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Abstract— We study a variant of a well-known pursuit
evasion game, the lion and man game. In this game a lion (the
pursuer) tries to capture a man (the evader). The players move
in turns. At each time step, they can move a unit distance. We
focus on a version which takes place in an unbounded arena: the
positive quadrant of the plane. The novelty of our formulation
is in the sensor model. In the original formulation, the lion can
sense the precise location of the man at all times. In our version,
which is inspired by mobile robots equipped with monocular
vision systems, the lion can only obtain bearing information
about the man’s location. We present a pursuit strategy which
guarantees that the distance between the players is reduced to
the step size in a bounded number of steps.

I. INTRODUCTION

Pursuit-evasion games are problems of fundamental in-
terest in Robotics. In a pursuit-evasion game, one or more
pursuers try to capture an evader while the evader tries to
avoid capture. Many problems arising from diverse appli-
cations such as collision-avoidance, search-and-rescue,air-
traffic control and surveillance can be modeled as pursuit-
evasion games.

In most pursuit-evasion game formulations, the players
can observe each other’s state (e.g. position) at all times.
However, in some robotics applications, the pursuer may not
have the necessary sensors to obtain the evader’s position.
In this paper, we focus on such a scenario and study a
variant of a fundamental pursuit-evasion game, the lion-and-
man game [1], [2], [3]. In the original version of this game,
a lion (pursuer) tries to capture a man (evader) inside a
circular arena by moving onto the man’s current location.
The players are both holonomic. They have the same speed
and can observe each other’s locations.

In our version, we restrict the pursuer’s observation ca-
pabilities. The pursuer can not directly observe the evader’s
location. Instead, it has access to the readings of a bearing-
only sensor such as a camera. In other words, the pursuer
can obtain a ray that contains the evader but can not measure
the location of the evader on this ray. The main question we
seek to answer is whether the pursuer can capture the evader
under this limitation.

Before we formalize the game model, we start with an
overview of the related work.

A. Related work

There are numerous versions of pursuit-evasion games. In
this section, we focus on only the lion-and-man game and
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present related work.
The original lion-and-man game takes place in continuous

time and is played inside a circular arena. The first solution
to this game, proposed by Besicovitch, is as follows: the
lion moves to the center of the disk. Afterward, it remains
on the radius that passes through the man’s position. Since
the players have the same speed, the lion can remain on the
radius and simultaneously move toward the man. It turns out
that the temporal aspect of the game is crucial in determining
the outcome. First, consider the discrete-time version, where
at every time step, the players move in turns. For this
version, Besicovitch’s solution clearly guarantees capture.
Surprisingly, Littlewood showed that when the game takes
place in continuous time, the man wins! While the lion can
get arbitrarily close to the man in finite time, capturing the
man takes forever. See [1] for an overview of these results.
For the continuous-time version, Alonso et al. presented an
almost-optimal strategy by showing that the lion can get
within a distancec of the man in timeO( r

s
log r

c
) where

r is the radius of the arena ands is the maximum speed of
the players [2].

Sgall studied a variant of the lion-and-man game which
takes place in the non-negative quadrant of the plane [3].
This version of the game first appeared in [4]. The outcome
of the game depends on the initial positions of the players.
Let (xp, yp) and(xe, ye) be the initial position of the pursuer
and the evader respectively. If eitherxe ≥ xp or ye ≥ yp, it
is easy to see that the evader wins. Sgall showed that in the
remaining case, the pursuer wins. He presented an almost
optimal strategy that is quadratic in the pursuer’s distance
from the origin and the slope of the line connecting the
player’s initial locations.

Recently, Isler et al. showed that the lion can capture the
man inside any simply-connected polygon [5]. Alexander et
al. presented a sufficient condition for a natural greedy strat-
egy to succeed in arbitrary dimensions [6]. More recently,
Bopardikar et al. [7] studied a sensing limitation in the lion-
and-man game. In their model, the lion can observe the man’s
exact location only if the distance between the players is less
than a given threshold. In this paper, we focus on a different
type of sensing limitation and study pursuit strategies fora
pursuer equipped with a bearing-only sensor.

