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Abstract—We study a variant of a well-known pursuit present related work.
evasion game, the lion and man game. In this game a lion (the  The original lion-and-man game takes place in continuous
pursuer) tries to capture a man (the evader). The players move imq ang s played inside a circular arena. The first solution
in turns. At each time step, they can move a unit distance. We to thi d by Besi itch. i foll - th
focus on a version which takes place in an unbounded arena: the [©© IS game, proposed by BesICovich, IS as tollows: the
positive quadrant of the plane. The novelty of our formulation  lion moves to the center of the disk. Afterward, it remains
is in the sensor model. In the original formulation, the lion can  on the radius that passes through the man’s position. Since
sense the precise location of the man at all times. In our version, the players have the same speed, the lion can remain on the
which is inspired by mobile robots equipped with monocular o 4iy;5 and simultaneously move toward the man. It turns out
vision systems, the lion can only obtain bearing information hat th | fth - ial'in d .
about the man'’s location. We present a pursuit strategy which that the temporg aspect.o the game 1S cru.0|a In gterrglnln
guarantees that the distance between the players is reduced to the outcome. First, consider the discrete-time versiorgresh
the step size in a bounded number of steps. at every time step, the players move in turns. For this
| INTRODUCTION version, Besm_owtchs solution clearly guarantees cagptu
. ) _Surprisingly, Littlewood showed that when the game takes
Pursuit-evasion games are problems of fundamental iBjace in continuous time, the man wins! While the lion can
terest in Robotics. In a pursuit-evasion game, one or Moggyt arbitrarily close to the man in finite time, capturing the
pursuers try to capture an evader while the evader tries fQan takes forever. See [1] for an overview of these results.
avoid capture. Many problems arising from diverse appligor the continuous-time version, Alonso et al. presented an
cations such as collision-avoidance, search-and-restue, almost-optimal strategy by showing that the lion can get
traffic control and surveillance can be modeled as pursuilyithin a distancec of the man in timeO(Z log =) where
S (&

evasion games. _ _ r is the radius of the arena andis the maximum speed of
In most pursuit-evasion game formulations, the playerge players [2].

can observe each other's state (e.g. position) at all times.sga” studied a variant of the lion-and-man game which
However, in some robotics applications, the pursuer may ngdyes place in the non-negative quadrant of the plane [3].
have.the necessary sensors to obtain the e_vader’s positigiis version of the game first appeared in [4]. The outcome
In this paper, we focus on such a scenario and study @ the game depends on the initial positions of the players.
variant of a fundamental pursuit-evasion game, the lioth-an | o¢ (x, y,) and(z., y.) be the initial position of the pursuer
man game [1], [2], _[3]. In the original version of this_ga_me,and the evader respectively. If either > x, or y. > y,, it

a lion (pursuer) tries to capture a man (evader) inside {8 easy to see that the evader wins. Sgall showed that in the
circular arena by moving onto the man's current locationhemaining case, the pursuer wins. He presented an almost
The players are both holonomic. They have the same spegfhimal strategy that is quadratic in the pursuer’s distanc

and can observe each other’s locations. _ from the origin and the slope of the line connecting the
In our version, we restrict the pursuer's observation cajayer's initial locations.

pabilities. The pursuer can not directly observe the eveder Racently, Isler et al. showed that the lion can capture the
location. Instead, it has access to the readings of a bearingn, inside any simply-connected polygon [5]. Alexander et
only sensor such as a camera. In other words, the pursugr ,resented a sufficient condition for a natural greedststr

can obtain a ray that contains the evader but can not MeasWy to succeed in arbitrary dimensions [6]. More recently,

the location of the evader on this ray. The main question W8qnardikar et al. [7] studied a sensing limitation in thenkio
seek to answer is whether the pursuer can capture the evagghi. man game. In their model, the lion can observe the man’s

under this I|m|tat|on._ ) exact location only if the distance between the playersss le

Before we formalize the game model, we start with agap 4 given threshold. In this paper, we focus on a different
overview of the related work. type of sensing limitation and study pursuit strategies&or
A. Related work pursuer equipped with a bearing-only sensor.

