the
line segment [s, t]: There are instances in which robots must be placed precisely
to achieve the optimal solution, and slightly perturbing the optimal solution (to
a finite set of points) breaks connectivity. Therefore, our algorithms avoid an
apriori discretization of the line segment.

Finally, we present an interesting property regarding the number of hubs.
Let L > r be the distance between s and t. Clearly, at least n∗ = ⌈L/r⌉ − 1
hubs are required to connect s and t. However, building a bridge with n∗ hubs
may not be feasible due to the motion constraint. We show that any minimal
solution which satisfies the motion constraint uses at most 2n∗ hubs (Section 3).
This means that by removing constraints on distance we gain a factor of at most
2 in the number of hubs.

1.1 Related Work

In the robotics literature, the interactions between robots and a static sensor
network have been studied for network repair [1], connectivity [2] and data-
collection problems [3]. From a systems perspective, researchers have proposed
architectures that exploit controlled mobility [4–7]. A recent review on the state
of the art in exploiting sink mobility can be found in [8].

In [9], Demaine et. al studied the problem of moving pebbles along the
edges of a graph (with n vertices) so as to achieve various connectivity ob-
jectives while minimizing the number of moves. In particular, they sketch an
O(n)-approximation algorithm for the problem of creating a path of pebbles be-
tween two given vertices. Since connectivity and mobility are coupled in their
model, their results do not apply to the problems studied here. In this paper,
we present the first results for the problem of building a communication bridge
while minimizing the number of hubs and the distance traveled by them for a
given communication radius.

2 Building a Bridge with the Minimum Number of Hubs

In this section, we study the problem of building a communication bridge be-
tween s and t while optimizing the number of hubs and the movement of the
robots. We present solutions to two bi-criteria optimization problems: In the
first problem (MaxDist), we seek a solution with the minimum number of hubs
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subject to the constraint that each robot moves at most a given distance d. In
the second problem (SumDist), the constraint is that the total movement must
not exceed B. For the rest of the paper, we will treat d and B as given.

A couple of remarks: When the distance between s and t is less than r, i.e.
|st| ≤ r, there is no need for any intermediate robots. Hence, we consider the
case where |st| > r. Also, in order to achieve a bridge between s and t, it is both
necessary and sufficient that the distance along [s, t] between every consecutive
pair in the communication bridge is at most r. Therefore, |st| ≤ (n + 1)r, which
implies that the bridge between s and t is achievable if and only if n ≥ ⌈|st|/r⌉−1.
Since this condition is easy to test at the outset, we will assume, without loss
of generality, that n satisfies the preceding threshold and the bridge between s
and t.

2.1 MaxDist: Minimizing Maximum Distance

In MaxDist, we are given points s and t and a set, P = {p1, p2, . . . , pn}, of point-
robots in the plane and a maximum traveling distance d. Any two members
of P ∪ {s, t} can communicate with one another if they are within (Euclidean)
distance r of each other. Let ui = (xi, yi) be the initial position of pi. We wish
to select a subset S ⊆ P and compute a final position vi = (x′

i, y
′
i) on the line

segment [s, t] for each pi ∈ S such that (i) s and t are connected via point-to-point
communication links where points are selected from the final locations of robots
in S and link lengths are not greater than the communication distance r, (ii) the
distance traveled by each robot pi is not greater than d (i.e. ∀pi∈S |uivi| ≤ d), and
(iii) the total number of hubs in the communication bridge (i.e. |S|) is minimized.

Let L be the line passing through s and t. We place a coordinate frame where
the x-axis is aligned with L, s is at 0 (i.e. xs = 0) and t is at location xt > 0.
Without loss of generality, we define right as the positive direction of this frame.
The final location of robots pi ∈ S can be determined as vi = (x′

i, 0) in this new
coordinate frame. Hence, we can use x′

i to denote the final location vi = (x′
i, 0).

Also note that the projection of the initial location ui = (xi, yi) on to L is simply
xi.

