
Capturing an Evader in Polygonal Environments with

Obstacles: The Full Visibility Case∗

Deepak Bhadauria1, Kyle Klein2, Volkan Isler1, and Subhash Suri2

1 Department of Computer Science, University of Minnesota, MN 55455,
USA, {bhadau, isler}@cs.umn.edu

2 Department of Computer Science, UC Santa Barbara, CA 93106, USA,
{kyleklein, suri}@cs.ucsb.edu

Abstract

Suppose an unpredictable evader is free to move around in a polygonal environment
of arbitrary complexity that is under full camera surveillance. How many pursuers,
each with the same maximum speed as the evader, are necessary and sufficient to
guarantee a successful capture of the evader? The pursuers always know the evader’s
current position through the camera network, but need to physically reach the evader
to capture it. We allow the evader the knowledge of the current positions of all the
pursuers as well—this accords with the standard worst-case analysis model, but also
models a practical situation where the evader has “hacked” into the surveillance system.
Our main result is to prove that three pursuers are always sufficient and sometimes

necessary to capture the evader. The bound is independent of the number of vertices
or holes in the polygonal environment.

1 Introduction

Pursuit-evasion games provide an elegant setting to study algorithmic and strategic questions
of exploration or monitoring by autonomous agents. Their mathematical history can be
traced back to at least 1930s when Rado posed the now-classical Lion-and-Man problem
[16]: a lion and a man in a closed arena have equal maximum speeds; what tactics should
the lion employ to be sure of his meal? The problem was settled by Besicovitch who showed

∗Research of Klein and Suri on this paper was supported in part by the National Science Foundation
Grant IIS-0904501. Research of Bhadauria and Isler on this paper was supported in part by the National
Science Foundation Grants CCF-0916209 and IIS-0917676. This paper combines results from two inde-
pendently discovered algorithms, whose preliminary versions appeared at the 25th Conference on Artificial
Intelligence [14] and the 20th International Joint Conference on Artificial Intelligence [2].

1

that the man can escape regardless of the lion’s strategy [16]. An important aspect of this
pursuit-evasion problem, and its solution, is the assumption of continuous time: each player’s
motion is a continuous function of time, which allows the lion to get arbitrarily close to the
man but never capture him. If, however, the players move in discrete time steps, taking
alternating turns but still in continuous space, the lion can always catch the man.

A rich literature on pursuit-evasion problems has emerged since these initial investiga-
tions, and the problems tend to fall in two broad categories: discrete space, where the pursuit
occurs on a graph, and continuous space, where the pursuit occurs in a geometric space. Our
focus in this paper is on the latter: visibility-based pursuit in a polygonal environment in two
dimensions. There exist simply-connected n-gons that may require Ω(log n) deterministic
pursuers in the worst-case to detect a single, arbitrarily fast moving evader, and O(log n)
pursuers also always suffice for all n vertex simple polygons [8]. When the polygon has h
holes, the number of necessary and sufficient pursuers turns out to be O(

√
h + log n) [8].

However, these results hold only for detection of the evader, not for the capture.
For capturing the evader, it is reasonable to assume that the pursuers and the evader

all have the same maximum speed. Under this assumption, it is shown by Isler et al. [11]
that two pursuers with line-of-sight vision can capture the evader in a simply-connected
polygon using a randomized strategy whose expected search time is polynomial in n and
the diameter of the polygon. When the polygon has holes, no non-trivial upper bound is
known for capturing the evader. For instance, we do not even know if O(h) pursuers are
able to capture the evader. Because visibility-based pursuit allows unbounded line-of-sight
visibility regardless of the distance, it is unclear how to map a detection strategy to a capture
strategy1.

There are two fundamental issues inherent in pursuit evasion: localization, which is purely
an informational problem, and capture, which is a problem of planning physical moves. In this
paper, we study the question: how complex is the capture problem if the evader localization
is available for free? In other words, suppose the pursuers have complete information about
the evader’s current position, how much does it help them to capture the evader?

Besides being a theoretically interesting question, the problem is also a reasonable model
for many practical settings. Given the rapidly dropping cost of electronic surveillance and
camera networks, it is now both technologically and economically feasible to have such
monitoring capabilities. These technologies enable cheap and ubiquitous detection and lo-
calization, but in case of intrusion, a physical capture of the evader is still necessary. For
instance, the scenario studied in [22] requires pursuers to capture an evader in an environ-
ment instrumented with a sensor network. The sensor network provides the location of the
evader to the pursuers and facilitates communication among the pursuers. Our results im-
mediately imply that three pursuers suffice regardless of the shape of the floor plan in their
application.