There are numerous versions of pursuit-evasion games. g oyr results

this section, we focus on only the lion-and-man game and . - . L
Y 9 When the game is played inside a circle and in discrete-
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Fig. 2. After an evader move from the pursuer can infer that the evader
is inside the line segment by intersecting its bearing measurement (the
ray that originates fronp and goes through the evader’s true location) with

Fig. 1. ~ The greedy pursuit fails. The evader escapes by mgake  he ynjt pall around. Here,r = 1 is the maximum step size.

invariant that it must remain inside the axis parallel reckardgfined by
the pursuer’s location.

« The pursuer sensing again and intersecting the current

bounded, the man must eventually turn — at which point the @y With the previous estimate to get the exact position
distance between the players decreases. Though this greedy Of the evader.
strategy takes a long time to capture, it requires only bgari  Invariant 1. At the end of any round, the evader has to
information which implies that a pursuer with a bearingyon| be located between the pursuer and the origin.
sensor can capture the man inside a circular arena. Any winning pursuit strategy must maintain this invariant
Therefore, in this paper, we focus on the version oft all imes, otherwise the evader escapes by moving phralle
the game that takes place in the positive quadrant of tH a suitable axis away from the pursuer.
plane as studied in [4], [3]. Note that the greedy strategy Note that when it is the pursuer’s turn to move, he does
described above does not guarantee capture in this versio®t know the exact evader position. This limitation pregent
(see Figure 1). Further, the solution proposed in [3] regir the pursuer from employing the lion’s strategy described by
the precise location of the evadeefore the pursuer move.  Sgall [3]. We show that there exists a pursuer strategy which
Hence, it is not applicable for the bearing-only case. Weses a special point on the evader estimate (line-segment
present a novel strategy for the bearing-only pursuer which in Fig. 2) to make each of its moves, resulting in overall
guarantees “capture” provided that both of the initial atbor finite capture time. We call this @nservative move, because
nates of the evader is less than the pursuer’s correspondii§ pursuer ensures that Invariant 1 is not broken no matter
coordinates (otherwise the pursuer can not capture theeevathere on the estimate the evader actually lies.
even if he can observe the evader's precise location). An We say that the evader mptured and the pursuer wins
interesting aspect of our strategy is that it requires theyrr  the game if, at the end of any round the distance between
to combine multiple observations and the knowledge abotfte two players is less than or equal to a constaruch

the evader’s speed to compute its next move. a constant exists in practice, because the players are never
In the next section, we start by formalizing the gamdOint objects. In this paper we show that a pursuit strategy
model. which guarantees capture for any> 1 exists. Therefore, if
the step size is chosen so that the unit distance is smaller
Il. THE GAME MODEL than the radius of the evader, our strategy guarantees that
the pursuer “hits” the evader. We refer ¢oas thecapture

We study a discrete-time, continuous-space game. Durinﬁreshold

a time-step, the players can move at most unit distance. T €in the following section, we present the pursuer’s strategy

game 1S played in Fhe positive first quadrant, with the evz_ad_%rnd proceed to prove its correctness in Section IV.
starting at a location between the pursuer and the origin.

Initially, we assume that the pursuer is aware of the exact 1. PURSUER’'S STRATEGY

location of the evader (We will remove this assumption later gofore explaining the bearing-only pursuit strategy, we

in Se_ct|on IV-_A.). From then on, the pursuer uses bearmgg—ive a brief overview of Sgall's Lion strategy.
only information to estimate where the evader is. A roun

of the game consists of the following. A. Sgall’s Lion strategy

« An evader move in which he moves from his current In an earlier paper [3], Sgall presented a pursuer strategy
position to another that is at a distance at mo§tom that guarantees capture of the evader in the positive goadra
the previous position. of the plane, given that the initial conditions satisfy Iriva