We start by pruning the set P and removing robots which are more than
distance d away from L (i.e. if |yi| > d then pi is removed). Moreover, we can
remove the robots pi such that xi < −d or xi > xt + d. This is because these
robots cannot reach the line segment [s, t]. Let us call the new set which consist
of robots satisfying the above constraints as P ′.

xi
xi − d xi + d

xj
xj − d xj + d

xk
xk − d xk + d

Fig. 2. Let xi be the projection of the initial location of robot pi. We relax the final
location of pi to li : [xi − d, xi + d] which is shown as the left-most line segment.
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For each robot pi ∈ P ′, we compute a line segment li : [xi − d, xi + d]
(Figure 2). We will pick the final location of pi from this line segment. Note that
this is a relaxation because the robot may have to move more than distance d.
But the deviation is bounded as it is stated in the following proposition:

Proposition 1. For any final location x′
i ∈ [xi − d, xi + d] where pi ∈ P ′, the

distance traveled is not greater than
√

2d, i.e. |uivi| ≤
√

2d.

The number of hubs required for the relaxed version is not more that the
number of hubs required for the original problem:

Proposition 2. Let k∗ and k be the number of hubs used in an optimal so-
lution to the original problem and an optimal solution to the relaxed problem,
respectively. Then, k ≤ k∗.

The relaxed version of the problem satisfies a simple ordering property which
allows us to design an efficient algorithm. As mentioned previously (Figure 1(b))
the original problem may not have the ordering property. We now explain the
ordering property satisfied in the relaxed version.

Consider a placement of robots on L where the final location of each robot
pi is chosen from the line segment [xi −d, xi +d]. We order the robots according
to xi values in non-decreasing order. We say that the placement is well-ordered
if for any two robots pi and pj such that xi ≤ xj we have x′

i ≤ x′
j .

Lemma 1 (Ordering Property). There exists a well-ordered optimal solution
for the relaxed problem.

Proof. In an optimal placement, let us call (pi, pj) an unordered consecutive
pair if two robots pi and pj which are consecutive in the final bridge, are placed
at respective locations x′

i and x′
j with xi ≤ xj but x′

i > x′
j . We claim that

there is an optimal solution with zero unordered consecutive pairs. Consider an
optimal solution which has the minimum number of unordered pairs. Suppose
that this number is non-zero. Let pi and pj be two robots forming a consecutive
unordered pair (if an unordered pair exists, so does a consecutive one). We show
that the final locations of these two robots can be swapped, reducing the number
of unordered pairs by one. This contradicts with the minimality of the number
of unordered pairs.

First, from the relaxed segment assumption (i) x′
i ≤ xi+d and (ii) xj−d ≤ x′

j

holds. Since this is an unordered pair, we have: (iii) xi ≤ xj and (iv) x′
i > x′

j .
From (i)-(iv) we have: xi − d ≤ xj − d ≤ x′

j < x′
i ≤ xi + d. Observe that

xi − d ≤ x′
j < xi + d holds, hence we can move pi to x′

j which is in its feasible
region.

Similarly, we find that xj − d ≤ x′
j < x′

i ≤ xi + d ≤ xj + d. Hence, x′
i is in

the feasible region of pj which makes it possible to move pj to x′
i.

Finally, we can conclude that we can swap the final locations of pi and pj and
decrease the number of unordered pairs by one while pi and pj remain in their
respective feasible regions. Moreover, since pi and pj are consecutive, swapping
does not introduce additional unordered pairs. This contradicts the fact that the
solution has the minimum number of unordered pairs. �
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The ordering property allows us to use dynamic programming to compute
an optimal solution.

Before presenting the algorithm, we define the reach of a solution S =
{p1, p2, . . . , pm}. Without lost of generality, let us assume that S is sorted in
increasing order. If there is a communication bridge between s and pm , then we
have a reachable region from 0 to x′

m + r where we can place a robot connected
to s. As we assume that reach starts from 0, we can define the reach of S with
a single parameter, i.e. reach(S) = x′

m + r.
Let OPT (k, i) be the maximum reach which uses k robots from the set

{p1, p2, . . . , pi} to form a connected set with s where ∀1≤j≤i pj ∈ P ′. To simplify
the notation, we define the function conn(k, i). This function returns true if and
only if [xi − d, xi + d] intersects with the reach of OPT (k, i− 1). In other words,
this function tests whether a robot xi can extend the reach OPT (k, i − 1) by
moving inside its feasible region li and extend the reach of s. This condition is
satisfied if the following holds: OPT (k, i − 1) ≥ xi − d and xi + d ≥ 0.

