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Abstract— Allowing robots to communicate naturally with
humans is an important goal for social robotics. Most ap-
proaches have focused on building high-level probabilistic
cognitive models. However, research in cognitive science shows
that people often build common ground for communication with
each other by seeking and providing evidence of understanding
through behaviors like mimicry. Predictive State Representa-
tions (PSRs) allow one to build explicit, low-level models of
the expected outcomes of actions, and are therefore well-suited
for tasks that require providing such evidence of understanding.
Using human-robot shadow puppetry as a prototype interaction
study, we show that PSRs can be used successfully to both model
human interactions, and to allow a robot to learn on-line how
to engage a human in an interesting interaction.

I. INTRODUCTION

Just as computers started out as academic and industrial
tools before becoming part of daily life, robots cut their
teeth in factories but have now begun to enter the domestic
domain. Robots that vacuum floors and mow lawns are
commercially available, and in the coming years, robots will
likely become increasingly common in homes. Robots have
the potential to provide cognitive and physical assistance to
an increasing elderly population which could alleviate the
strain on the health care system and improve their quality of
life by letting them remain independent for longer. However,
in order for robots to be maximally helpful, they must not
make their user’s lives more difficult by being dangerous or
unpleasant to deal with. One particularly challenging project
is to make systems that communicate naturally with humans.

How can artificial agents, in particular embodied robots,
participate meaningfully in interaction with humans? A so-
cial interaction with a human can be thought of as operating
in a highly uncertain stochastic dynamic system. Tradition-
ally, in AI, robotics, and control theory, an agent starts with
a model of the world and that model dictates the way it
behaves and learns. This approach has produced impressive
results for certain types of difficult robotics problems, such
as helicopter flight [1] and autonomous vehicle control [2].
However, adapting this approach to social robots leads to an
array of problems. At the very least, a model of embodied
interaction with humans would need to be orders of mag-
nitude more complex than the kinds used to successfully

perform typical probabilistic reasoning tasks [3]. A different
approach to enabling human-robot interaction is suggested
by ‘emergent’ theories of cognition and social cognition,
which say that the understanding, meaning, and rules of
social interaction are not a property of the world, but rather
something that is agreed upon. Taking this view, the goal of
a social robot is to create shared meaning with another agent.
The nature of the problem is fundamentally different from
navigation or manipulation. Existing frameworks for learning
to control dynamical systems may, therefore, not be suitable
for learning to participate in embodied discourse. However,
it is still important to understand the stochastic dynamics
underlying social interactions.

In this paper we focus on low level probabilistic models
for understanding how others react to one’s actions in dis-
course. Specifically, we propose the use of predictive state
representations (PSRs [4], [5]) in order to learn expected
responses to particular behaviors. This replicates the social
process of signal grounding, in which participants in a
dialog look for patterns in the exchange of social behaviors
and learn to predict responses to their actions [6], [7].
Signal grounding is an essential component of a higher-
level procedure called symbol grounding, which uses these
learned responses to establish common meaning. If a robot
is to learn to communicate with humans from the ground
up, a first step would be to predict responses to particular
actions or behaviors. We demonstrate the feasibility of this
in an experimental human-robot interaction domain, shadow
puppetry [8]. The limited range of actions combined with
the ability to map sensory inputs to particular observations
in the observation space with high fidelity make this an ideal
domain for exploring reinforcement learning and control
algorithms. At the same time, the limitation on the number
of actions does not preclude participants from exhibiting
complex low-level behaviors like imitation, anticipation, and
coordination.

A. Contributions

We describe how to use PSRs to model interactions be-
tween humans and between humans and robots in the shadow
puppetry domain. We show that we can model interaction as



a stochastic dynamical system by learning accurate PSRs
with good predictive power on data from human-human
shadow puppetry interactions (Section III). We propose a
robot control algorithm based on the PSR representation
that allows a robotic hand to learn on-line how to behave
when interacting with a human controlled shadow puppet,
and demonstrate in a small pilot user study the feasibility
of (i) learning the intent of the human, and (ii) engaging
humans in interesting social discourse (Section IV). Overall
this work serves as both a demonstration that PSRs can be
useful for real-world tasks, and as a proof-of-concept that al-
lowing agents to build and manage their own representations
can succeed in tasks where specifying a model of desired
behavior is difficult.