« The pursuer sensing and estimating where the evaderast 1.
using the bearing information and the previous evader Let P and E£ be the initial coordinates of the pursuer and
position (Fig. 2). the evader respectively. SuppaBeand E satisfy Invariant 1.

o The pursuer making his move to a point at a distancEind a pointQ on the lineEP such thatP lies betweeny
at most1 away from his current location. and E, and a circleC' centered at), passing throughP,



touches (or cuts) both the X-axis and the Y-axis. The main ..~ P~ 7 __5----
idea is for the pursuer to make his moves in such a way thatE y
the circleC centered at) and passing through the pursuer’
current location advances further and further away frgm
until the evader is trapped. The pursuer executes his move
in the following manner.

Suppose the evader moved #© such that|EFE’| <
1 (maximum step size). The rag'E’ intersects a circle
centered af of radius 1 at two points. Of these, the pursuer
picks the point farthest frond and moves to it, call itP’. _ N _ _
This is the end of a round. We willrefer o this move as thES, %  CoPL condiin ne evader s capues wis deenatie
Lion’s move with respect to Q. estimate he actually is.

Sgall showed that the Lion’s strategy ensures capture by
proving that (a) the distance @f from the centei) always
increases by a lower bound, no matter what the evadePE~| > 1 (otherwise the evader would be captured soon
does, and, (b) the pursuer is always inside the line segmeafter his move), the foot of the perpendicular, calHit lies
connecting the evader to centé. These two conditions inside the circle of radius 1 centeredfat The distance of*
guarantee capture of the evader. Note that the pursuefrom the linePE* is least atd and monotonically increases
distance toQ can be viewed as a measurepbgress. We to |[P*E~| and then|P*E*|. Therefore
adopt this terminology in the rest of the paper. \P*H| < |P*E-| < |PE*| <1
B. Bearing-only strategy which proves that for all points os*E—, the evader is

In order to execute Sgall’s strategy, the pursuer needs y@thin a distance of 1 fromP*, implying capture. ™
know the exact location of the evader before making his When the pursuer’'s guess is wrong, the po@t$(t+1)
move. Although our pursuer can use the bearing-only rande(t+ 1) are not collinear. The evader is now on one side
to triangulate the position of the evader, he will know thef the linel through@ and the pursuer. This will trigger the

exact evader location onbfter he has moved. Therefore, he guarding phase where the pursuer switches togaarding
cannot use this information to execute an exact Lion’s movegrategy.

The bearing-only pursuit strategy starts by computing a
center@ as in Sgall's strategy. The strategy then proceeds L(P)|
in two main phases: (i) employing the original lion strategy il
with respect ta) whenever possible and, if not (ii) guarding 1,
the pursuer’s progress while “catching up” with the evader E* B %
in a finite number of steps.
We adapt Sgall's Lion strategy by using a conservative o
estimate of the evader's location: Let the position of the E 1
pursuer at timet be p(t) € R? and that of the evader be |
e(t) € R2. After the evader move, the pursuer builds an :
estimate of the evader position by intersecting his sensing
ray with a disc of unit radius centered &t). The pursuer Fig. 4. The guarding phase of the pursuer’s strategy, in vhi prevents
assumes that the evader is at some paihon this estimate the evader from crossing the link(P~).
and plays Sgall’s Lion strategy. The poifit is chosen as the
point on the estimate farthest from the center of the cirQle ( Call the point he should have been at to continue the Lion’s
used in the Lion strategy. By making this move, the pursueitrategy as®~ (Figure 4). LetZL(P~) be the line through—
ensures that Invariant 1 is never broken i.e. the evader dd@gent to the circle centered@tpassing througt®~. Since
not have a guaranteed escape plan even if the guess turnst®gt line through£~ and @ is perpendicular ta’(P~), the
to be wrong. Therefore, we refer #6* as theconservative ~ projection of E~ onto L(P~) is P~. If the pursuer were at

estimate. P~ instead ofP*, he could prevent the evader from crossing
The following lemma justifies using the conservative estil(P~) just by moving toward the evader’s projection on that
mate. line. We call thisguarding the line L(P~). The guarding

