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ABSTRACT
Humans rely on a finely tuned ability to recognize and adapt
to socially relevant patterns in their everyday face-to-face in-
teractions. This allows them to anticipate the actions of oth-
ers, coordinate their behaviors, and create shared meaning—
to communicate. Social robots must likewise be able to rec-
ognize and perform relevant social patterns, including in-
teractional synchrony, imitation, and particular sequences of
behaviors. We use existing empirical work in the social sci-
ences and observations of human interaction to develop non-
verbal interactive capabilities for a robot in the context of
shadow puppet play, where people interact through shad-
ows of hands cast against a wall. We show how informa-
tion theoretic quantities can be used to model interaction be-
tween humans and to generate interactive controllers for a
robot. Finally, we evaluate the resulting model in an embod-
ied human-robot interaction study. We show the benefit of
modeling interaction as a joint process rather than modeling
individual agents.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—coherence and coordination

General Terms
Human Factors Design
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1. INTRODUCTION
Imagine that you are at a busy pub, trying to order a drink.

You strategically wriggle into an available space in front of
the bar and focus on the bartenders. As they juggle bottles
and orders, your eyes track their movements as if you were
watching a tennis match. You lean in, the bar painfully dig-
ging into your midriff, vying for physical proximity to the
object of your attention. One hand goes up; as they turn
in your direction you give a little wave. Your eyes, face,
neck, hand, your whole body, follow their movement. And
finally—now you know they’ve noticed you—you are facing
each other, making eye contact, smiling, nodding, talking. A
connection has been established; you and the bartender are
communicating.

This vignette at the bar (and similar ones that occur daily
at the restaurant, the library, the post office) illustrates the
experience of co-presence—a mutual embodied awareness,
a sense of being together with another for shared purposes.
In robotics, Breazeal [1] calls this the problem of “embod-
ied discourse,” or developing a robot that is able to take part
in interaction as an equally proficient participant. To inter-
act, the communicating parties have to establish parity by
becoming “coupled” or “linked together by some common
base... that puts them on comparable footing, that gives par-
tial mutual access to internal states between them” [2]. Daut-
enhahn’s [3] taxonomy of social robots correspondingly dis-
tinguishes between embodied, “situated,” and “socially em-
bedded” robots according to their degree of coupling with
the social environment. Rather than modeling human and
robot as individual agents, we model the joint process that
emerges between them.

Recent work in robotics as well as the social sciences sug-
gests that we can construct models of social cognition and be-
havior by engineering interactive machines and evaluating
how humans interact with them [4, 5, 6]. We describe the de-



velopment and validation of a generative model of coupled
interaction in the context of dyadic nonverbal interaction—
shadow puppet play. Our focus on nonverbal interaction is
informed by studies of the foundational nature of interac-
tional synchrony, gestural communication, and imitation to
social and communicative development [7, 8], as well as by
its fundamental importance to the development of natural
human-robot interaction [3, 1, 9, 10, 11].

Our contributions can be summarized as follows. We first
describe a method to quantify interaction using human eval-
uation. Second, we present a perception system which rec-
ognizes and codes gestural primitives in real-time. Finally
we propose methods for modeling interaction that we use to
generate interactive behavior. These models are learned from
observing human-human interaction and validated in an em-
bodied human-robot interaction study. Our results show that
modeling interaction as a joint process, rather than modeling
agents separately, correlates more closely with human eval-
uations of interactivity.

We provide background discussion on nonverbal interac-
tion and synchrony in section 2. In section 3, we describe
how shadow play can be used as a model system for study-
ing nonverbal human-human and human-robot interaction.
In section 4, we describe the development of a generative
model through observation of people playing shadow pup-
pets aimed at enabling our robot to perceive and interact
with gestures. In section 5, we validate the model in an em-
bodied human-robot interaction study. We conclude with a
discussion of the relevance of our work for understanding
and developing more complex systems in which humans and
robots can interact and coordinate their activities.