1Indeed, one can modify the argument of Isler et al. [11] to show that if the pursuer can see the evader
at all times, then a single pursuer is able to capture the evader in a simply-connected polygon using a
deterministic strategy; we give more details about this in the appendix.

2

1.1 Our Contributions

Our main result is that under the full visibility setting, three pursuers are always sufficient to
capture an equally fast evader in a polygonal environment with holes, using a deterministic
strategy. Complementing this upper bound, we also show that there exist polygonal environ-
ments that require at least three pursuers to capture the evader even with full information.

We present two different algorithmic strategies for our main result, one called Minimal
Path Strategy and the other Shortest Path Strategy. These were discovered independently
by two teams, Bhadauria-Isler [2] and Klein-Suri [14] around the same time. This paper
combines the main results of those two papers. The former (Minimal Path Strategy) uses
the visibility graph of the original polygon, and deploys pursuers along the first, second and
third shortest paths in this graph to trap the evader in progressively smaller sub-polygons
(Section 3). The latter (Shortest Path Strategy) operates in the continuous domain, and
guards a carefully chosen shortest path so as to trap the evader in a smaller polygonal region
(Section 5). Despite their high-level similarity, the two algorithms differ significantly in
details, and offer independent insights into the problem, motivating us to include them both
in this joint paper.

The bound on capture time, which is asymptotically the same for both strategies, is
independent of the number of the holes of the polygon, although the capture time depends
on both n and the diameter of the polygon.

1.2 Related Work

There is an enormous literature on pursuit evasion and related problems [1, 3, 5, 9, 12, 13,
15, 18, 19, 20, 21]. A recent survey on search and pursuit-evasion research in robotics can
be found in [4].

The research tends to fall into two distinct categories: geometry-based and graph-based.
The former assumes a continuous model of space, typically a polygon, while the latter as-
sumes a discrete graph model where agents move along edges. The graphs provide a very
general setting but can suffer from two shortcomings: one, the generality leads to weak
upper bounds and, two, they fail to model many restrictions imposed by the geometry of
physical world. Thus, for instance, in general graphs the worst case number of cops required
to capture a robber is known to be as large as Ω(

√
n), and computing the minimum number

of cops needed is EXP-TIME complete [6].
In visibility-based pursuit, a seminal paper [8] shows that Θ(log n) pursuers are both

necessary and sufficient in worst-case for a simply-connected n-vertex polygon. Most of
the existing work in polygon searching, however, is on detection and not capture. The
only relevant result on capture is by Isler et al. [11] showing that in polygons without holes
a single pursuer can achieve detection and two pursuers with line-of-sight visibility can
achieve capture. When the environment has holes, it is not even known how many pursuers
are sufficient to capture an evader, even though a tight bound of Θ(

√
h+log n) for detection

is known. In one important aspect, polygon searching is fundamentally different from graph
searching: re-contamination is unavoidable in polygons [8], in general, while graphs can

3

always be searched optimally without re-contamination [15].
Our work bears some resemblance to, and is inspired by, the result of Aigner and

Fromme [1] on planar graphs, showing that graph searching on planar graph requires 3
cops. In that work, the graph is unweighted, does not deal with Euclidean distances, and
require players to move to only neighboring nodes. Unlike the graph model, our search oc-
curs in continuous Euclidean plane, and players can move to any position within distance
one. Thus, while our bounds are similar, the proof techniques and technical details are quite
different.

2 The Problem Formulation

We assume that an evader e is free to move in a two-dimensional closed polygon P , which
has n vertices and h holes. A set of pursuers, denoted p1, p2, . . ., wish to capture the evader.
All the players have the same maximum speed, which we assume is normalized to 1. The
bounds in our algorithm depend on the number of vertices n and the diameter of the polygon,
diam(P), which is the maximum distance between any two vertices of P under the shortest
path metric.2

For the sake of notational brevity, we also use e to denote the current position of the
evader, and pi to denote the position of the ith pursuer. We model the pursuit-evasion as a
continuous space, discrete time game: the players can move anywhere inside the polygon P ,
but they take turns in making their moves, with the evader moving first. In each move, a
player can move to any position whose shortest path distance from its current position is at
most one; that is, within geodesic disk of radius one. On the pursuers’ move, all the pursuers
can move simultaneously and independently. We say that e is successfully captured when
some pursuer pi becomes collocated with e.

In order to focus on the complexity of the capture, we assume a complete information
(full visibility) setup: each pursuer knows the location of the evader at all times. We also
endow the evader the same information, so e also knows the locations of all the pursuers.
In general, neither side knows the future moves of the opponents, although our result holds
even if the evader knows all the future moves of the pursuers. In addition, both sides know
the environment P . We begin with a high level description of the minimal path strategy,
followed by its technical details and proof of correctness in the next section.