II. BACKGROUND AND RELATED WORK

Control is essential to interaction [9]. Learning to evoke
and predict responses from others is an important part
of social learning. The natural approach to this problem
therefore seems to be a decision-theoretic one that models a
dynamical system that is not completely observable, such as
a partially observable Markov decision process (POMDPs).
The descriptive power of these frameworks is attractive for
real-world robot tasks because it enables agents to reason
about the result of future actions by interacting with the
world and receiving feedback using imperfect perception.
Typically, real-world successes of POMDPs have been in
cases where the state and observation spaces of a system
can be described in very few terms [10]. Several recent
successful approaches that utilize POMDPs for assistive
human-robot interaction have applied them in a top down
fashion [11], [12], [13]. They use a representation with few
states, providing a coarse description of the world. The
actions for these POMDPs are complex tasks, such as getting
on an elevator and escorting a human to a location using
sensor feedback motions.

The POMDP formulation is suitable for certain situations,
especially if the structure of the model fits the particular
application domain. For problems where a robot or agent
must learn to interact socially with a human, it is tempting
to model the human as a system that generates behaviors
using one of these frameworks. The agent is left with the
task of learning about the parameters of the system through
its actions and observations. POMDPs closely resemble the
“sense-think-act” model of cognitive architectures. States
encode different “modes,” and when an agent determines
that a particular mode is active (with some probability),
it is assumed to be responsible for the behavior of the
system. This structure forces the designer to make many
assumptions about the set of possible modes, the process
of switching between modes and when a mode results in a
particular behavior. This is problematic on many levels; for
example, when the mode to which we attribute a behavior is
incorrect or invalid. It is easier to get around these problems
in physical domains like navigation than in domains like
social interaction.

The theory described by Semin [7] suggests that language
and other high level aspects of communication are based on
synchronization or parity of behaviors. This idea proposes
that mimicry, parity and correspondence allow humans to
seek and provide evidence of understanding. The processes
that generate these behaviors are non-cognitive and more
strongly connected to physical experience than to high-level
reasoning. This is incompatible with sense-think-act learning
models, and suggests that we need to use models that more
immediately couple actions and observations. Interestingly,
one of the major thrusts in reinforcement learning in the
last few years has been the development of predictive state
representations, which seem to fit the need for such models
perfectly.

A. Predictive State Representations

PSRs are a relatively new technique for modeling in-
teractions between an agent and a system [14]. The gen-
eral assumption is that this interaction is an nth-order
Markov process, meaning that any future sequence of action-
observation pairs is a function of some fixed part of the most
recent history. The PSR learns a function from histories of
actions and observations to future predictions. Predictions
are sequences of actions and observations and are referred
to as tests. The mapping function describes the probability
that a given test will succeed, meaning that executing the
sequence of actions in the test will cause its observation
sequence to occur. In general, there is a minimal set of tests
for any system that are sufficient to predict the outcome of
all other tests. These are the core tests. The minimal state
representation for the PSR is the set of predictions for each
core test.

PSRs focus specifically on inputs and outputs without us-
ing coarse descriptors of state to model their cause. The PSR
maintains a distribution over the set of possible future action-
observation sequences. This distribution, and the parameters
for updating the distribution, are learned from experience.
PSRs may thus be able to accurately predict the results of
future actions without making strong assumptions about, or
partitioning, the unobservable system. They are also capable
of effective off-policy learning. Our brief description of PSRs
here is based on the more general treatments of Singh et
al. [15] and McCracken et al. [5].

Formally, say an agent chooses actions a from a set A, and
the system responds and generates an observation o from a
set O. A PSR models the probability of seeing a particular
sequence of action-observation pairs q = at+1ot+1 . . . amom

given some previous sequence of actions and observations
h = a1o1 . . . atot. The sequence q is referred to as a test
and h is referred to as a history. The goal of a PSR is then,
given a set of tests Q = {q1 . . . qn}, maintain a prediction
vector containing the probability of each test conditioned
on the current history, Pr(Q|h). The entries are Pr(Q|h) =
[Pr(q1|h),Pr(q2|h) . . .Pr(qn|h)]

Each entry gives the probability of a particular test suc-
ceeding, given a particular previous history. The set of tests
in Q are the core tests. In order for the system to be a



PSR, the set of tests Q must have the property that, for
any test q /∈ Q, and history h, there exists a function fq(·),
s.t. Pr(q|h) = fq(Pr(Q|h)). In the case of a linear PSR, the
function is Pr(q|h) = fq(Pr(Q|h)) ≡ Pr(Q|h)T mq, where
the mq are internal parameters. After observing a history h
followed by an action observation pair ao, the entry for test
qi is (using a simple application of Bayes rule) updated as,
Pr(qi|htao) = Pr(aoqi|ht)

Pr(ao|ht)
= Pr(Q|ht)

T maoqi

Pr(Q|ht)T mao
.