2. BACKGROUND AND RELATED WORK
Theories of social interaction propose high-level understand-

ing is the result of shared cognition in which the participants
learn to coordinate their actions, while low level mechanisms
like turn-taking help to coordinate and ground interaction
[12, 2]. Humans are able to infer the mental and affective
states of others through tone of voice, eye gaze, body lan-
guage, and other nonverbal behaviors automatically and di-
rectly in the course of the interaction. Social engagement
triggers an embodied, situated system that is sensitive to rec-
ognizing socially relevant patterns in our everyday behav-
ior, such as interaction rhythms, imitation, posture mirror-
ing, and joint attention [13]. Given situational knowledge,
this allows us to predict what others will do and coordinate
our behaviors. As individuals respond dynamically to bod-
ily movements, postures and facial expressions of others, be-
havior is used to regulate one’s own state and the behav-
ior of other individuals and enables the attunement of in-
tentions among interaction partners. Finally, the combina-
tion of rhythmic entrainment, joint attention and coordina-
tion makes it possible for a quick blink of an eye to be under-
stood as a socially meaningful “wink.”

Nonverbal cues, consisting of bodily movements, articula-
tory gestures, emotional expressions, and utterances, are in-
strumental to establishing social presence and mutual aware-
ness. Sustaining participation in interaction involves the re-
production of institutionalized patterns of interaction and
habitual practices that are well known to others and can be
used to interpret the resulting actions. Interactional synchrony
is a pervasive organizing principle of social interaction [14,
15] . Through synchronization, agents establish a common

ground for the development of knowledge within the shared
interaction, ensuring that what counts for one counts for the
other [2]. Studies of infant-caretaker interactions show that
coordination is critical to the creation of positive relation-
ships and to the learning of social, cultural, and communica-
tive skills [16]. Condon [7] discusses the importance of the
matching of movement timing in smooth, friendly commu-
nication, and a higher degree of synchronization is generally
regarded as a sign of mutual rapport and involvement [17].

In human-robot interaction studies, studies of nonverbal
cues and interaction synchrony have largely focused on sound
as the salient stimulus. Kismet [1] relies on rough approx-
imations of turn-taking in conversation. Ogawa’s [11] In-
terRobot humanoid reacts to human speech with nonverbal
cues. The humanoid robot Nico [9] synchronizes its drum-
ming to that of another person or a conductor. Another pos-
sible reference point for synchrony is bodily motion. Syn-
chronized imitation is applied by Andry [18] as a way for
robots to learn new types of motion. Michalowski [10] ex-
plores rhythmicity using dance as a social activity. Penny’s
Petit Mal [19] uses simple movements to engage people in
rhythmic interaction. We focus on shadow puppet play as a
simplified context for examining rhythm and nonverbal cues
in bodily motion.

3. SHADOW PUPPET PLAY
According to the socially situated cognition perspective,

communication is action oriented [5] and cognition is an adap-
tive process that is tightly coupled to action. Therefore, to
participate in interactions, our robot must be able to pro-
cess signals and adapt its models in real-time [4]. Taking a
cue from human interaction, it makes sense to try and infer
emotions and mental states from facial expressions and ges-
tures. Unfortunately, since in embodied interaction there are
many such channels of communication [5], it is not practical
to capture and model all of these channels in real time. Man-
ual transcription of recorded human data can be helpful in
building models of interaction, however this process can be
laborious and time consuming.

Our research draws on children’s shadow puppet games,
where the shadows of hands cast against a wall are used to
express a story. Shadow puppets accommodate an open ar-
ray of possibilities for interpretation and action while cap-
turing the essential features of affect, meaning and intention
that evoke human narrative propensities and emotional re-
sponses. Humans frequently perceive simple schematic ar-
tifacts as exhibiting a higher degree of sociality than their
simple forms and actions contain [20]. Minimally designed
robots that exhibit simple attentive, emotive and interactive
gestures and spatial movements can convey the essential fea-
tures of affect, meaning and intention in technology design [21].
As an interaction medium, shadow puppetry affords us the
ability to observe an embodied discourse between two peo-
ple that is expressive enough to support basic components
of interaction and allows the participants to convey and in-
fer the meaning of emotive gestures. At the same time, it
limits the channels of communication to the point where we
can hope to capture and model the signals in real-time using
available computational and perception tools.

4. MODELING SHADOW PUPPET PLAY
Our aim in this project is to observe and model the behav-



ior patterns that characterize co-presence and coordination
between interacting agents. For a robot, the ability to predict
how a human will respond to its actions (and vice versa) is
a form of coordination. Rather than using predictive frame-
works that fully model the physical and mental states of the
human to select actions, our robot uses predictive models
that relate its actions to the behavioral responses of a human.
We do not intend to model the high level cognition aspects of
interaction and communication (such as the meaning of var-
ious gestures in context), but rather to automatically deter-
mine the parameters of the low level mechanisms (i.e. inter-
action synchrony, imitation, anticipation) that help to coordi-
nate and ground interaction. The models described in [12, 2]
highlight the difference between synchronization of content
and synchronization of process and posit that the former is
not possible without the latter. Our current work thus repre-
sents a foundation upon which more content-oriented mod-
els can be built.