3 The Minimal Path Strategy

We show that three pursuers, denoted p1, p2, p3, can always capture an evader using a deter-
ministic strategy, regardless of the evader’s strategy and the geometry of the environment.
The minimal path strategy is to progressively trap the evader in an ever-shrinking region

2We assume that the area quantity of the polygon is at least as large as the diameter of the polygon,
which can be always ensured through an appropriate scaling, if needed. We give a more precise argument
later in the paper. This assumption helps us frame the bounds using the diameter alone.

4

of the polygon P . The pursuit begins by first choosing a path Π1 that divides the polygon
into sub-polygons (see Figure 1(a))—we will use the notation Pe to denote the sub-polygon
containing the evader. We show that, after an initialization period, the pursuer p1 can suc-
cessfully guard the path Π1, meaning that e cannot move across it without being captured.

Π1 Π2

x

y

zu v

(a)

u

v

Π1

Π3

Π2

e

(b)

Figure 1: (a) A polygonal environment with two holes (a rectangle and a triangle). xy is
a visibility edge of G(P), while xz is not. Π1 and Π2 are the first and the second shortest
paths between anchors u and v. The figure (b) illustrates the main strategy of trapping the
evader through three paths.

Figure 1(b) illustrates the overall strategy: in a general step, the sub-polygon Pe contain-
ing the evader is bounded by two paths Π1 and Π2, satisfying a geometric property called
minimality, each being guarded by a pursuer. We then choose a third path Π3 splitting
the region Pe into two non-empty subsets. If both regions have holes, then we argue that
the pursuer p3 can guard Π3, thereby trapping e either between Π1 and Π3 (Figure 1(b)),
or between Π2 and Π3, in which case the pursuit iterates in a smaller region. If Π3 is not
guardable within one of the regions, then we show that the pursuer p3 can evict the evader
from this region, forcing it into a smaller region (as measured by the number of vertices)
where the search resumes.

3.1 Visibility Graphs and Path Guarding

In order for this strategy to work, the paths Πi need to be carefully chosen and must satisfy
certain geometric conditions, which we briefly explain. First, although the pursuit occurs in
continuous space, our paths will be computed from a discrete space, namely, the visibility
graph of the polygon. The visibility graph G(P) of a polygon P is defined as follows: the
nodes are the vertices of the polygonal environment (including the holes), and two nodes
are joined by an edge if the line segment joining them lies entirely in the (closed) interior
of the polygon. (In other words, the two vertices joined by an edge must have line of sight
visibility.) This undirected graph has n vertices and at most O(n2) edges. We assign each
edge a weight equal to the Euclidean distance between its two endpoints. See Figure 1(a)

5

for an example.
One can easily see that, given two vertices u and v of P , the shortest path from u to v in

G(P) is also the shortest Euclidean path constrained to lie inside P . (The shortest Euclidean
path has corners only at vertices of G(P).) However, we cannot make such a claim for the
second, or in general the kth, shortest path—one can create an infinitesimal “bend” in the
shortest path Π1 to create another path that is arbitrarily close to the first shortest path but
does not belong to G(P). Therefore, we will only consider paths that belong to G(P) and
are “combinatorially distinct” from Π1—that is, they differ in at least one visibility edge.
However, even then the kth shortest path between two nodes can exhibit counter-intuitive
behavior. For instance, while in graphs with non-negative weights the first shortest path
is always loop-free, the second, or more generally kth, shortest path can have loops—this
may happen if repeatedly looping around a small-weight cycle (to make the path distinct
from others) is cheaper than taking a different but expensive edge [10]. Therefore, we will
consider only shortest loop-free paths. One of our technical lemmas proves that these paths
are also geometrically non-self-intersecting. (This is obvious for the shortest path Π1 but not
for subsequent paths.) In addition, we argue that these paths also satisfy a key geometric
property, called minimality, which allows a pursuer to guard them against an evader.

4 Proof of Sufficiency of 3 Pursuers

We begin with the discussion of how a single pursuer can guard a path in P , trapping the
evader on one side. We then discuss the technically more challenging case of guarding the
second and the third paths. In order to guarantee that a path in P can be guarded, it must
satisfy certain geometric properties. We begin by introducing two key ideas: a minimal path
and the projection of an evader on a path. In the following, we use the notation d(x, y) to
denote the shortest path distance between points x and y. When we require that distance
to be measured within a subset, such as restricted to a path Π, we write dΠ(x, y). That is,
dΠ(x, y) is the length of path Π between its points x and y. Occasionally, we also use the
notation Π(x, y) to denote subpath of Π between points x, y. We use the notation x ≺ y to
emphasize that the point x precedes y on the path Π: that is, if Π is the path from node u
to node v, then x ≺ y means that dΠ(u, x) < dΠ(u, y). The following property is important
for patrolling of paths.