Note the implicit assumption that vectors maoqi
and mao

are available. These vectors are the parameters of the PSR
and for each test q ∈ Q, it is necessary to maintain a vector of
all such “one step” extensions to q. This means that for every
action-observation pair ao, a ∈ A, o ∈ O and every test q ∈
Q , a projection vector maoq is maintained. This includes
the zero length test ε, so that all mao are also maintained.

The need for mao and maoqi
parameters means that even

a linear PSR suffers from the curse of dimensionality. The
mao are the parameters of the PSR and can be learned
using temporal difference methods and the gradient of the
prediction error [15]. McCracken and Bowling [5] highlight
the problem of enforcing that the state vector Pr(Q|ht)
contains valid probabilities.

B. Discovery

In addition to the parameters mao and maoqi
, the PSR

maintains a representation of observed history in the form
of a system dynamics matrix D = Pr(Q|H). Each row i
of D represents the state of the system at time i so that
for each test qj , Dij = Pr(qj |hi). Computing the linearly
independent columns in D provides a means of automatically
determining a minimal representation for a system by finding
a small set of core tests that yields accurate predictions.
There are several ways to accomplish this. McCracken and
Bowling [5] suggest incrementally adding a test t to the
set of core tests Q by computing the condition number of
the matrix Pr({Q, t}|H). If the condition number is less
than 1, the matrix is well conditioned and t is added as a
core test. Another method is to compute an SVD or QR
decomposition and keep tests corresponding to columns in
D that are approximately linearly independent. For the QR-
decomposition D = QR so that Q is an orthogonal matrix,
QTQ = I , and R is upper triangular. If D has non-pivot
columns, then R contains columns which express these non-
pivot columns in terms of those columns in Q. The first
nonzero (pivot) elements in each row of R determine the
location of the linearly independent columns in D. In prac-
tice, we can determine columns in D that are approximately
linearly independent according to the diagonal elements of
R which are above a threshold. The linearly independent
columns of D are kept as core tests. The orthogonality of Q
can provide a measure of numerical error (for example, by
comparing the Frobenius norm of QTQ to that of I).

III. HUMAN-HUMAN INTERACTION MODELS

As mentioned above, in keeping with theories of cog-
nition and social learning, we would like to minimize the
imposition of unnecessary structure in modeling social robot

learning. We use PSRs to study discourse by observing actual
behavior without explicitly modeling purpose or intervening
changes in modes. The discovery algorithms of PSRs are
particularly interesting because they allow us to determine
which sequences are most important in modeling the system,
and this can be directly related back to the notion of signal
grounding.

A. Shadow Puppetry
Shadow puppetry is a human-robot interaction domain

that provides a means of observing an embodied discourse
between two people or between a person and a robotic
hand. The domain is expressive enough to support basic
components of interaction and allows participants to convey
and infer the meaning of emotive gestures [8]. At the same
time, it limits the channels of communication sufficiently
that we do not need to solve difficult perception or action-
generation problems. It is feasible to capture and model
signals in real-time using available computational and per-
ception tools. Subjects are asked to participate in open-ended
interactions. The behavior of each player is converted to a
one dimensional signal using a behavior recognition system.
Let Σ = {Nod, Talk,None} denote the set of possible
signals and X,Y ∈ Σ∗ denote the behavior sequence of
players 1, and 2 respectively.

We use a perception system that recognizes the basic
motions used in the shadow puppet game. Participants wear
simple colored wrist markers that allow us to automatically
infer wrist position, and from that to infer the locations of the
hand center and fingertips. The hand contour is determined
by searching the image for the skin colored blob nearest to
the wrist marker. The wrist w(t), hand center h(t), and finger
tip locations f1(t), f2(t) as shown in figure 1(a) provide a
rough kinematic model of the hand.

w(t)

h(t)

f1(t)

f2(t)

(a) Hand model parameters

(b) Gesture Labeling

Fig. 1. Automated gesture recognition system.