In implementing shadow puppet play in a robot arm, we
follow a three-part process which will be discussed in de-
tail in the following sections. Firstly, we identify gestural
primitives that comprise shadow puppet interactions by ob-
serving humans engaged in shadow play and develop auto-
matic recognition capability for the relevant gestures. We use
an online survey to evaluate the ability of third-person ob-
servers to classify interactive and non-interactive video seg-
ments. Second, we decompose the video sequences into streams
of gesture tokens which correspond to the previously iden-
tified gestural primitives and measure occurrence and co-
occurrences of behaviors. Finally, we use the data to build
models of interaction for a shadow puppet robot.

4.1 Interaction data

(a) Step 1 (b) Step 2

Figure 1: Steps 1 and 2 in the process of generating sample
interaction sequences. We record interactions and remove all
but the players’ hands.

We start with the premise that humans are proficient at
recognizing natural interaction. Using this idea, we attempt
to model the behavior patterns in interaction sequences and
define properties of these models that correlate with human
evaluations. First, we video record examples of shadow pup-
petry between two people( figure 1a). We record the interac-
tion in two separate video channels using a stereo camera1.
This ensures that we have two time-synchronized videos where
one of the players is centered in each of the channels. During
the recording, each player wears a wrist marker, and each
video frame is post-processed by segmenting out the wrist
and hand of each player and removing all other data (fig-
ure 1b). The end result is two separate video sequences, one
with only the left player and one with only the right player.
1Stereo is used for recording the players in separate channels,
not for depth information

These processed video sequences represent our control data.
Our experimental data is constructed by randomly recom-
bining left and right sides of these sequences as in figure 2.
The randomly stitched video sequences represent the experi-
mental data. All videos consist of just the filled, moving out-
line of the players’ hands and contain no features that can be
used to visually distinguish between the two classes. Each
video is approximately 25 seconds in length.

(a) Left (b) Right

Figure 2: Step 3: The players’ motions are separated into in-
dividual video streams. This artificial sequence is generated
by replacing the right player from the sequence in figure 1
with a player from another sequence.

Our next step is to collect evaluative feedback, which en-
ables us to categorize our videos according to the observer’s
perception of interactivity. The use of outside observers to
quantify interaction has precedence in experimental psychol-
ogy([22], for example). We have designed a website that al-
lows people to watch our processed interaction videos and
rate the interaction (see [23]). The survey is modeled as a
game, wherein the goal is to correctly identify the class of the
video. There are a total of 24 video sequences, 12 of which
are real interactions and 12 of which are artificial interactions.
Players are asked to watch a sequence of 10 unique videos.
The 10 videos are drawn uniformly at random from the set
of 24, and the order of the videos presented to players is ran-
domized. After each video, the players are asked whether or
not the two participants could see each other during the in-
teractions. Upon completing the survey, the participants are
told how many videos were labeled correctly (but not which)
and are invited to play again. For each video, the individual
votes are tracked and turned into an interaction score by di-
viding the number of positive votes by the total number of
times the video was rated. There were 382 total ratings, 284
correct, and 98 incorrect.

4.2 Gestural vocabulary
Our robot must be able to recognize and distinguish be-

tween significant patterns in the behaviors of the human par-
ticipant in real time. We isolate the gestural primitives be-
ing used by observing, coding, and analyzing humans play-
ing shadow puppets. We identify a gesture vocabulary com-
posed of basic behavioral competences: nod, shake, talk, jerk,
flick, touch. These gesture vocabularies are used in construct-
ing the robot’s perception of certain human gestures as well
as in the robot’s implementation of gesture.