We now present the dynamic programming algorithm.

OPT (0, i) = r ∀i (1)

OPT (1, i) =

{

min(xi + d, r) + r ∀i if conn(0, i)

0 o/w
(2)

OPT (k, i) = 0 ∀i<k (3)

OPT (k, i) =

{

min(xi + d,OPT (k − 1, i − 1)) + r if conn(k − 1, i)

OPT (k, i − 1) o/w
(4)

The first two equations constitute the base cases. When we do not use any
robots (i.e. k = 0) then the reach is r which is the reachability region of s (first
equation). The second equation sets the initial values for OPT (1, i). If feasible
region li intersects with [0, r] then we put the robot pi at min(xi + d, r) and
set the reach of OPT (1, i) as min(xi + d, r) + r. Otherwise since pi cannot be
connected to s we put a 0 value. Since OPT (k, i) uses k robots from the set
{p1, p2, . . . , pi} the cardinality of this set cannot be less than k. This condition
is addressed by Equation 3.

In the last equation, we compute all remaining entries OPT (k, i). We know
that the optimal solution chooses one of the j ≤ i as the kth hub. We consider
two cases: (1) the last hub is pi: we look up the optimal solution with k−1 hubs
which are selected from the set {p1, p2, . . . , pi−1}. If [xi − d, xi + d] intersects
with OPT (k − 1, i − 1) then the optimum solution will put pi to the rightmost
possible location which is x′

i = min(xi + d,OPT (k − 1, i − 1)) and we set the
reach OPT (k, i) = x′

i + r. (2) The last hub is not pi: Then the kth hub should
be selected from set {p1, p2, . . . , pi−1} whose maximum value is calculated by
OPT (k, i − 1) in the previous iterations. If the first case suffices, we pick it
since it extends reach more than the second case (due to the ordering property)
otherwise we pick the second case and set it to OPT (k, i).

Using the above formula, we calculate the dynamic programming table where
both k and i vary between 0 and m where m ≤ n is the cardinality of pruned
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set P ′. From this table we find the minimum k such that OPT (k,m) ≥ xt. This
yields the optimal solution to the relaxed problem. By Proposition 1, our solution
gives a

√
2 approximation on the maximum distance traveled by using at most

the same number of hubs used in the optimal solution (due to Proposition 2).
The running time of our algorithm is O(n2). This is because the size of the

table is O(n2) and for each entry we take the maximum of two values (Equa-
tion 4).

Theorem 1. If there exists a solution to MaxDist that uses k hubs such that
each robot moves at most distance d, then we can compute a solution where we
use at most k hubs and each hub moves at most

√
2d in O(n2) time.

2.2 SumDist: Minimizing the Total Distance

In SumDist, we are given points s and t and a set P = {p1, p2, . . . , pn} of mobile
hubs, as well as a budget B on the total distance traveled. Let ui = (xi, yi)
be the initial position of pi on the plane. We wish to select a subset S ⊆ P
and compute a final position vi = (x′

i, y
′
i) on the line segment [s, t] for each

pi ∈ S such that (i) s and t are connected via point-to-point communication
links, (ii) the total L2 (Euclidean) distance traveled is not greater than B (i.e.
∑

pi∈S |uivi| ≤ B), and (iii) the total number of hubs in the communication
bridge (i.e. |S|) is minimized.

Similar to MaxDist, we place a coordinate frame where the x-axis is aligned
with L (the line passing through s and t), s is at x = 0 and t is at xt > 0. The
reach of a solution is defined as before.

Unfortunately, there exist instances where the ordering property does not
hold in the L2 metric. However, it turns out that when the underlying distance
metric is L1, there is an optimal solution which satisfies an ordering property,
which in turn enables a dynamic programming based solution. We say that a
placement is well-ordered if for any two robots pi and pj such that xi ≤ xj we
have x′

i ≤ x′
j .

Lemma 2. If the distance metric is L1, then there exists a well-ordered optimal
solution.