To automate gesture recognition, we record the parameters
of the kinematic model in each frame. In order to identify



behaviors, we measure the statistical dispersion of these
parameters over the most recent history of length n = 7. We
calibrate our gesture recognition system for each user. During
the training phase, the user performs each of the gestures
several times. The vector of behavior parameters is computed
and recorded for each example. We then fit a Gaussian
distribution to each gesture class and use this mixture of
Gaussians to classify gestures performed by the human. This
system allows us to convert the behavior of each player to
a one dimensional signal which codes his or her behavior
(from the set of behaviors Σ = {Nod, Talk,None}) at each
instant of time, in real-time.

B. Modeling

In order to make the problem of on-line learning of PSR
parameters tractable, we have to reduce the space of possible
actions. We focus on a property of interaction considered
essential to social learning: imitation. We determine the
actual behaviors Xt and Yt of of players 1 and 2 at time
t, and then code our data so that the behavior of a player is
a 0 whenever it matches the previous behavior of his or her
partner and a 1 otherwise. More formally we describe the
imitation behavior at time t of players 1 and 2 respectively
with variables At and Ot. At = 0 if Xt = Yt−1, and 1
otherwise, and Ot = 0 if Yt = Xt and 1 otherwise. Then the
PSR has two actions and two observations. The behaviors of
the first player are the agent actions, and the behaviors of
the second player are observations.

C. Human-Human Experiment

In this experiment, the data is formatted so that there is
a 0 if a player matches the behavior of their partner and 1
otherwise. So, if at a given time step the action observation
pair is [0,0], and player 2 changes behaviors in the next step,
the next pair will be [0,1], and [1,1] will follow in the next
step, unless player 1 changes to match player 2.

The data is primarily composed of repeating sequences of
the action-observation pairs [0,0] or [1,1]. These sequences
result from participants repeating their behaviors for short pe-
riods of time. When the behaviors match, we see a sequence
of [0,0]. When they do not, we see [1,1]. The repeating
sequences are terminated by a particular action-observation
pair. For example, if a long sequence of [1,1] is followed by
a [0,0], or [1,0], it marks the start of a repeating sequence
of [0,0]. Rarely is a sequence of repeating [1,1] followed
by a [0,1]. Similarly, a repeating sequence of [0,0] is often
terminated by [1,1] or [0,1], but almost never followed by
[1,0]. This pattern can be described using the first-order,
2-state POMDP in figure 2. The two states represent the
repeating sequences [1,1] and [0,0]. The edges are marked
with an action, an observation and a probability that the
observation and transition will occur, given the action. The
parameters of the POMDP are α, β, δ, and ε, which are � 1
and > 0.

We use a PSR representation to try and model actual
sequences of behavior between several different pairs of
human participants. There were 4 test subjects and each

a=1,o=0,

a=0,o=0,

a=1,o=1,

a=0,o=1, a=0,o=0,

a=1,o=0,
a=0,o=1,

a=1,o=1, 1− 

1− 

1− 

1− 

α

α

β

β

δδ

ε

ε

[0 0][1 1]

Fig. 2. A 2-state POMDP describing the pattern of interaction with
parameters 0 < α, β, δ, ε� 1. The agent can remain in either of the two
states [1,1] and [0,0], with high probability, by selecting 1 or 0 respectively.
It can cause a transition out of [1,1] or [0,0], with high probability, by
selecting 0 or 1 respectively.

sequence represents an interaction between a unique pair.
Interactions took place for approximately 2 minutes. All
sequences contain approximately 1000 action-observation
pairs.

The performance of a PSR on modeling a particular
human-human interaction can be measured by prediction
error. Prediction error is 1 if Pr(ot) ≤ 0.5, 0 otherwise. We
simulate the on-line learning problem by processing actions
and observations sequentially, without allowing the model
access to future histories. For the PSR, all projection vectors
and distributions are initialized to be uniform, meaning that
each test contributes equally to the prediction of any other
test. The gradient algorithm adjusts the weights of projection
vectors depending on the frequency of correct guesses [14].
The model uses a decreasing learning rate α = 10

100+t , where
t is the iteration of the learning algorithm. The α parameter
dictates the step size used to adjust the projection vectors.
In general, using a learning rate that is always less than the
per-time-step prediction error prevents over correction. All
probabilities are restricted to be in the interval [1×10−4, 1].