We have developed a perception system that recognizes
the basic motions used in the shadow puppet game. We use
a simple colored wrist marker which allows us to automat-
ically infer the wrist position of a player, and from that to
infer the locations of the hand center and finger tips. The



hand contour is determined by searching the image for the
skin colored blob that is nearest to the wrist marker. Once
the hand contour is segmented, template matching is per-
formed by comparing the extracted contour to a set of user
specific predefined templates, by computing and comparing
the Hu moment invariants for each contour [24]. If the hand
is closed, the finger tips are located by finding the principle
axes of the hand contour. If the hand is opened, the finger
tips are located by finding the largest concavity of the con-
tour. The wrist w(t), hand center h(t), and finger tip loca-
tions f1(t), f2(t) as shown in figure 3 provide a rough kine-
matic model of the hand.

w(t)

h(t)

f1(t)

f2(t)

Figure 3: Hand model parameters

To automate the process of gesture recognition, we record
the parameters of the kinematic model in each frame. At each
instant of time, we parameterize the behavior of the human
by measuring variations in the kinematic model over a recent
history. The kinematic model of the hand at time t, can be
described (non-compactly) by the state vector

[w(t), h(t), f1(t), f2(t)]T

. The parameters used to identify behaviors are computed
using a history of length n = 7 and measuring statistical dis-
persion of these parameters. The measures are given in equa-
tions 1– 4 , which are used to compute the 4× 1 vector b(t) of
behavior parameters at each instant of time t (equation 5):

q1(t) = V ar(w(i)∠f1(i))i=t−n:t (1)
q2(t) = V ar(‖h(i)− f1(i)‖)i=t−n:t (2)
q3(t) = V ar(f1(i))i=t−n:t (3)
q4(t) = Cov(f1(i), f2(i))i=t−n:t (4)

b(t) = [q1(t), q2(t), q3(t), q4(t)]T (5)

The behavior of the player is classified as either Nod, Shake,
Talk, Jerk, Flick, Touch, or None. We calibrate our gesture
recognition system for each user. During the training phase,
the user performs each of the gestures several times. The
vector of behavior parameters is computed and recorded for
each of the examples.

4.3 Models of Interaction
We will now describe a method for modeling the low-level

signal exchange in interaction using simple predictive mod-
els. The goal is to build models that can be used to gener-
ate behaviors that are interactive in the sense of being co-
ordinated with a human partner. We explicitly restrict our-
selves to modeling the exchange of signals, without impos-
ing meaning on the signals. Figure 4a shows the experimen-
tal setup used to collect data. The participants wear wrist
markers. Figure 4b shows the processed frames of the per-
ception system. This system processes video and outputs the
stream of behaviors in real-time.

(a) Dyadic Interaction

(b) Gesture Labeling

Figure 4: Experimental setup.

Using the behavior recognition system, the behavior of each
player is converted to a one dimensional signal. Let

Σ = {Nod, Shake, Talk, Jerk, F lick, Touch, None}

be the set of possible symbols and let X, Y ∈ Σ∗ denote
the behavior sequence of players 1, and 2 respectively. Let
xi and yj denote the realizations of X and Y as behaviors i
and j respectively. To model the interaction, we start by con-
structing the joint and marginal probability distributions of
the player behaviors. In this case, the P (xi, yj) represents the
normalized frequency of two behaviors i and j, occurring at
the same time, and P (xi) and P (yj) are the marginal proba-
bilities of the behaviors occurring, independent of the other
player’s behavior. A 2D histogram is a convenient way to
represent these joint and marginal probability distributions.
P (xi, yj) is the value of an individual histogram bin, with
rows i, and columns j, normalized by the total number of
samples. P (xi) is the normalized sum of a row, i and P (yj)
the normalized sum of a column, j.

Recall that our end goal is to uncover measures of the inter-
action sequence that correlate well with the interaction scores
assigned by the human observers. The distribution proper-
ties we have measured are conditional entropy (CE), Kullback-
Leibler divergence (KL), and mutual information (MI), where

CE ≡
∑
∀i,j∈Σ

Pr(yj , xi)logPr(yj |xi) (6)

KL ≡
∑
∀i∈Σ

Pr(xi)log(
Pr(xi)

Pr(yi)
) (7)

MI ≡
∑
∀i,j∈Σ

Pr(xi, yj)log(
Pr(xi, yj)

Pr(xi)P (yj)
) (8)

For two random variables X and Y , the conditional entropy
of Y on X represents the uncertainty (entropy) of the vari-
able Y , when the value of variable X is given, averaged over
all possible values of X . It is important to note that this is dif-
ferent than calculating the entropy of Y when X takes on a
particular value, xi. Kullback-Leibler divergence (also called
relative entropy) is a measure of similarity between two dis-