Definition 1. (Minimal Path:) Suppose Π is a path in P dividing it into two sub-polygons,
and Pe is the sub-polygon containing the evader e. We say that Π is minimal with respect to
Pe if, for all points x, z ∈ Π and y ∈ (Pe \ Π), the following holds:

dΠ(x, z) ≤ d(x, y) + d(y, z)

Intuitively, a minimal path cannot be shortcut: that is, for any two points on the path,
it is never shorter to take a detour through an interior point of Pe. (This is a weak form of
triangle inequality, which excludes detours only through points contained in Pe.) The next
definition introduces the projection of the evader on to a path, which is an important concept
in our algorithm.

6

Definition 2. (Projection:) Suppose Π is a path in P dividing it into two sub-polygons,
and Pe is the sub-polygon containing the evader e. Then, the projection of e on Π, denoted
eπ, is a point on Π such that, for all x ∈ Π, e is no closer to x than is eπ.

Thus, if a pursuer is able to position itself at the projection of e at all times, then
it guarantees that the evader cannot cross the path without being captured. With these
definitions in place, we now discuss how to guard the first path Π1.

4.1 Guarding the First Path

We choose two vertices u and v on the outer boundary of P , and call them anchors. We
let Π1 be the shortest path from u to v in G(P); this is also the shortest Euclidean path
between u and v constrained to lie inside the environment. Our first observation is that this
path Π1 is always minimal.

Lemma 1. The path Π1 between u and v is minimal.

Proof. For the sake of contradiction, suppose there are two points x, z ∈ Π1 that violate the
minimality. Let the point y /∈ Π1 be the witness of this violation, namely, d(x, y) + d(y, z) <
dΠ1

(x, z). But then Π1 can be shortened with the subpath Π1(x, z), contradicting the fact
that Π1 is the shortest u, v path.

The following lemma shows that the projection of e is always exists for a minimal path.

Lemma 2. Suppose Π is a minimal path between the anchor nodes u and v. Then, for every
position of the evader e in Pe, a projection eπ exists.

Proof. Let us first consider the more interesting case where dΠ(u, v) ≥ d(u, e). In this case,
we claim that the point z at distance d(e, u) along Π is a projection of e. Indeed, for any
point x ∈ Π such that z ≺ x, the condition dΠ(z, x) > d(e, x) leads to a violation of the
minimality of Π, as follows:

dΠ(u, x) = dΠ(u, z) + dΠ(z, x) = d(u, e) + dΠ(z, x) > d(u, e) + d(e, x)

Similarly, for any point x where x ≺ z, the condition d(x, e) < dΠ(x, z) also leads to a
violation:

d(u, e) ≤ dΠ(u, x) + d(x, e) < dΠ(u, x) + dΠ(x, z) = dΠ(u, z)

which is a contradiction because d(u, e) = dΠ(u, z).
On the other hand, if dΠ(u, v) < d(u, e), then we choose v as the projection. In this case,

the argument is identical to the second case above: ∀x ≺ v, d(x, e) ≥ dΠ(x, v), and thus v is
a projection.

The next lemma shows how a pursuer can guard a minimal path. Whenever we refer to
the projection, we mean the unique point chosen by Lemma 2, that is, the point on Π at
d(u, e) from u, or v, whichever is closer.

7

Lemma 3. Suppose Π is a minimal path between the anchors u, v in P , and a pursuer p
is located at the current projection of e. Suppose on its turn the evader moves from e to e′.
Then, the pursuer p can either capture the evader or relocate to the new projection e′π in one
move.

Proof. First, suppose that the new position e′ is on different side of the path Π than e,
namely, the evader crosses the path, say, at a point z. Because the evader can move at
most distance one, we have the inequality d(e, z) + d(z, e′) ≤ 1. On the other hand, since
p is located at the projection of e before the move, dΠ(p, z) ≤ d(e, z). Therefore, the new
position of the evader e′ is within distance one of p, and the pursuer can capture the evader
on its move.

If the evader does not cross Π, and moves to a position e′ on the same side of the path,
let e′π be the projection of e′, as defined in Lemma 2. Because the evader moves distance at
most one further from u or at most one closer to u, it must satisfy d(eπ, e′π) ≤ 1, and so p
can relocate from eπ to e′π in one move.