In each example, the PSR learns using all of the core
tests on the first half of the data. At the halfway point, the
discovery algorithm is used to reduce the set of core tests,
and the learning algorithm is continued using the reduced
set. The results are compared to a simple predictor that
ignores the actions of the agent, and always predicts that
the next observation will be the same as the previous (this is
the most predictive naive algorithm). The initial set of core
tests contains all possible tests of length 2 or less. The plots
in Figure 3 show the mis-prediction per time-step on each
of 6 human-human interactions. The solid line represents
the prediction error per time-step of the PSR predictor and
the dashed line represents the prediction error per time-step
of the simple predictor. The vertical line indicates the point
in the sequence where the dimension reduction algorithm is
executed. In all cases, the simple predictor has higher error
per time-step than the PSR predictor. The PSR improves until
eventually it predicts better than the one-step predictor.

Determining a reduced set of core tests reduces the dimen-
sion of the PSR, and allows subsequent learning to converge
with fewer trials. Each trial starts with 20 core tests (4 tests
of length 1 and 42 tests of length 2). After the discovery
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Fig. 3. Prediction rate of PSR on human-human interaction data. Prediction error is 1 if Pr(ot) ≤ 0.5, 0 otherwise. The left and right sides of the vertical
bar, respectively, represent the phase before and after the Discovery algorithm.

algorithm, the number of retained core tests for the 6 trials
are 8, 11, 13, 14, 13, and 10 respectively. There are two tests
that are present in all of the examples: [0 0] [1 0] and [0
0] [0 1]. The tests [1 0][0 0], [1 1][1 0] and [1 1][0 0] are
present in all but one of the core sets. Of note is the fact that
there is not a significant change in prediction error after the
dimension reduction algorithm.

One concern might be that selecting the initial set of core
tests to be all length 2 tests, ignores all effects that are greater
than second order. It is possible that there are higher order
effects contributing to when and why transitions happens.
We have some evidence that this is not the case in the
shadow puppetry domain. We have analyzed the cumulative
distribution of the length of repeating sequences for the 6
simulation trials. These patterns all seem similar to Poisson
distributions, which would imply that the probability of
transition out of a state does not depend on the length of time
spent in the state, consistent with a low-order Markov model
(and in fact, with the POMDP model in Figure 2). In practice,
adding the set of all length 3 tests did not significantly change
the prediction error. When using the set of all length 4 tests,
the discovery algorithm becomes intractable, due to the size
of the system dynamics matrix (340× 340).

IV. BUILDING INTERACTIVE ROBOT-PUPPETS

We have demonstrated that PSRs are capable of capturing
patterns in human-human interaction. However, it is also pos-
sible to achieve good prediction errors in the task described
in the previous section using models like POMDPs. The
real reason to use PSRs is to avoid having to pre-program
state representations and models, and instead allow robots to
build interaction capabilities from basic competencies like
action and perception. How can we use PSRs to achieve this
goal? In particular, we need to address the problem of action
selection.

Recall the theory that social learning occurs as a result
of the desire to seek and provide evidence of understanding.

This suggests that it may make sense for a robot learning very
basic communication to take actions that are very likely to
yield predicted responses. Given that there is a human-being
in the loop who is trying to make herself understood to the
robot, and will therefore change her pattern of behavior if
she does not receive the responses she expects, this action
selection strategy could lead to a successful attempt at
establishing shared communication.

A. Controller Learning Algorithm

Algorithm 1 Exploration Schedule PSR Learning Algo-
rithm(set <core tests> CT)

1: Initialize exploration schedule α = 1.0
2: while Change in One-step Prediction error is large do
3: If( RAND(0:1) ≤ α ) EXPLORATION move
4: Else EXPLOITATION move
5: decay(α)
6: end while
1: DISCOVERY
2: Re-select core tests
1: loop
2: If( RAND(0:1) ≤ α ) EXPLORATION move
3: Else EXPLOITATION move
4: decay(α)
5: end loop

We implement this idea in the following algorithm. First,
the agent selects and executes the test sequences according
to exploration utility 1. The purpose of this stage is to
sample the space of action-observation sequences to correctly
estimate the system dynamics matrix, D. Once the change

1The exploration utility of a test is defined by the number of tests it
contains as a sub-sequence. By executing a test, all sub-sequences are also
executed, which allows off-policy learning of sub-sequence probabilites.
The described measure of utility therefore accounts for the total experience
gained by the agent from a executing particular test.



in error becomes small, the discovery algorithm is used to
determine a minimal representation for the predicting action-
observation pairs. This is done by determining the linearly
independent columns in the system dynamics matrix. Finally,
the agent continues the interaction by selecting tests that
are likely to succeed. As described above, this is motivated
by the notion that interaction is driven by the need of
participants to seek and provide evidence of understanding.
Another way to think of this is that certain patterns are
established through repeated exchange of behaviors, and the
two participants express mutual understanding by following
these patterns.