Proof. Let us assume that OPT ∗
1 is an optimal solution which includes the least

number of unordered pairs. Let pi and pj be consecutive hubs used in OPT ∗
1

such that xi ≤ xj but x′
i > x′

j . We will show that swapping pi and pj ’s final
locations does not increase the budget, i.e. if b = |xi − x′

i| + |xj − x′
j | and

b′ = |xi − x′
j | + |xj − x′

i| then b ≥ b′ holds. On the other hand, the number of
unordered pairs decreases by one. This contradicts the minimality of the number
of unordered pairs. Note that, since we only swap the final locations of the hubs,
the connectivity is preserved. Further, swapping does not change the total budget
used in the y direction. Therefore, the overall budget does not increase as well.

Assume that we fix the locations of xi and xj : we have three “bins” (x ≤ xi,
xi < x ≤ xj and xj < x) for possible locations of x′

i and x′
j . The following set of
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equations correspond to all 6 possible cases. In each case, the claim above holds.
In Figure 3, the second statement in the first line is illustrated.

x′
j < x′

i ≤ xi ≤ xj ⇒ b = b′ x′
j ≤ xi < x′

i ≤ xj ⇒ b > b′

x′
j ≤ xi ≤ xj < x′

i ⇒ b ≥ b′ xi ≤ x′
j < x′

i ≤ xj ⇒ b > b′

xi ≤ x′
j ≤ xj < x′

i ⇒ b ≥ b′ xi ≤ xj ≤ x′
j < x′

i ⇒ b = b′

�

xi xjx′

ix′

j

Fig. 3. Figure shows the case: x′

j ≤ xi < x′

i ≤ xj . Upper line segments show the total
cost for the initial solution and lower line segments show the costs after swapping.
When we swap the final locations of robots, we decrease the total cost while satisfying
the ordering property.

We now solve SumDist optimally for the L1 metric (up to an arbitrarily small
additive cost). We start by building a table T (k, i, B) which stores the maximum
reach using k hubs subject to: (i) the ith robot is the kth hub, and (ii) the budget
for the first k robots is at most B. The entries are computed as follows:

T (0, i, B) =r ∀i (5)

T (k, i, B) =0 ∀k>i (6)

T (k, i, 0) =

{

xi + r if initially there is a bridge with k hubs

0 o/w
(7)

T (k + 1, i, B) = max
k≤j<i

max
b′∈C(xi)

min(T (k, j, B − b), xi + b′) + r (8)

T (k, i, B + ε) = max
k≤j<i

max
b′∈C(xi)

min(T (k, j, B + ε − b), xi + b′) + r (9)

where B is discretized by ε, b′ = b − yi and C(xi) is a set of possible values
for b′. We will discuss ε and C(xi) shortly. The first two equations are the base
cases. If initially the robots create a communication bridge between s and pi

with k hubs, then Equation 7 sets the reach T (k, i, 0) to xi + r. This can be
checked by building a graph G whose vertices are P ′ ∪ {s, t} where P ′ is the set
of hubs that are initially on [s, t]. There is an edge between two vertices if the
distance between them is at most r. If G has a path between s and pi of length
at most k, then a communication bridge from s to pi can be formed with budget
0.

Here, we discuss only how to extend the first dimension of the dynamic
programming formulation (Equation 8). The argument for the other dimension
(Equation 9) is similar.
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To calculate T (k + 1, i, B), we consider the optimal reach with k hubs when
using the pj as the kth hub for all j < i (due to the ordering property we do
not need to consider the locations of earlier hubs in the optimal solution). Let
R = T (k, j, B − b) be the maximum reach achievable by using k robots with
pj as the last hub and a total budget of B − b. The final location of pj in this
optimal reach is R− r. We need to compute the reach for k + 1 hubs where pi is
the last hub and pi travels at most b units. For this, we consider all possibilities
for R.

Note that the distance of the initial location ui = (xi, yi) to L is yi. Hence,
b ≥ yi must hold for pi to act as a hub. Let b′ = b−yi, then, [xi−b′, xi +b′] is the
region that robot pi can be placed on the line L with a budget of b′. Due to the
ordering property, pi must be placed to the right of pj . Therefore, its location
is after R− r and before R (otherwise pj and pi cannot communicate). In other
words, valid locations for pi are given by the intersection of [xi − b′, xi + b′] and
[R − r,R], and this set should be non-empty.