Before proceeding further, we make a minor technical digression, to establish that any
path guarded by pursuers can be bounded by the area of the polygon. The strategy of
progressively trapping the evader within smaller sub-polygons brings out a somewhat coun-
terintuitive property of polygon divisions: a sub-polygon can have a larger diameter than the
original polygon. Figure 2 shows an example where the diameter of the shaded sub-polygon
P ′ is larger than the original environment. This complicates the time complexity analysis
of our pursuit strategy because it depends on the length of paths that are guarded. We
resolve this dilemma by arguing these path lengths cannot exceed the area of the original en-
vironment, which in turn is bounded by diam(P)2. Of course, diameter is a one-dimensional
quantity, while area is a two-dimensional quantity, but we only care about their numerical
magnitudes. We show the required inequality by choosing an appropriate scale (units) for
the environment, as shown in the following lemma.

u v

P
′

Figure 2: Example depicting a shaded sub-polygons P ′ with diameter larger than diam(P).

Lemma 4. Suppose Π is a u, v path in sub-polygon P ′ of P . Then, by applying a suitable
rescaling of units we can always guarantee dΠ(u, v) ≤ diam(P)2.

8

Proof. If dΠ(u, v) ≤ area(P ′), then the lemma holds trivially, because area(P ′) < area(P) ≤
diam(P)2. Therefore, assume that dΠ(u, v) > area(P ′). By a simple rescaling of the units, we
can get the desired reverse inequality, as follows. Suppose we rescale the unit of measurement
from 1 to 1+α. This increases the area of a triangle by a factor of (1+α)2, while a segment
only increases in length by a factor of 1+α. Therefore, a suitably large choice of α will always
ensure that the polygon’s area exceeds the length of Π, because the former grows by a factor
of (1+α)2 while the latter grows linearly. In particular, if (1+α)2·area(P ′) ≥ (1+α)·dΠ(u, v),

we obtain α ≤ dΠ(u,v)
area(P ′)

− 1, and therefore any choice of α > dΠ(u,v)
area(P ′)

− 1 will suffice.

With this technical lemma, we can assume throughout the rest of the paper that dΠ(u, v) ≤
diam(P)2 always holds. The following lemma shows that within O(diam(P)2) a pursuer p
can either reach the current projection of e or capture it.

Lemma 5. Suppose Π is a minimal path between anchors u, v in P , and a pursuer p is
located at u. Then in O(diam(P)2) moves, p can move to e’s projection.

Proof. By Lemma 3, the projection of e can only shift by distance at most one along the
path Π. Thus, p’s strategy is simply to move along the path from one end to the other until
it coincides with the current projection of e, or captures it. Meanwhile, if the projection
ever “crosses over” the current position of p, the pursuer immediately can move to the new
projection because at that moment p must be within distance one of the target location.
Since p moves a distance of 1 in each turn, and Lemma 4 guarantees we can scale P such
that all paths encountered have length at most diam(P)2, the entire initialization phase takes
at most O(diam(P)2) moves.

4.2 Geometric Structure of Pursuer Paths

We now come to the main part of our pursuit strategy. The key idea is to progressively trap
the evader in a region bounded by two minimal paths, which are guarded by two pursuers,
and to use the third pursuer to further divide the current region. When the third pursuer
subdivides the current region containing e, two possibilities emerge: either the third path
is minimal with respect to both regions and thus guardable by the third pursuer, limiting
the evader to a smaller region than before; or it is only minimal with respect to one of
the regions and the other is hole-free, in which case the third pursuer uses the capture
strategy for a simply-connected polygon to evict the pursuer from this region (or capture
it). In order to formalize our strategy, we first show a key geometric property of the second
and third shortest paths between the anchors in the visibility graph, namely, that they are
non-self-intersecting, and therefore lead to well-defined closed regions.

Lemma 6. Let Π1 be the shortest path between two anchor points u and v on P ’s boundary,
and focus on the sub-polygon Pe that lies on one side of Π1. Let Π2 and Π3, respectively, be
the second and the third simple (loop-free) shortest paths in the visibility graph G(Pe) between
u and v. Then, Π2 and Π3 are non-self-crossing.

9

l1

l2l3

l4

ΠL

Π3(v2, v3)

v1 v4

ΠR

v3 v2

u vΠB

Figure 3: Non-self-crossing of shortest paths Π1, Π2, Π3.

Proof. Without loss of generality, suppose the path Π3 violates the lemma, and that two
of its edges (v1, v2) and (v3, v4) intersect. See Figure 3. We first note that the intersection
point cannot be a vertex of the visibility graph because otherwise the path has a cycle, and
we assumed that Π3 is loop-free. As shown in the figure, we break the segment (v1, v2) into
l1 and l2, and (v3, v4) into l3 and l4. By the triangle inequality of the Euclidean metric,
it is easy to see that the shortest v1, v3 path homotopic to the segments l1 and l3, denote
it ΠL, will have length strictly less than l1 + l3. Similarly, define ΠR and ΠB, as paths
between v2, v4 and v1, v4, respectively. Now consider the following three paths between v1

and v4, each contained in G(Pe): ΠL ·Π3(v3, v2) ·ΠR, ΠB, and the shorter of ΠL · (v3, v4) and
(v1, v2) · ΠR. They are all shorter than Π3, each has one less intersection than Π3, and at
least one of them must be distinct from both Π1 and Π2, thus contradicting the choice of Π3.
If further intersections exist, the argument can be applied again, until all such intersections
are removed.