Control algorithm 1 is broken into three stages: explo-
ration, discovery, and exploitation. In the first stage, the
learning agent samples the space of action-observation se-
quences, by repeatedly selecting and executing tests. When
the change in prediction error is small, the discovery algo-
rithm is used to reduce the parameter set of the predictor.
Finally, the reduced representation is used to select tests
for which the observations sequence will likely result from
taking the action sequence. In control algorithm 1, the explo-
ration and exploitation phase are mixed, using an exploration
schedule. The learning agent selects an exploration move
according to a decaying probability.

B. Experiment

Fig. 4. Embodied interaction study: Subjects play the shadow puppet game
with our 4 DOF Whole Arm Manipulator (WAM). A stereo camera is used
to code the gestural language tokens of the human in real-time.

In the experiment, human test subjects are stationed across
a table from the robot, as in Figure 4. Subjects wear a colored
wrist marker which is used to infer the position of the hand
and fingertips. The robot can recognize and perform three
actions. The gesture classifier is as described above. In order
to automatically code the human behaviors, a calibration
phase is performed for each individual. The actions of the
human are converted into the 0-1 imitation/non-imitation
model described previously. Subjects are asked to interact
with the robot in two five-minute sessions. Subjects are given
a goal and asked to communicate that goal to the robot
through their actions. In the first phase, they are asked to
make the robot imitate their actions and in the non-imitation
phase, they are asked to do the opposite. Each phase starts
with the same initial conditions and uses control learning
algorithm 1. The robot observes the human gesture, and

Statistic Phase 1 Q1 Phase 1 Q2 Phase 2 Q1 Phase 2 Q2
Average 4.57 4.86 4.43 3.86
Variance 0.67 0.40 3.29 3.48

Stdev 0.82 0.63 1.81 1.86

TABLE I
SURVEY RESPONSE STATISTICS

converts it to either imitate or non-imitate. This provides the
observations for algorithm 1. The experiment is designed
to evaluate the following hypothesis: As a result of the
control learning algorithm, (1) The robot will perform in
accordance with the human’s intent. (2) The tests in the
predictive state representation will encode the intent of
the human.

At the end of each phase, the subject is asked to fill in
a short survey with the following questions: (1) The robot
could recognize my actions. (2) The robot could understand
my intent. (3) Briefly describe your strategy for this phase.
The first and second questions are rated on a scale of 1 to
6, with 1 being not true and 6 being very true. Question
3 is open-ended and designed to control for the fact that
subjects’ interpretations of instructions may vary. Table I
gives the results of the first and second survey questions. On
average, the test subjects gave highest scores to the robot’s
performance in the imitation phase. The results for this phase
also have relatively small variance. For the non-imitation
phase, the average ratings are considerably lower and the
variance is high.

C. Results

We evaluate the algorithm in several ways. First, we look
at the parameters of the final representations learned by the
robot in interaction with humans. If the human communi-
cated their intent successfully to the robot, there should be
evidence in the final representation. In the PSR, the learned
linear prediction function is a generative model of human
and robot behavior frequencies. This function is encoded in
the projection vectors maoqi

and mao, which are used to
map state Pr(Q|h) to Pr(qi|hao). The probability of test
qi succeeding, conditioned on a previous action-observation
pair ao, is given by the pseudo-probability Pr(qi|htao) =
Pr(aoqi|h)
Pr(ao|h) = Pr(Q|h)T maoqi

Pr(Q|h)T mao
.

These vectors may contain arbitrarily large positive and
negative values, so in order to evaluate the tendency of a
robot to execute a test in the predictive representation, we
can set h = ∅ and determine the conditional probabilities for

each test qi using Pr(qi|ao) = Pr(aoqi)
Pr(ao) =

∑
j
maoqi

(j)∑
j
mao(j)

. This

pseudo-probability provides a measure of likelihood for the
success of each test, qi as well as inclination of the robot to
select it.