B. Our results

When the game is played inside a circle and in discrete-
time, it is easy to see that the lion can capture the man
simply by moving toward it along the linel connecting them:
to maintain the distance between the players, the man must
move away from the lion alongl. But since the arena is
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Fig. 1. The greedy pursuit fails. The evader escapes by breaking the
invariant that it must remain inside the axis parallel rectangle defined by
the pursuer’s location.

bounded, the man must eventually turn – at which point the
distance between the players decreases. Though this greedy
strategy takes a long time to capture, it requires only bearing
information which implies that a pursuer with a bearing-only
sensor can capture the man inside a circular arena.

Therefore, in this paper, we focus on the version of
the game that takes place in the positive quadrant of the
plane as studied in [4], [3]. Note that the greedy strategy
described above does not guarantee capture in this version
(see Figure 1). Further, the solution proposed in [3] requires
the precise location of the evaderbefore the pursuer move.
Hence, it is not applicable for the bearing-only case. We
present a novel strategy for the bearing-only pursuer which
guarantees “capture” provided that both of the initial coordi-
nates of the evader is less than the pursuer’s corresponding
coordinates (otherwise the pursuer can not capture the evader
even if he can observe the evader’s precise location). An
interesting aspect of our strategy is that it requires the pursuer
to combine multiple observations and the knowledge about
the evader’s speed to compute its next move.

In the next section, we start by formalizing the game
model.

II. THE GAME MODEL

We study a discrete-time, continuous-space game. During
a time-step, the players can move at most unit distance. The
game is played in the positive first quadrant, with the evader
starting at a location between the pursuer and the origin.
Initially, we assume that the pursuer is aware of the exact
location of the evader (We will remove this assumption later
in Section IV-A.). From then on, the pursuer uses bearing-
only information to estimate where the evader is. A round
of the game consists of the following.

• An evader move in which he moves from his current
position to another that is at a distance at most1 from
the previous position.

• The pursuer sensing and estimating where the evader is
using the bearing information and the previous evader
position (Fig. 2).

• The pursuer making his move to a point at a distance
at most1 away from his current location.
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Fig. 2. After an evader move frome, the pursuer can infer that the evader
is inside the line segmentu by intersecting its bearing measurement (the
ray that originates fromp and goes through the evader’s true location) with
the unit ball arounde. Here,r = 1 is the maximum step size.

• The pursuer sensing again and intersecting the current
ray with the previous estimate to get the exact position
of the evader.

Invariant 1. At the end of any round, the evader has to
be located between the pursuer and the origin.

Any winning pursuit strategy must maintain this invariant
at all times, otherwise the evader escapes by moving parallel
to a suitable axis away from the pursuer.

Note that when it is the pursuer’s turn to move, he does
not know the exact evader position. This limitation prevents
the pursuer from employing the lion’s strategy described by
Sgall [3]. We show that there exists a pursuer strategy which
uses a special point on the evader estimate (line-segment
u in Fig. 2) to make each of its moves, resulting in overall
finite capture time. We call this aconservative move, because
the pursuer ensures that Invariant 1 is not broken no matter
where on the estimate the evader actually lies.

We say that the evader iscaptured and the pursuer wins
the game if, at the end of any round the distance between
the two players is less than or equal to a constantc. Such
a constant exists in practice, because the players are never
point objects. In this paper we show that a pursuit strategy
which guarantees capture for anyc ≥ 1 exists. Therefore, if
the step size is chosen so that the unit distance is smaller
than the radius of the evader, our strategy guarantees that
the pursuer “hits” the evader. We refer toc as thecapture
threshold.

In the following section, we present the pursuer’s strategy
and proceed to prove its correctness in Section IV.

III. PURSUER’S STRATEGY

Before explaining the bearing-only pursuit strategy, we
give a brief overview of Sgall’s Lion strategy.

A. Sgall’s Lion strategy

In an earlier paper [3], Sgall presented a pursuer strategy
that guarantees capture of the evader in the positive quadrant
of the plane, given that the initial conditions satisfy Invari-
ant 1.

Let P andE be the initial coordinates of the pursuer and
the evader respectively. SupposeP andE satisfy Invariant 1.
Find a pointQ on the lineEP such thatP lies betweenQ
and E, and a circleC centered atQ, passing throughP ,



touches (or cuts) both the X-axis and the Y-axis. The main
idea is for the pursuer to make his moves in such a way that
the circleC centered atQ and passing through the pursuer’s
current location advances further and further away fromQ
until the evader is trapped. The pursuer executes his move
in the following manner.