Lemma 1: Let E* be the conservative estimate aRd be ~ Strategy involves the pursuer moving frof to P~ and
the pursuer location after the pursuer's move Af E*| < 1,  then guardingL(P~) by staying onL(P~) and moving

the evader is captured. toward the evader’s projection.
Proof: Suppose the pursuer moved o assuming Figure 5 illustrates the states in the overall strategy.
that the evader was at the conservative estinfzitend this In the next section we show that:

leads to capture i.elP*E*| < 1, as shown in Figure 3. 1) The guarding strategy preserves the pursuer’s progress.
Drop the perpendicular fron#* on to the linePE*. Since In other words, suppose the distance betwéeand



Estimate wrong

from the centerQ) passing through the pursuer's current
location, and the lineL(P~). As the pursuer guards the
line L(P~), notice that the rayQP(t) is rotating toward
the ray QE(t). Thus, before the pursuer hits the axis its
moving toward, it is guaranteed that these two rays will sros
(unless the evader crosske&P ) first). When the rays cross,
the pursuer can simply move on to the evader’s projection.
Since the pursuer has stayed bP ), he is outside circle
Estimate correct C centered at) passing throughlP— i.e. at some finite time

_ ', |QP(t')| > d and the pursuer can resume with the Lion’s
Fig. 5. Two-state pursuer strategy. The pursuer makes megrhenever

he is in State A. When in State B, he guards his previous pregmed goes strategy without loss of progress. Therefore, as Iong_ as the
back to State A in a finite number of steps. evader does not attempt to cras6P ), the event described

in part (i) of the lemma will happen.
In the remaining case, the evader crosses thelliffe ™).

P~ (the “correct” pursuer location) when the pursuelFigure 6 illustrates such a case. Suppose the evader was at
switches to the guarding modeds We will show that
when the pursuer returns to the Lion’s strategy with
respect toQ), his distance ta will be at leastd.

2) In going from the lion’s game to the guarding strategy
and back to the lion’s game, the guarding phase takes
a finite number of steps.

In the next section, we will show that this pursuit strategy
yields capture.

State A
Conservative
Lion’s move

State B
Finite guarding

P catches up

IV. ANALYSIS

The pursuer starts by computing the circle cerfeand
proceeds with the Lion’s strategy using the conservative
estimate. Suppose the pursuer isPaand the evader ak.
The evader moves to a point &t £~ and the pursuer moves
to the pointP* as descrlbeq in our conservative Lion’s moveFig. 6. If the evaderE crosses the linel(P~), then the pursueP
Suppose that the evader is notft. Then, the evadet”™  moves towardE’ and the final distance between the players is at most
and @ are not collinear. This triggers the guarding phase. ¢ = |P*P~|.

Lemma 2: Suppose, after the pursuer’'s movg, F and@
are not collinear. Letl = [P~ Q| when this happens where E. His projectionF on the lineL(P~) is a distance at most
P~ is the true lion’s move corresponding to the evader move. = |P* P~ | away fromP i.e.|PF| < 6. The evader crosses
There exists a pursuer strategy which guarantees that one/gfP~) and lands atF’ such that|EE’| < 1 (maximum

the following happens in a finite number of steps: step-size). Since the angléE F'E’ is greater tharr/2 (the
(i) P, E andQ are collinear andi(P, Q) > d. evader crossed), arl@E’| = 1, we have|FE'| < 1. Apply
(i) |PE| < 1. triangular inequality inAFE’P and we get
Proof: Let L(P~) be the tangent aP~ to the circle
C centered at), passing through?~ (See Figure 4). Note |PE'| < |PF|+|FE'|<é+1

that L(P~) touches both of the axes (sin¢éalso does). o _
Let the radius ofC' be d = |QP~|. At the beginning Now, the pursuer moves alod@FE’ a unit distance to a point,