Recall that action-observation pair [0,0] occurs when the
robot and human perform the same action, and [1,1] occurs
when they do not. Also recall that sequences [1 0] and
[0 1] are considered transitional in our model of imitation.
Depending on how imitation is interpreted by the test subject,



Subject Extension Prefix Phase 1 test Phase 2 test
1 [0 0] [0 0] [0 0]
1 [0 1] [0 0] [1 1]
1 [1 0] [0 0] [0 0]
1 [1 1] [1 1] [1 1]
2 [0 0] [0 0][0 0] [0 0]
2 [0 1] [0 0] [1 1]
2 [1 0] [1 0] [0 0]
2 [1 1] [1 1] [1 1]
3 [0 0] [0 0] [0 0]
3 [0 1] [0 0] [0 0]
3 [1 0] [0 0][0 0] [0 0][0 0]
3 [1 1] [1 1] [1 1]
4 [0 0] [0 0] [1 1]
4 [0 1] [0 0] [1 1]
4 [1 0] [0 0][0 0] [1 0]
4 [1 1] [1 1] [1 1]
5 [0 0] [0 0] [1 1]
5 [0 1] [0 0] [0 1][0 0]
5 [1 0] [0 0] [1 1]
5 [1 1] [1 1] [1 1]
6 [0 0] [0 0] [1 0][1 1]
6 [0 1] [0 0] [1 0]
6 [1 0] [0 0] [1 1]
6 [1 1] [0 0] [1 1]
7 [0 0] [1 1] [0 0]
7 [0 1] [0 0] [0 0]
7 [1 0] [0 0] [0 0]
7 [1 1] [1 1] [1 1]

TABLE II
MAXIMUM PROBABILITY CONDITIONAL TEST SEQUENCES. THIS TABLE

SHOWS THE MOST LIKELY SEQUENCE FOLLOWING EACH EXTENSION

PREFIX FOR EACH SUBJECT. THE BOLD ENTRIES (WITH CORRESPONDING

PREFIX) REPRESENT THE MOST LIKELY SEQUENCE FOR EACH PHASE.

we should expect to see differences in the frequency of
[0,0] and [1,1] during the first and non-imitation phase of
the experiment. Table II shows the sequence with highest
conditional probability for each possible prefix and each
subject in each phase. In accordance with the interaction
model (Figure 2), no transitional sequence ever has highest
probability. Results for subject 1,2,4 and 5 are ideal in
both phases. For these cases, the most likely sequences in
phases 1 and 2 are sequences of [0,0] and [1,1] respectively.
For subjects 3 and 6, the most likely sequence in phase
1 is [0,0][0,0], which means that the control algorithm
will frequently choose (correctly) to imitate the human. In
phase 2, the highest probability sequence for subject 6 is
[0,0][1,0][1,1], which indicates a transition to non-imitative
behavior if the robot ever observes itself performing the
same action as the human. For subject 3 in phase 2 and
subject 7 in phases 1 and 2, the maximum probability test is
the opposite of what was expected and desired. In order to
understand the reason for this abnormality, it is appropriate
to examine the responses to third survey question. Subject 7
provided the following response to question 3 in phase 2 of
the experiment:

“I tried to do the opposite motion than the robot at the
start, but find myself being in consistent [sic] after trying to
mimic it correctly in phase 1. overall I feel as though I had

more control over it’s actions this time, meaning that when
I nodded it nodded but I wanted it to not do my action, so
for this phase the robot did not understand my intent.”

This response from subject 7 indicates a breakdown in the
performance of the human in the signal grounding process.
This may be due in part to habituation from the behavior
pattern in the imitation phase, or to an innate tendency to
mimic behavior.

It is also worth noting that while some of the most likely
tests for a given history are the same for some subjects across
the two phases, the most likely overall tests (bolded) are more
important for the interaction, because some of the histories
may be unlikely to occur given the intent of the human. For
example, in the non-imitation condition [0, 0] is unlikely to
occur, because the human is not likely to respond to imitation
with further imitation. In this case, [1, 1] or [0, 1] would be
more likely prefixes, upon which the the robot would have
to select future tests.

D. Discussion

The human-robot interactions show some interesting re-
sults. First it is clear that the imitation cases were very
successful in creating a rewarding experience for humans
interacting with the robot (people like it when they are
successful at their task, which was to make the robot un-
derstand them). The outcome of the non-imitation case is
not as clear, but in both cases the robot learned significantly
different representations, and generated significantly different
behavior, and for the most part this appears to have been
successful at engaging human partners. Of course this is a
small, proof-of-concept study with few participants, but the
results are encouraging for the development of social robotics
algorithms that attempt to ground communication in basic
learning of the expected outcomes of actions.