We now compute the set of valid budgets b for robot pi. Since the robot has
to travel yi for the vertical component, the remaining budget for the horizontal
component is b′ = b − yi. Let C(xi) be the set of possible values for b′. This set
is computed as follows:

C(xi) = {b′|b′ ≤ B − yi ∧ Z(xi, R)} (10)

Z(xi, R) =











R − r − xi ≤ b′ ≤ R − xi if xi ≤ R − r

0 ≤ b′ ≤ R − xi if R − r < xi ≤ R

b′ = xi − R o/w

(11)

For a budget b′ to be valid, we must have b ≤ B. This gives the first condition
for b′: b′ ≤ B − yi. We use the function Z to constrain b′ as a function of xi

and the current reach R. We consider the three cases based on the location of
xi with respect to the location of the last robot (x′

j) and the reach R = x′
j + r.

See Figure 4.
Case 1 (xi ≤ x′

j):, In this case, we must have b′ ≥ R − r − xi, (otherwise
pi cannot extend the current reach) and b′ ≤ R − xi (if pi moves further to the
right, pj and pi can’t communicate).

Case 2 (x′
j < xi ≤ R): Similar to case 1, b′ should not be greater than R−xi.

The lower bound is obtained by the nonnegativity of b′.
Case 3: When xi is to the right of the current reach R, there is only one value

robot pi should move: the rightmost reachable point.
The new reach after placing robot pi to min(R, xi + b) is min(R, xi + b) + r.

In order to compute T (k + 1, i, B), among all possible j < i and all possible
budgets b′ ∈ C(xi), we find the optimal reach. Since the size of the set C(xi) is
bounded by r/ε, each entry can be calculated in O(nr/ε) time.

We now show how this result yields an approximation algorithm for L2. Let
OPT ∗

1 and OPT ∗
2 be optimal solutions for L1 and L2 metrics, respectively. The

following lemma bounds the deviation between OPT ∗
1 and OPT ∗

2 .
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Fig. 4. Let x′

j be the last hub location at the reach and pi be the robot considered at
the current iteration. Top Left: When b′ is too large both end points of feasible region
is out of the the region [x′

j , R], hence b′ is redundant in this example. Top Right and
Bottom Row: The three cases considered in Equation 11 are illustrated.

Lemma 3. Let OPT ∗
2 be the optimal solution for the L2 metric with a given

budget B. Suppose OPT ∗
2 can connect s and t using k hubs. There exists optimal

solution OPT ∗
1 for the L1 metric which can connect s and t by using k hubs and

a budget of
√

2B.

Proof. Let (xi, yi) be the initial location of a robot used in OPT ∗
2 and x′

i be the

final location. The L1 and L2 distances are |xi − x′
i| + yi and

√

|xi − x′
i|2 + y2

i ,
respectively. Without loss of generality, we scale the distances by 1/yi so that
the L1 and L2 distances become a+1 and

√
a2 + 1, respectively where a = |xi−

x′
i|/yi. From elementary calculus, it is easy to show that: f(a) = a+1√

a2+1
≤

√
2.

�

To obtain the optimal L1 solution for budget B, we solve T (k, i, B) for all
possible k, i, B (where B is discretized with ε intervals). Due to the discretization,
the total budget used here can be at most k∗

1ε than the budget used by OPT ∗
1

where k∗
1 is the number of hubs used by OPT ∗

1 . In other words, our dynamic
programming algorithm can find a solution with k∗

1 hubs by using at most B1 +
k∗
1ε budget where B1 is the used budget with L1 metric. This means that B′,

the total budget used by our solution will be bounded by B1 +nε. Consequently,
the total budget used by our algorithm will be at most

√
2B + nε where B is

the given budget in L2 metric. We can choose ε to achieve an arbitrarily small
additive error.

We now establish the running time of the algorithm. The size of the table

is O(n2B
ε

) and as we discussed earlier each entry can be calculated in O(nr/ε)

time. Hence, the time complexity of our algorithm is O(n3Br
ε2 ).

Theorem 2. If there exists a solution to SumDist that uses k hubs such that the
total movement of robots is B in the L2 (Euclidean) metric, then we can compute
a solution where we use at most k hubs and the total movement of robots is at

most
√

2B + nε in O(n3Br
ε2 ) time, where ε is the discretization constant.