4.3 Shrinking, Guarding and Evicting

In a general step of the algorithm, assume that the evader lies in a region Pe of the polygon
bounded by two minimal paths Π1 and Π2 between two anchor vertices u and v. (Strictly
speaking, the region Pe is initially bounded by Π1, which is minimal, and portion of P ’s
boundary, which is not technically a minimal path. However, the evader cannot cross the
polygon boundary, and so we treat this as a special case of the minimal path to avoid
duplicating our proof argument.) We also assume that Π1 and Π2 only share vertices u and
v; if they share a common prefix or suffix subpath, we can delete those and advance the
anchor nodes to the last common prefix vertex and the first common suffix vertex. This
ensures that the region Pe is non-degenerate.

The key idea of our proof is to show that, in the visibility graph G(Pe), if we compute a
shortest path from u to v that is distinct from both Π1 and Π2, then it divides Pe into only
two regions, and that the evader is trapped in one of those regions. We will call this new path
the third shortest path Π3. Specifically, Π3 is the simple (loop-free) shortest path from u to v

10

in G(Pe) distinct from Π1 and Π2. (One can compute such a path using any of the algorithms
for computing k loop-free shortest paths in a weighted undirected graph [10, 17, 23].)

Lemma 7. The shortest path Π3 between the anchor nodes u and v divides the current evader
region Pe into two regions.

Proof. If the path is disjoint from Π1 and Π2 except at endpoints, then Pe is clearly subdi-
vided into two (possibly disconnected) regions. If Π3 shares vertices only with Π1 or only
with Π2, but in multiple disjoint subpaths creating multiple regions, then each subpath shares
its first and last vertices with either Π1 or Π2, and thus we can replace all but one with
subpaths of Π1 or Π2 and obtain a path no longer than Π3. Therefore, let us suppose that
Π3 shares vertices with both the paths, and so “hops” between Π1 and Π2, sharing common
subpaths with them, and creates three or more regions. In that case, Π3 must leave and
rejoin Π1 and Π2 at least once, as shown by points x, y, z in Figure 4(a). We observe that
dΠ2

(y, v) is no longer than d(y, z) + dΠ1
(z, v), otherwise Π2 is not the second shortest u, v

path, which is a contradiction. Thus the third region can be removed by altering Π3 to use
the subpath Π2(y, v). (A symmetric case arises when the roles of Π1 and Π2 are swapped.)
Thus, we conclude that Π3 can create only two subregions.

u v

Π1

Π2

x

y

z

Π3

(a)

P
−

e

P
+
e

e

Π1

Π2

(b)

Figure 4: The left figure illustrates the proof of Lemma 7; the right figure illustrates the two
subregions created by a path, Π2 in this case.

Clearly, if Pe contains one or more holes, then at least one of the regions created by the
third shortest path Π3 also contains a hole. The following lemma argues that Π3 is minimal
with respect to such a region. (The next lemma then addresses the case when the region is
hole-free.)

Lemma 8. Suppose Π3 divides the region Pe into two subregions P+
e and P−

e , and assume
that P+

e contains at least one hole. Then, Π3 is a minimal path within the region P+
e .

Proof. Assume, for the sake of contradiction, that the minimality of Π3 is violated for two
points x, z ∈ Π3. Let u′ be the vertex immediately preceding the point x, possibly x = u′,

11

u

u
′

x z

v
′

v

Π3

Π1

Π
′

3

Π

R

(a)

u

u′
x z

v′

v

Π3

Π1

Π
′

3

yΠ

R

(b)

Figure 5: Illustrates the proof of Lemma 8.

and v′ is the vertex immediately following z, possibly z = v′, on Π3. Consider the shortest
path in G(Pe) from u′ to v′. This path must be distinct from Π3(u

′, v′), as a shortest
path is necessarily minimal, while by assumption Π3(u

′, v′) is not. Thus, if this path is not
a subpath of either Π1 or Π2, we can immediately improve the length of Π3 by using this
subpath, thereby contradicting the choice of Π3. Therefore, assume without loss of generality
that the shortest path from u′ to v′ is a subpath of Π1. Further, let Π denote the shortest
path from point x to point z in P+

e , and consider the region R bounded by Π1(u
′, v′), Π and

the segments (z, v′) and (x, u′). If there are any holes in R then there is a distinct path Π′

3

shorter than Π3 obtained by tightening Π around those holes as shown in Figure 5(a). Thus
the hole in P+

e must be outside R, however pick the closest vertex on a hole in P+
e to Π, call

it y. Then a path Π′

3 shorter than Π3 can be obtained using y as shown in Figure 5(b). Thus
in all cases, if P+

e contains a hole, Π3 can be shortened, which contradicts its optimality.
Thus Π3’s minimality cannot be violated, and the proof is complete.