MI KL CE (X|Y ) CE (Y |X)
0.5607 -0.5603 0.0751 0.0220

Table 1: This table shows the correlation of each distributions
measure with the human evaluation of interactivity.

tributions. Mutual information measures the independence
of two random variables, and is closely related to KL di-
vergence and conditional entropy. Mutual information de-
scribes how the realization of a particular variable X reduces
the entropy of another random variable Y . Mutual infor-
mation does this by measuring the KL divergence between
the joint distribution of the two variables and the product of
their marginal distributions. This means that if the two ran-
dom variables are conditionally independent, their mutual
information is zero. Information theoretic properties have
been used for comparing protein sequences in [25] and in [26]
where mutual information kernels are applied to mixture mod-
els.

Figure 5 shows the user rating of each video sequence com-
pared to the mutual information and KL divergence distri-
bution measures. Each red cross represents a real interaction
sequence, and each blue circle represents an artificial interac-
tion sequences. The real sequences are numbered 1 through
12 and the artificial sequences are numbered 13 through 24.
In each plot, the survey score is represented on the Y-axis. Ta-
ble 1 shows the correlation of each measure with the survey
score. Mutual information is strongly correlated with sur-
vey score, and KL divergence has a strong negative correla-
tion with survey score. Correlation between conditional en-
tropy and survey score is not significant. Based on the results
from figures 5a and 5b we posit that interactive behavior is
strongly correlated to high mutual information. We validate
this theory using a human-robot interaction study using the
Barrett Robot hand and Whole Arm Manipulator (WAM).

5. INTERACTIVE MODEL VALIDATION

Figure 6: Embodied interaction study: Subjects play the
shadow puppet game with our 4 DOF Whole Arm Manip-
ulator (WAM). A stereo camera is used to code the gestural
language tokens of the human in real-time.

5.1 Control strategies
We next turn to the task of generating interactive control

strategies from the existing behavior models. In the previ-
ously described form, behaviors X and Y of the players are

modeled as random variables. The joint probability models
can be used to answer queries about the probability of all
possible random events involving X and Y . Our approach
is to have our agent take on the role of player 2, and use the
joint distributions to select actions which, according to Bayes
rule, are most likely to occur during interactions between
two human players. Given the behavior xi of player 1, the
agent assigns a value to Y by sampling from the distribution
P (Y |X = xi).

In this study, the Barrett Robot hand and Whole Arm Ma-
nipulator (WAM) replace player 2 in the shadow puppetry
game (figure 6,[27]). The WAM is a 4-degree of freedom sys-
tem with human-like kinematics. The WAM is instrumented
with a set of predefined gestural primitives that match those
of the human player. Each behavior is executed by follow-
ing a predefined trajectory that connects several points in the
configuration space of the robot

In our interaction study, the human is asked to participate
in 4 successive sessions of interaction with the robot. In each
of the four sessions, the robot uses a different control strat-
egy. The trials last for two minutes and in each trial, the
order of the controllers is randomized. There are a total of
N = 8 human subjects. The first controller (C1) samples from
the distribution of an observed human-human interaction se-
quence, which has high user rating and high mutual infor-
mation. The second controller (C2) samples from the distri-
bution of an observed human-human interaction sequence,
which has low user rating and high mutual information. The
third controller (C3) simply imitates the human. A model
which defines imitation, by definition, has highest possible
mutual information, as well as KL divergence of zero. This
strategy is selected to better understand the role of mutual
information in interactivity. The fourth controller tested (C4)
is a first order Markov model. To build a zero order Markov
controller, we construct a Markov chain, in which the state
of the system is defined by the pairwise behavior of the two
players. Recall that behaviors are drawn from the alphabet

Σ = {Nod, Shake, Talk, Jerk, F lick, Touch, None}

. The first order model has |Σ|2 states, and a |Σ|2 × |Σ|2 tran-
sition matrix. The entries in the transition matrix represent

Pr(Xt = xj , Yt = yj |Xt−1 = xt−1, Yt−1 = yt−1), ∀xi, yj ∈ Σ

the probability of observing an event Xt = xj , Yt = yj , given
some previous observation Xt−1 = xt−1, Yt−i = yt−1. This
is in contrast to the previous reactive models, which define
only

Pr(Xt = xj , Yt = yj),∀xi, yj ∈ Σ

the probability of observing an event occurring independent
of previous events.