Suppose the evader moved toE′ such that |EE′| ≤
1 (maximum step size). The rayCE′ intersects a circle
centered atP of radius 1 at two points. Of these, the pursuer
picks the point farthest fromQ and moves to it, call itP ′.
This is the end of a round. We will refer to this move as the
Lion’s move with respect to Q.

Sgall showed that the Lion’s strategy ensures capture by
proving that (a) the distance ofP from the centerQ always
increases by a lower bound, no matter what the evader
does, and, (b) the pursuer is always inside the line segment
connecting the evader to centerQ. These two conditions
guarantee capture of the evader. Note that the pursuer’s
distance toQ can be viewed as a measure ofprogress. We
adopt this terminology in the rest of the paper.

B. Bearing-only strategy

In order to execute Sgall’s strategy, the pursuer needs to
know the exact location of the evader before making his
move. Although our pursuer can use the bearing-only ray
to triangulate the position of the evader, he will know the
exact evader location onlyafter he has moved. Therefore, he
cannot use this information to execute an exact Lion’s move.

The bearing-only pursuit strategy starts by computing a
centerQ as in Sgall’s strategy. The strategy then proceeds
in two main phases: (i) employing the original lion strategy
with respect toQ whenever possible and, if not (ii) guarding
the pursuer’s progress while “catching up” with the evader
in a finite number of steps.

We adapt Sgall’s Lion strategy by using a conservative
estimate of the evader’s location: Let the position of the
pursuer at timet be p(t) ∈ R

2 and that of the evader be
e(t) ∈ R

2. After the evader move, the pursuer builds an
estimate of the evader position by intersecting his sensing
ray with a disc of unit radius centered ate(t). The pursuer
assumes that the evader is at some pointE∗ on this estimate
and plays Sgall’s Lion strategy. The pointE∗ is chosen as the
point on the estimate farthest from the center of the circle (Q)
used in the Lion strategy. By making this move, the pursuer
ensures that Invariant 1 is never broken i.e. the evader does
not have a guaranteed escape plan even if the guess turns out
to be wrong. Therefore, we refer toE∗ as theconservative
estimate.

The following lemma justifies using the conservative esti-
mate.

Lemma 1: Let E∗ be the conservative estimate andP ∗ be
the pursuer location after the pursuer’s move. If|P ∗E∗| ≤ 1,
the evader is captured.

Proof: Suppose the pursuer moved toP ∗ assuming
that the evader was at the conservative estimateE∗ and this
leads to capture i.e.|P ∗E∗| ≤ 1, as shown in Figure 3.
Drop the perpendicular fromP ∗ on to the linePE∗. Since
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Fig. 3. Capture condition: If the evader is captured w.r.t the conservative
estimate i.e.|P ∗E∗| ≤ 1, then he is captured no matter where on the
estimate he actually is.

|PE−| > 1 (otherwise the evader would be captured soon
after his move), the foot of the perpendicular, call itH, lies
inside the circle of radius 1 centered atP . The distance ofP ∗

from the linePE∗ is least atH and monotonically increases
to |P ∗E−| and then|P ∗E∗|. Therefore

|P ∗H| < |P ∗E−| < |P ∗E∗| ≤ 1

which proves that for all points onE∗E−, the evader is
within a distance of 1 fromP ∗, implying capture.

When the pursuer’s guess is wrong, the pointsQ, p(t+1)
ande(t+1) are not collinear. The evader is now on one side
of the linel throughQ and the pursuer. This will trigger the
guarding phase where the pursuer switches to aguarding
strategy.
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Fig. 4. The guarding phase of the pursuer’s strategy, in which he prevents
the evader from crossing the lineL(P−).

Call the point he should have been at to continue the Lion’s
strategy asP− (Figure 4). LetL(P−) be the line throughP−

tangent to the circle centered atQ passing throughP−. Since
the line throughE− andQ is perpendicular toL(P−), the
projection ofE− onto L(P−) is P−. If the pursuer were at
P− instead ofP ∗, he could prevent the evader from crossing
L(P−) just by moving toward the evader’s projection on that
line. We call thisguarding the line L(P−). The guarding
strategy involves the pursuer moving fromP ∗ to P− and
then guardingL(P−) by staying onL(P−) and moving
toward the evader’s projection.