Since Π1 and Π2 are the two shortest paths between u and v, the region between them
necessarily contains a hole: otherwise, all vertices except u and v must be reflex (within
the region), which is a contradiction since every simply polygon must have at least three
convex vertices. Thus, at least one of the regions created by Π3 has a hole, and so Π3 is
minimal for that region. The region without holes must have a very special and simple
structure, as shown by the following lemma, and it can be cleared using the search strategy
for simply-connected polygons.

Lemma 9. Suppose Π3 divides the region Pe into two subregions P+
e and P−

e . If Π3 fails to
be minimal with respect to P+

e , then Π3 has the following simple structure: two edges plus a
subpath of either Π1 or Π2.

Proof. Suppose Π3 fails to be minimal in P+
e . Then, by Lemma 8, P+

e is hole-free. Non-
minimality means that the path can be shortcut, and so all vertices of Π3 cannot be reflex.
Let y be a vertex of Π3 that is convex in P+

e , and let x and z, respectively, be the predecessor
and successor vertices of y. We claim that x and z are either both vertices of Π1 or both
vertices of Π2. Suppose not. Then, the shortest path from x to z in Pe, call it Π, is shorter
than Π3(x, z). By assumption, at least one of x and z is not in Π1, and similarly for Π2, thus
Π cannot be a subpath of Π1 or Π2.

12

But, then the path Π3(u, x)∪Π∪Π3(z, v) is shorter than Π3 and distinct from Π1 and Π2,
contradicting the choice of Π3. Thus, x and z both belong to either Π1 or Π2, and assume,
without loss of generality, that they belong to Π1. Then P+

e is bounded by Π1(x, z) and the
edges (x, y) and (y, z), and the proof is finished.

Now, if both regions created by Π3 have holes, then the minimality of Π3 allows a third
pursuer to guard this path, and the pursuit continues in one of the smaller regions. However,
if one region is hole-free and Π3 is not minimal within it, a different strategy is required.
The following lemma shows how to either capture the evader in such a region, or to force the
evader out of (evict) this region, while guarding Π3 so the evader cannot reenter this region.

This can be accomplished by fixing an origin O in the region (say, some vertex in P),
and then letting the pursuer move along the shortest path between O and the current evader
position. It can be shown that the pursuer makes sufficient progress towards the evader, as
described in the appendix.

x

y

z

e

p

u vΠ1

Figure 6: An illustration of the pursuer’s eviction strategy. Dashed lines denote moves where
e moved first.

Lemma 10. Suppose the evader lies in hole-free region of k vertices that is bounded by
Π3 and another minimal path. If Π3 is not minimal with respect to this region, then, in
O(k · diam(P)2) moves, a single pursuer p can either capture the evader or force it out of
the region and place itself on e’s projection on the path Π3.

Proof. Assume, without loss of generality, that our hole-free region is bounded by a minimal
path Π1 and the path Π3, which by Lemma 9 must consist of two edges, say, (x, y) and (y, z).
The pursuer p’s strategy is to move to y, and at each turn move to the point closest to e that
is distance one from p and lies on the shortest y, e path, with one modification. Namely, if
p’s move takes it outside the region, then it moves along Π3 toward eπ (which must exist as
Π3 is minimal with respect to the other region) until e reenters, at which point its resumes
the pursuit, as depicted in Figure 6.

As the shortest path between any two vertices consists of at most two edges, this region
can have diameter no larger than 2 · diam(P). Thus if e never leaves the region, then by
the known result of Lemma 13 (described in the appendix), a successful capture occurs in
O(k · diam(P)2) moves. Therefore, assume that e leaves the region at some point. Since Π1

is minimal, the evader cannot leave the region through that path, and so assume without

13

loss of generality that the evader crosses the segment (x, y) of Π3. Because p always stays
on the shortest path between e and y, in an unmodified pursuit p’s move would cross (x, y)
as well. In the modified pursuit, p stops at the point where it crosses (x, y) and advances
toward the projection of e.