3 Bounds on Number of Hubs

Let OPT (d) be the number of hubs in an optimal solution to MaxDist with
distance constraint d. How does this constraint affect the number of hubs on the
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bridge? In other words, if OPT(∞) = ⌈|st|/r⌉−1 is the number of hubs required
in the unrestricted version, how far is OPT (d) from OPT(∞)? In this section,
we show that OPT (d)/OPT(∞) ≤ 2.

Assume that m − 1 < |st|/r ≤ m, for some integer m > 1. (The case m = 1
is uninteresting, as s and t are then within distance r, hence connected.)

Partition [s, t] into m equal-length intervals, labeled from s to t as I1, I2, . . . , Im.
Each interval has length greater than (1−1/m)r and at most r. Consider any so-
lution for OPT(d). This solution connects s and t with the fewest number of hubs.
In such a solution, we can have at most two hubs inside any Ij , 2 ≤ j ≤ m − 1.
To see this, note that if there were three or more hubs in Ij , then all but the
two extreme ones in Ij could be removed without losing connectivity (since the
length of Ij is at most r), thereby obtaining a solution for OPT(d) that has
fewer hubs than the original optimal solution—a contradiction. Along similar
lines note that I1 and Im can each contain at most one sensor; if there was more
than one sensor in I1 (resp. Im), then all the ones except the one farthest from
s (resp. t) can be removed without losing connectivity.

It follows that for any optimal solution, we have OPT(d) ≤ 2(m − 2) + 2 =
2(m− 1). Also, OPT (∞) = ⌈|st|/r⌉ − 1 = m− 1. Hence, we have the following.

Lemma 4. OPT (d)/OPT(∞) ≤ 2.

It can be shown that the same bound applies for SumDist as well. We omit
the details.

Next, we show that the bound in Lemma 4 is tight: We claim that, for any
finite d, there is an instance of MaxDist with the optimal solution OPT(d) for
which OPT (d)/OPT (∞) = 2.

Let |st|/r = m > 1; thus, each interval I1, I2, . . . , Im defined above has length
r. Let ε be a real number in the (open) interval (0, r

m−1 ). Consider a set V =
{v1, v2, . . . , v2(m−1)} of points on [s, t], defined as follows: for j = 2, 4, . . . , 2(m−
1), vj = j

2ε + j
2r, and for j = 1, 3, . . . , 2m − 3, vj = j+1

2 ε + j−1
2 r. See Figure 5.

s tv1 v2 v3 v4 v5 v6

εεε rrr

I1 I2 I3 I4

Fig. 5. Selection of points v1, v2, . . . , v2(m−1) on [s, t], with m = 4.

The set V satisfies the following (easily-verifiable) properties: (i) v1 6= s ∈ I1

and v2(m−1) 6= t ∈ Im; (ii) successive points in V ∪ {s, t} are within distance r;
and (iii) at least one pair of successive points in V ′∪{s, t} is not within distance
r for any V ′ ⊂ V .

Let P be a set of n ≥ 2(m−1) robots {p1, p2, . . . , pn} and choose their initial
positions in IR2 as follows: for j = 1, 2, . . . , 2(m − 1), place pj at initial position
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uj = (vj , d). Place any remaining sensor in P at some distance greater than d
from [s, t].

Observe that only p1, p2, . . . , p2(m−1) can move onto [s, t] and, moreover, each
such pj can move only to the location vj . By properties (ii) and (iii) above, it
follows that p1, p2, . . . , p2(m−1) are necessary and sufficient to establish a com-
munication bridge between s and t. Therefore, OPT (d) = 2(m−1) and the claim
follows.

4 Conclusion

In this paper, we introduced the problem of building a communication bridge be-
tween two points s and t while minimizing the number of hubs on the bridge and
satisfying a maximum (or total) distance constraint for the hubs. For both ver-
sions we presented constant factor approximation algorithms for the geometric
version where the hubs must move onto [s, t].

There are many interesting directions for future work. It is not clear whether
the

√
2 approximation factor for the geometric version can be improved. The

general version in which the final locations of hubs can be anywhere on the
plane seems difficult. Solving the version where there are multiple source and
destination pairs seems to be even harder.
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