Figure 5 illustrates the states in the overall strategy.
In the next section we show that:

1) The guarding strategy preserves the pursuer’s progress.
In other words, suppose the distance betweenQ and
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Conservative

Lion’s move

State B

Finite guarding

Estimate correct

Estimate wrong

P catches up

Fig. 5. Two-state pursuer strategy. The pursuer makes progress whenever
he is in State A. When in State B, he guards his previous progress and goes
back to State A in a finite number of steps.

P− (the “correct” pursuer location) when the pursuer
switches to the guarding mode isd. We will show that
when the pursuer returns to the Lion’s strategy with
respect toQ, his distance toQ will be at leastd.

2) In going from the lion’s game to the guarding strategy
and back to the lion’s game, the guarding phase takes
a finite number of steps.

In the next section, we will show that this pursuit strategy
yields capture.

IV. ANALYSIS

The pursuer starts by computing the circle centerQ and
proceeds with the Lion’s strategy using the conservative
estimate. Suppose the pursuer is atP and the evader atE.
The evader moves to a point onE∗E− and the pursuer moves
to the pointP ∗ as described in our conservative Lion’s move.
Suppose that the evader is not atE∗. Then, the evader,P ∗

andQ are not collinear. This triggers the guarding phase.
Lemma 2: Suppose, after the pursuer’s move,P , E andQ

are not collinear. Letd = |P−Q| when this happens where
P− is the true lion’s move corresponding to the evader move.
There exists a pursuer strategy which guarantees that one of
the following happens in a finite number of steps:

(i) P , E andQ are collinear andd(P,Q) ≥ d.
(ii) |PE| ≤ 1.

Proof: Let L(P−) be the tangent atP− to the circle
C centered atQ, passing throughP− (See Figure 4). Note
that L(P−) touches both of the axes (sinceC also does).

Let the radius ofC be d = |QP−|. At the beginning
of the guarding phase, the pursuer observes the evader’s
(conservative) move to, say,E′. Let x be the intersection
of L(P−) with the line segmentQE′. We refer tox as the
evader’s projection onto L(P−). If the pursuer can reach
the projection in the first step, condition (i) holds and we
are done.

Otherwise, the pursuer starts guardingL(P−) by moving
onto the point onL(P−) that is closest to the evader’s
projection ontoL(P−). Clearly, the distance between the
pursuer’s location and the evader’s projection is bounded by
δ = |P ∗P−|. The guarding phase ends if the pursuer can
move to the evader’s projection.

During the guarding phase, the evader is inside the area
bounded by one or both of the coordinate axes, the rayQP (t)

from the centerQ passing through the pursuer’s current
location, and the lineL(P−). As the pursuer guards the
line L(P−), notice that the rayQP (t) is rotating toward
the ray QE(t). Thus, before the pursuer hits the axis its
moving toward, it is guaranteed that these two rays will cross
(unless the evader crossesL(P−) first). When the rays cross,
the pursuer can simply move on to the evader’s projection.
Since the pursuer has stayed onL(P−), he is outside circle
C centered atQ passing throughP− i.e. at some finite time
t′, |QP (t′)| ≥ d and the pursuer can resume with the Lion’s
strategy without loss of progress. Therefore, as long as the
evader does not attempt to crossL(P−), the event described
in part (i) of the lemma will happen.

In the remaining case, the evader crosses the lineL(P−).
Figure 6 illustrates such a case. Suppose the evader was at
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Fig. 6. If the evaderE crosses the lineL(P−), then the pursuerP
moves towardE′ and the final distance between the players is at most
δ = |P ∗P−|.

E. His projectionF on the lineL(P−) is a distance at most
δ = |P ∗P−| away fromP i.e. |PF | ≤ δ. The evader crosses
L(P−) and lands atE′ such that|EE′| ≤ 1 (maximum
step-size). Since the angle∠EFE′ is greater thanπ/2 (the
evader crossed), and|EE′| = 1, we have|FE′| ≤ 1. Apply
triangular inequality in∆FE′P and we get

|PE′| ≤ |PF | + |FE′| ≤ δ + 1

Now, the pursuer moves alongPE′ a unit distance to a point,
call it P ′. Then|P ′E′| = |PE′|−1 ≤ δ. Thus, soon after the
evader crosses, the distance between the players is at most
δ.