5.2 Results
Each person interacting with the robot is asked to rate a

set of three statements after each of the four trials: (1) The
robot reacted appropriately to me; (2) The robot could recognize
my actions; (3) The robot seemed intensely involved in the inter-
action. The statements are aimed at gauging the user’s per-
ception of the robot’s ability to recognize gestural cues and
react accordingly, as well as its social presence in the inter-
action. The subjects rate their agreement with each question
by assigning a value between 1 and 6. The average rating
of each controller, for each question is displayed in figure 7.
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Figure 5: Figure( 5a): Scatter plot of interaction score and mutual information for each of the 24 video sequences. Figure( 5b):
Scatter plot of interaction score and KL divergence for each of the 24 video sequences.
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Figure 7: Average response to each question for each of the
four controllers (N = 8).

The results indicate that the high mutual information con-
troller (C1) generates the most interactive behavior. Surpris-
ingly, subjects judged the recognition rate of controller (C1)
to be on average as good as the recognition rate of the imi-
tation controller (C3). The scores for the controller with high
mutual information and low survey score (C2) and the first
order Markov model (C4) are both significantly lower than
controllers C1 and C3.

We have also measured the mutual information and KL
divergence of the behavior sequence data in our interaction
study. We calculate this in the same way that it is calculated
in the human-human interactions. In each trial, the gestures
of the human and robot are recorded and a histogram of co-
occurrences is computed. Figures 8a and 8b show the mea-
sured mutual information and KL divergence of each test
subject in each sequence. The X-axis represents the subject
number, and each of the four lines represents one of the four
controllers used.

In all but one case (subject 4), the mutual information for
the imitation controller (C3) is higher than for the other 3 con-

trollers. This is consistent with the survey score and what we
expect to see from a controller that imitates, since the behav-
ior of one player should be perfectly informative about the
behavior of another player.

For the learned controller with high mutual information
and high survey score (C1), the measured mutual informa-
tion is second highest after C3 in all but two cases. For subject
4, C1 has highest mutual information, tied with C2. For sub-
ject 3, C2 generates slightly higher mutual information than
C1. In all other cases the C2 is lower than C1 and higher than
C4. This is consistent with the measured mutual information
from the human-human interaction study, as is the relatively
low survey score.

Recall that KL divergence is measure of the similarity be-
tween the marginal distribution of the two players’ behav-
iors. As one might anticipate, the measured KL divergence
for the imitation controller (C3) is close to zero in all cases.
The high mutual information controller (C1) is also low in all
cases, except for subjects 4 and 8. This is interesting, because
for those two subjects, the measured mutual information is
highest. Also, note that the measured KL divergence of C2
tends to be significantly higher than that of C1 for all cases
except for subject 8.

5.3 Discussion
For the first-order Markov controller, mutual information

is lower than other controllers for all test subjects. This is
consistent with the ratings given by the users. In general, it
would appear that this is the worst of the four controllers by
all measures. However, it should be noted that the process
used by the first-order Markov model to generate behaviors
is considerably more complicated than the other three con-
trollers. We have observed several cases, where the human
tries to figure out the pattern of the robot’s behavior, and of-
ten succeeds in doing so. For example, when the human is
making a gesture, the response of the robot is often to do
nothing, wait until the human stops, and then respond. This
is a form of learned turn taking that is implicit in our model
and control methods, and it occurs frequently when using
the first-order Markov model controller. In several cases the



1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Subject

M
ut

ua
l I

nf
or

m
at

io
n

Mutual Information in Robot Interaction Experiment

 

 

C1
C2
C3
C4

(a) Mutual Information of joint distribution of human and
robot behaviors

1 2 3 4 5 6 7 8
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Subject

K
L−

di
ve

rg
en

ce

KL−divergence in Robot Interaction Experiment

 

 

C1
C2
C3
C4

(b) KL-Divergence of human and robot behavior distributions

Figure 8: Interactivity Measures in Human-Robot interaction behavior sequences.

human repeats a behavior, apparently trying to evoke a re-
sponse. Often they figure out that they must pause and give
a turn, after which the interaction is more fluid. It may be the
case that more interaction time is required for the human to
understand the pattern of behaviors generated by this more
complex model.