of the guarding phase, the pursuer observes the evadef@! it P'. Then|P'E’| = |PE’|—1 < 4. Thus, soon after the
(conservative) move to, sayy’. Let = be the intersection evader crosses, the distance between the players is at most
of L(P~) with the line segmen®@E’. We refer tor asthe 0. ] ] u
evader’s projection onto L(P~). If the pursuer can reach ~We now bound, the distance between poinks' and P~
the projection in the first step, condition (i) holds and we-€t P be the pursuer location before it moved#o. By the
are done. definition of the lion’s move, we have the angld®~ PP* <
Otherwise, the pursuer starts guardihgP~) by moving /2 yvhich means that < /2. In fact, a tighter bound is
onto the point onL(P~) that is closest to the evader's POSsible, given by the next lemma.
projection ontoL(P~). Clearly, the distance between the Lemma 3: Let4 be the distance between the polfit and
pursuer’s location and the evader’s projection is bounded B°~ as explained in Lemma 2. < 1.
§ = |P*P~|. The guarding phase ends if the pursuer can Lemma 3 is proven in the appendix.
move to the evader’s projection. The following theorem gives us our main result.
During the guarding phase, the evader is inside the areaTheorem 1. If the capture threshold is at least one, a
bounded by one or both of the coordinate axes, th&}Byt) pursuer with a bearing-only sensor can capture the evader in



a finite number of steps by following the two-state pursuecoordinates of” and the origin of the first quadrant. Further,
strategy. suppose the evader moves 4 and the pursuer has the
Proof: Whenever the pursuer makes the Lion's movebearing ray througl’. Call this rayr(P). Our idea is for the

he makes a definite progress as explained by Sgall in [Fjursuer to move to a poir®’ and then obtain his sensing ray

In our strategy, the pursuer plays a single Lion’s game with(P’). The intersection of(P) andr(P’) gives the pursuer

finite capture time. However, after a pursuer move, the Isionthe exact location o2’ and now he continues with,,.

move may not exist. We showed that whenever this happens,Note that P’ has to be chosen in such a way that

either (i) the pursuer returns to the original Lion’s game innvariant 1 is not broken and the ray¢P) and r(P’) do

a finite number of steps and claims the progress possibi®t coincide. There are two cases that arise.

with the correct lion’s move, or (i) the distance betweea th  Suppose thaf’ lies between the pursuer and the origin,

players drops below one and hence, the evader is capturéeén the pursuer can simply move parallel to one of the axes,

if the capture threshold is at least one. toward the evader and the new sensing ray will give him the
The whole game can now be viewed as a finite sequeneequired information. Invariant 1 is clearly preserved.

of gamesG, G2, Gs, . .., G, where games with odd indices  In the event that’ crosses the pursuer along one of his

are parts of a single Lion’s game (with increasing progresgpordinates, say Y (the other coordinate follows a symmetri

and the even indices are guarding games that last a findegument), the pursuer moves one unit away from the origin

number of steps and preserve the pursuer’s progress frgarallel to the Y-axis. This guarantees that Invariant 1 is

one Lion’s game to the next. preserved because they initially started with a positive Y-
We now provide an upper-bound on the capture timeeparation. Further, the intersection of the new sensipg ra

Suppose the game starts with the pursuefaat yo) and with the previous one gives the pursuer the exact location of

the evader afzg,y;) and letag = (yo — y5)/(z0 — () be  the evader and he plays the rest of the game following our

the initial slope of the line joining them. Then, the totalstrategys,. ]
capture time for the Lion’s game (sum of the times for
G1,G3,Gs5,...) as derived in [3] is: V. CONCLUSION

T, = maz{(zo + yo(ao + V14 ag?))?, In this paper, we studied the effect of a common sensing

3 5\ 2 limitation on a well-known pursuit-evasion game. We showed
(o + zo(ao ™" + V1 + ap™2)) that, a pursuer with a bearing-only sensor can decrease the