We now boundδ, the distance between pointsP ∗ andP−.
Let P be the pursuer location before it moved toP ∗. By the
definition of the lion’s move, we have the angle∠P−PP ∗ ≤
π/2 which means thatδ ≤

√
2. In fact, a tighter bound is

possible, given by the next lemma.
Lemma 3: Let δ be the distance between the pointP ∗ and

P− as explained in Lemma 2.δ ≤ 1.
Lemma 3 is proven in the appendix.
The following theorem gives us our main result.
Theorem 1: If the capture threshold is at least one, a

pursuer with a bearing-only sensor can capture the evader in



a finite number of steps by following the two-state pursuer
strategy.

Proof: Whenever the pursuer makes the Lion’s move,
he makes a definite progress as explained by Sgall in [3].
In our strategy, the pursuer plays a single Lion’s game with
finite capture time. However, after a pursuer move, the Lion’s
move may not exist. We showed that whenever this happens,
either (i) the pursuer returns to the original Lion’s game in
a finite number of steps and claims the progress possible
with the correct lion’s move, or (ii) the distance between the
players drops below one and hence, the evader is captured
if the capture threshold is at least one.

The whole game can now be viewed as a finite sequence
of gamesG1, G2, G3, . . . , Gn where games with odd indices
are parts of a single Lion’s game (with increasing progress)
and the even indices are guarding games that last a finite
number of steps and preserve the pursuer’s progress from
one Lion’s game to the next.

We now provide an upper-bound on the capture time.
Suppose the game starts with the pursuer at(x0, y0) and
the evader at(x′

0
, y′

0
) and letα0 = (y0 − y′

0
)/(x0 − x′

0
) be

the initial slope of the line joining them. Then, the total
capture time for the Lion’s game (sum of the times for
G1, G3, G5, . . .) as derived in [3] is:

TL = max{(x0 + y0(α0 +
√

1 + α0
2))2,

(y0 + x0(α0
−1 +

√

1 + α0
−2))2

A single guarding game lasts for a time of at most the
maximum of the X and Y coordinates of the pursuer atP ∗,
which, by construction of the initial circle centeredQ and
the imposition of Invariant 1, is bounded from above by the
maximum of the X and Y coordinates of the centerQ. Thus
the capture time for a single guarding game is given by

TG = max{x0 + y0(α0 +
√

1 + α0
2),

x0 + x0(α0
−2(1 +

√

1 + α0
2))}

Since, in the worst case, the switch from the Lion’s game
to a guarding game happens at the end of each time step,
the total capture time is bounded byTLTG.

A. Knowledge about the evader’s initial location

We started the paper with the assumption that the pursuer
knows the exact initial location of the evader. In this section,
we remove this assumption. The main idea is to have the
pursuer perform a “safe” initial move and obtain the evader’s
position by triangulation. This is formalized in the following
lemma.

Lemma 4: Call the two-state pursuer strategy described
earlier asSp. As explained in Section III-B,Sp requires the
initial location of the evader for our analysis to hold. If the
pursuer does not know the initial location of the evader, then
there exists an initial pursuer move that allows him to obtain
the exact evader location, after which he can continue with
Sp.

Proof: Suppose the pursuer starts atP and the evader
at E such that the coordinates ofE lie in between the

coordinates ofP and the origin of the first quadrant. Further,
suppose the evader moves toE′ and the pursuer has the
bearing ray throughE′. Call this rayr(P ). Our idea is for the
pursuer to move to a pointP ′ and then obtain his sensing ray
r(P ′). The intersection ofr(P ) andr(P ′) gives the pursuer
the exact location ofE′ and now he continues withSp.

Note that P ′ has to be chosen in such a way that
Invariant 1 is not broken and the raysr(P ) and r(P ′) do
not coincide. There are two cases that arise.

Suppose thatE′ lies between the pursuer and the origin,
then the pursuer can simply move parallel to one of the axes,
toward the evader and the new sensing ray will give him the
required information. Invariant 1 is clearly preserved.