Our interaction models are built by observing the co-occurrence
of gestural tokens. The implicit assumption is that interac-
tion should be modeled by the joint behavior of the the two
players together at each instant of time. However, due to the
temporal lag between actions and reactions, it may be more
useful to model the joint behavior of one player at an instant
of time and the behavior of the other player at some point
after that. For example, rather than align the two behavior
sequences so that we measure the relationship between Xt

and Yt we might shift the alignment by some length n, so
that we measure the relationship between Xt and Yt+n. To
justify the use of a zero shift, we have done the following: For
each example sequence, we compute the mutual information
over a range of different alignments. We select a window of
size n and for each i ∈ −n : n, we build a histogram where
each bin [rowi, colj ] : (i, j) ∈ Σ counts the occurrences where
Xt = xi and Yt+i = yj . We measure the mutual information
of the histogram at each iteration of i, and find the value of i
for which mutual information is maximum. In doing this, we
have observed that the value of mutual information at each
such index tends to be normally distributed with mean close
to zero. This justifies the use of zero shift.

While we do not address the content of interaction in this
study, the synchronization of action and response that we de-
scribe serves as the foundation for more complex interaction
and communication. In our initial observational study of hu-
man shadow puppet play, we saw that different rhythms and
gesture combinations were involved in enacting various in-
teraction schemas, which could be interpreted as the shad-
ows fighting, playing, having a conversation. In the case of
collaborative human-robot interaction scenarios, the ability
of both partners to synchronize their actions serves as the
foundation for joint attention, shared meaning, and contex-
tual grounding. Interactors can miss or misunderstand cues
when they are not presented in a mutually established flow
of interaction. In this paper we describe how people attribute

social presence and interactivity to the robot. Our next steps
will be to extend our model to enable recognition of and
participation in these different content-oriented interactive
schemas (e.g. argument, conversing, etc.).

A socially interactive robot was used as a test-bed for the-
ories and models of interactivity, human social behavior, and
the attribution of human characteristics to non-humans. We
now have a basic computational model of synchronous, con-
tingent interaction and the situated dynamics of human so-
cial behavior. Much as infants have evolved to take advan-
tage of their caregivers’ knowledge and propensity to attribute
various intentional and affective states, a robot that collabo-
rates seamlessly with humans in everyday activities has to
be able to take advantage of the human’s knowledge of the
world and adapt its behavior accordingly. New perception,
decision-making and control algorithms based on generative
models of joint interaction, such as the one described in this
paper, should be designed to achieve this capability.

6. CONCLUSIONS
In this paper, we have studied the fundamental behavioral

patterns and cues that enable the development of social at-
tachment and collaborative interaction. We also contribute to
the field of human-robot interaction, by developing a formal
description of some of the fundamental aspects of interaction
that would enable robots to perform as communicative part-
ners. To achieve these cross-disciplinary goals, we develop
computational models of synchrony in nonverbal interaction
that simulate the underlying dynamics of humans social be-
havior and can be implemented in socially interactive robots.

We have evaluated methods for quantifying and generat-
ing interactive behavior for a robot. From the initial web sur-
vey, we can conclude that humans are proficient at identify-
ing real interaction and that mutual information is a signifi-
cantly better predictor of interactivity score than conditional
entropy. There are several conclusions we can draw from this
information. First, because the real sequences have high mu-
tual information, the player behaviors are not independent
and mutual information is useful for quantifying interaction.
Second, in the real sequences, KL divergence tends to be low,
so in real interaction the distributions of the player’s behav-
iors are similar. Third, if we consider the subtle difference be-



tween mutual information and conditional entropy, we can
conclude that it is not advantageous to rely on discrimina-
tive methods to model dyadic interaction. Specifically, mea-
sures of interactivity that rely on the behavior of one player
X to directly predict the behavior of another player Y do not
perform well. Instead we should build generative models of
the interaction process as an intermediate step to answering
queries like Pr(Y |X = xi).

Lastly, the results of our interaction study suggest that the
interaction models and measures proposed in this work can
be learned and utilized by a robot to generate interactive be-
havior. These models can help us design engaging socially
interactive robots, as well as develop formal models of be-
havioral coordination that can be validated through embod-
ied human-robot interaction. Currently, the control strate-
gies used by the robot are responsive to the human, but not
adaptive. In the future, we will be extending the robot’s ca-
pabilities so that it will be able to not only perceive and au-
tomatically code what is going on during the interaction, but
also continue populating the model with data constructed in
interaction and to track changes in the model. Such a robot
can be used as a controllable tool for further experimentation
and in-depth study of the particular factors in social interac-
tion, such as imitation, rhythmic entrainment, joint attention,
and coordination.
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