A single guarding game lasts for a time of at most thélistance between the players to the step-size. A remaining

maximum of the X and Y coordinates of the pursuedt Open question is whether the pursuer can decrease the

which, by construction of the initial circle centerégl and distance to zero.

the imposition of Invariant 1, is bounded from above by the Throughout the paper, we assumed that the pursuer can lo-

maximum of the X and Y coordinates of the cenfgrThus calize itself precisely. Another direction of future resdais

the capture time for a single guarding game is given by to incorporate uncertainties regarding the pursuer'stiooa

into the pursuit strategy.
Te = maz{zo +yolao + 1+ ag?),
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Since, in the worst case, the switch from the Lion’s game
to a guarding game happens at the end of each time st
the total capture time is bounded By, 7¢.
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APPENDIX Consider the situation shown in Figure 8. Compare the

PROOF OF LEMMA 3. two configurationsP, F; and P, E; such thats; > s;. For
We derive an upper bound @n= |P* P~ | with geometric the evader at;, the lines fromQ) intersect the pursuer’s unit
arguments. circle at A and B. For any configuration with the evader at

E5 such thatsy < s1, we can adjustvy to have the same
top point A on the pursuer’s unit circle. Observe that this
ray intersects the unit circle centered/at at a point lower
than B by construction, because the unit circle centered at
E5 is closer to P. Thus the rays from@ through these
points intersect the pursuer’s unit circle Atand C', where
C is farther fromA than B. Since A, B and C are on the
same circle centered &, we getZ/BPA < ZCPA ie.
S B(s1, 1) < B(s2,a2). Thus parametes is such that smaller
values dominate larger values. [ ]
Since s > 1 (otherwise the evader is already captured),
Lemma 5 allows us to restrict our search for maximgrto

We express the anglg P~ PP* as a function of three the intervals € [1,2]. o
parameters, as shown in Figure 7:{j)the distance between ~When s goes below 2, the unit circles centered at the
the evaderE and the pursueP before the move, (i), the evader and pursuer intersect, causing the point on the evade
distance between the centér of the Lion’s circle and the €stimate closest to the pursuer to move from being on
pursuerP and (iii) o, the angle of the sensing ray of thethe evader's circle to being on the pursuers circle. This
pursuer with the linePE. By studying hows varies with made it difficult to obtain an analytical solution. We dedve
each parameter, we compute an upper bound on the distafg@ Symbolic expression foff and solved this problem
betweenP* and P—. Observe that since both of these pointgumerically by plottings versusa versusj in MATLAB.
lie on a unit circle centered &, |P*P~| andZP~PP* are Figure 9 shows the 3D surface plot.
directly related. For the rest of our analysis, we refer fe th
parametrized angle a%(s, a, z).

Effect of z. As the point@Q moves away fromP (i.e. as
z goes to infinity), observe thaP* rotates about the unit
circle centered af” at a rate quicker tha®~ does. Thus
B(s,a, z) increases as — oo. This means that the highest
value of 5 is achieved whe) is at infinity. In this case, the
lines QP~E~ and QP*E* become parallel t@QPE. To
minimize 3, we can focus on the remaining two parameter
and setz to oc.

Effect of s.

Lemma 5. Let 2 < s, < 51 be two evader locations and
a1 be a viewing angle. There exists a viewing angbesuch
that 3(s2, ) > B(s1, 1).

Proof:

Fig. 7. Upper bound ohP*P~|: We expres§P*P~| as a function of
three parameters, z and .

*

SO Y

r 2 1
f s eS ee s ven T unn R R R
SO RO T

OP PP

a s=d(P.E)T]L,2

Fig. 9. Plot of 3 = LP~ PP* versus parameters and a.

As it can be seen from the figure, the maximum value
attained is less than/3. Since|P~ P| and |P*P| are both

Fig. 8. Dominance of the parameter: a lower value af gives a higher of Iength l,|P*P’| is bounded from above by 1.

value of 8, although for a different value af.