One of the reasons for the success of the “exploitation” ac-
tion selection policy of selecting actions for which the robot
has high certainty of the response is undoubtedly because a
human is attempting to have an interesting interaction with
the robot. Consider the imitation and non-imitation cases in
a little more detail. In the imitation case, if the robot learns
that imitating will lead to further imitation, this reinforces
the behavior, leading to a “good” equilibrium where the
robot has understood the human’s intent and can act in
accordance with that intent. In the non-imitation case, if the
robot starts to imitate the human’s actions, the human will
learn to change her actions because they are not eliciting the
desired behavior. This will prevent the imitation equilibrium
from emerging. This is confirmed by the evidence in Table
II – while the most likely tests for some histories are
the same across the two phases for many of the subjects,
the probability of that history actually occurring (which is
dependent on the human’s actions) will be different in the
two cases, which is why (1) the robot manages in general to
perform in accord with the human’s intent, and (2) the single
most likely test to succeed is very different in the two phases.
In some ways the algorithm is taking advantage of the fact
that the human takes initiative in the interaction in order to



learn appropriate behavior. This is an interesting example of
parent-child or master-apprentice learning.

V. CONCLUSIONS

This paper marries ideas from emergent theories of cogni-
tion with the recently developed predictive state representa-
tion (PSR) framework for reinforcement learning in design-
ing an effective algorithm for social human-robot interaction
in a prototype shadow puppetry domain. We demonstrate
that PSRs can accurately capture the dynamics of human-
human shadow puppet interaction, and then combine the
PSR representation with an action selection strategy based
on the idea that social interactions develop when participants
are able to seek and convey understanding. The resulting
algorithm is successful in two ways: (1) when we give a
human a particular task (“get the robot to imitate / not imitate
you”), the PSR representation learns an appropriate encoding
of the human’s intent in an on-line fashion, and (2) the robot
in general generates behaviors that the human thinks are
appropriate responses in the social interaction.

An important aspect of this work is that the algorithm
learns on-line. The ability to examine data beforehand and
learn about a human is a convenience that a situated agent
might not have. For practitioners looking to use PSRs for
different tasks, the scope of the initial representation (i.e.
the initial set of core tests) is particularly important. The
trade-off between the robustness of a large set of core tests
and the efficiency of a small set is apparent. Another issue
is the problem of enabling the agent to deal more directly
with raw signals, rather than providing it with a predefined
set of gestural primitives.

In generalizing this approach, these problems are not
insurmountable. First, there are many possible granularities
between this and a completely out-of-the-box PSR model.
The level of expert design used in the system can be though
of as a sliding scale. Second, the off-policy nature of PSRs
means that they can be run multiply and in parallel. A PSR
need not select an action to learn from its outcome. Third,
actions must be recognized and selected in real-time, but
reasoning about history can be done in background. This
means that it may be possible for an agent to start with
simple, decoupled models and incrementally combine or
extend them. For example, the agent may start with a small
set of short tests, and extend the important ones.

In retrospect, for the particular task we focus on in
this paper, interaction with humans based on patterns of
imitative / non-imitative behavior, an internal model based
on Markovian assumptions (like a POMDP or HMM) could
have performed well in terms of prediction accuracy on
the human-human tests, and provided a basis for a control
algorithm for the robot. However, the goal of this project was
to provide an algorithm that did not require pre-specifying
a type of model and a state space. The Markov model
of Figure 2 is based on an after-the-fact human analysis
of data from the human-human experiments. Whether an
automated learning process could have learned that these
were the relevant states and extracted appropriate transition

probabilities from the data is an interesting question, but it
is not our focus in this work. Instead, we demonstrate that
it is possible to learn how to interact successfully without
the need to rely on the existence and learnability of state
space models (although we reiterate that the possible “true”
model of interaction ends up being simple in this case, and
much more research is needed to determine if PSRs will be
successful when the underlying model is more complex).

Another important aspect of this work is that the PSRs
can be learned online. The research reported here is one of
the first real-world successes of a PSR algorithm that we
are aware of. We believe PSRs are a promising approach
to several problems for which specifying a useful model
of the world is hard. While the deployment described here
did involve significant engineering in choosing exploration
schedules, deciding when to perform discovery, and so on,
it is clear that these algorithms can be made to work on real
robots who have to act and learn in an uncertain world.
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