In the event thatE′ crosses the pursuer along one of his
coordinates, say Y (the other coordinate follows a symmetric
argument), the pursuer moves one unit away from the origin
parallel to the Y-axis. This guarantees that Invariant 1 is
preserved because they initially started with a positive Y-
separation. Further, the intersection of the new sensing ray
with the previous one gives the pursuer the exact location of
the evader and he plays the rest of the game following our
strategySp.

V. CONCLUSION

In this paper, we studied the effect of a common sensing
limitation on a well-known pursuit-evasion game. We showed
that, a pursuer with a bearing-only sensor can decrease the
distance between the players to the step-size. A remaining
open question is whether the pursuer can decrease the
distance to zero.

Throughout the paper, we assumed that the pursuer can lo-
calize itself precisely. Another direction of future research is
to incorporate uncertainties regarding the pursuer’s location
into the pursuit strategy.
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APPENDIX

PROOF OF LEMMA 3.
We derive an upper bound onδ = |P ∗P−| with geometric

arguments.
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Fig. 7. Upper bound on|P ∗P−|: We express|P ∗P−| as a function of
three parameterss, z andα.

We express the angle∠P−PP ∗ as a function of three
parameters, as shown in Figure 7: (i)s, the distance between
the evaderE and the pursuerP before the move, (ii)z, the
distance between the centerQ of the Lion’s circle and the
pursuerP and (iii) α, the angle of the sensing ray of the
pursuer with the linePE. By studying howδ varies with
each parameter, we compute an upper bound on the distance
betweenP ∗ andP−. Observe that since both of these points
lie on a unit circle centered atP , |P ∗P−| and∠P−PP ∗ are
directly related. For the rest of our analysis, we refer to this
parametrized angle asβ(s, α, z).

Effect of z. As the pointQ moves away fromP (i.e. as
z goes to infinity), observe thatP ∗ rotates about the unit
circle centered atP at a rate quicker thanP− does. Thus
β(s, α, z) increases asz −→ ∞. This means that the highest
value ofβ is achieved whenQ is at infinity. In this case, the
lines QP−E− and QP ∗E∗ become parallel toQPE. To
minimize β, we can focus on the remaining two parameters
and setz to ∞.

Effect of s.
Lemma 5: Let 2 ≤ s2 < s1 be two evader locations and

α1 be a viewing angle. There exists a viewing angleα2 such
that β(s2, α2) > β(s1, α1).

Proof:

P

A

B
C

s1

s2

α1 α2

E1 E2

Fig. 8. Dominance of thes parameter: a lower value ofs gives a higher
value ofβ, although for a different value ofα.

Consider the situation shown in Figure 8. Compare the
two configurationsP,E1 and P,E2 such thats1 > s2. For
the evader atE1, the lines fromQ intersect the pursuer’s unit
circle atA andB. For any configuration with the evader at
E2 such thats2 < s1, we can adjustα2 to have the same
top point A on the pursuer’s unit circle. Observe that this
ray intersects the unit circle centered atE2 at a point lower
than B by construction, because the unit circle centered at
E2 is closer toP . Thus the rays fromQ through these
points intersect the pursuer’s unit circle atA andC, where
C is farther fromA than B. SinceA, B and C are on the
same circle centered atP , we get ∠BPA < ∠CPA i.e.
β(s1, α1) < β(s2, α2). Thus parameters is such that smaller
values dominate larger values.

Since s > 1 (otherwise the evader is already captured),
Lemma 5 allows us to restrict our search for maximumβ to
the intervals ∈ [1, 2].

When s goes below 2, the unit circles centered at the
evader and pursuer intersect, causing the point on the evader
estimate closest to the pursuer to move from being on
the evader’s circle to being on the pursuer’s circle. This
made it difficult to obtain an analytical solution. We derived
the symbolic expression forβ and solved this problem
numerically by plottings versusα versusβ in MATLAB.
Figure 9 shows the 3D surface plot.
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Fig. 9. Plot ofβ = ∠P−PP ∗ versus parameterss andα.

As it can be seen from the figure, the maximum value
attained is less thanπ/3. Since|P−P | and |P ∗P | are both
of length 1,|P ∗P−| is bounded from above by 1.