We note that the projection of e is within distance one of where e crossed (x, y). As a
result, because p crossed (x, y) at a point closer to y than e, if eπ lies on the subpath Π3(p, v),
then p can reach eπ in one move, and Π3 is guarded and we are done. Otherwise, p need
simply advance forward along Π3 toward eπ. If e never re-enters the hole free region, then
by Lemma 5 p will reach the projection within O(diam(P)2) moves.

In the case e re-enters the hole-free region, we note that it must do so by crossing the
segment (x, p), and that for each turn e was outside the hole-free region p moved distance
one along the shortest path from y to e. Thus on its next turn p can resume its pursuit,
while having increased its squared distance from y by at least 1/k, which will guarantee
a successful capture occurs in O(k · diam(P)2) moves should e remain within the hole-free
region. Thus e may continually move back and forth between the hole-free region, but within
O(k · diam(P)2) moves e will either be captured, or the pursuer will successfully guard Π3

by reaching the projection.

We can now summarize our main result.

Theorem 1. By following the Minimal Path Strategy, three pursuers can capture an evader
in O(n · diam(P)2) moves in a polygon with n vertices and any number of holes.

Proof. Whenever a new path is introduced which is minimal with respect to both regions,
the size (number of vertices) of the region Pe containing e shrinks by at least one. Thus,
the number of such paths guarded during the course of the pursuit before e is captured is
at most n, and the total cost of guarding them is at most O(n · diam(P)2). If Π3 is only
minimal with respect to one region R, then in O(k ·diam(P)2) moves the evader will either be
forced into R and a pursuer will guard Π3 or the evader will be captured. In such a case, the
vertices on the two bounding edges of Π3 were not removed, thus only k− 3 of the k vertices
were removed from Pe. When k > 3 the cost of removals sums to at most O(n · diam(P)2).
When k = 3, the evader is being evicted from a triangle, bounded by two edges of Π3 which
meet at a vertex y, and an edge of either Π1 or Π2. We bound the number of such removals
by showing each vertex can only be chosen as y twice. Either y is an interior vertex of Pe,
and will not be chosen again as an interior vertex (as it is now on a bounding path), or y is
already on a bounding path, and y will become an anchor, and never be chosen again. Thus,
there are at most 2n removals where k = 3, and their total cost is at most O(n · diam(P)2).

Finally, the sub-polygon containing the evader will be reduced to a triangle. Notice this
must occur, as otherwise a path Π3 exists which would split Pe. This region clearly has
diameter no larger than diam(P), and thus the evader can be captured by the third pursuer
in O(diam(P)2) moves with the known result of Lemma 13, for a total of O(n · diam(P)2)
moves over the entire pursuit.

14

5 The Shortest Path Strategy

In this section we present an alternative strategy to capture the evader. In contrast to the
Minimal Path Strategy which chooses the first, second and the third shortest paths in the
visibility graph to trap the evader, the Shortest Path Strategy directly picks a shortest path
in the evader’s region to trap the evader in a smaller region with fewer vertices. See Figure 7.

Π1 Π2

x

y

zu v

(a)

Π1

Π2

x

y

zu v

(b)

Figure 7: In (a), the next path (Π2) chosen by the Minimal Path Strategy (Section 3). In
(b), the Shortest Path Strategy using the obstacle move (Section 5.1).

A shortest path is guarded in two phases. In the initialization phase, a pursuer moves
onto the evader’s projection. Afterward, the pursuer stays on the projection as described in
Lemma 3. Note that a shortest path in a polygon is minimal with respect to any subset of
the polygon (see also Lemma 1). Hence, it can be guarded regardless of Pe.

We will divide the pursuers’ strategy into rounds. In each round, the pursuers will
coordinate their moves and restrict the evader to a smaller polygon by choosing two points
and guarding the shortest path between them.

Before presenting the full strategy, we describe two types of moves. In each round pursuers
will perform either a slicing move and/or an obstacle move. Each of the two moves is a
sequence of steps taken by a single pursuer. Before presenting the details, we introduce the
notation we will use for the rest of the paper.

We will use Pi to denote the the evader’s region Pe at round i. We denote the boundary
of Pi by δPi. Let n(Pi) be the total number vertices in Pi (including the obstacle vertices).
The boundary δPi will consist of at most two shortest paths, π1 and π2, each guarded by
a dedicated pursuer. The rest of the boundary will either consist of a portion of δP , the
original polygon’s boundary, or the boundaries of the obstacles. Hence if the evader tries
to escape from Pi it has to cross either π1 or π2 which will result in capture by Lemma 3.
We label the vertices of π1 and π2 in the order they are encountered while traversing δPi in
clockwise direction. Without loss of generality, let π1 = u1, . . . , uk and let π2 = ul, . . . , um

(See Figure 8).
At the end of each round, the strategy will maintain the following invariants:

1. n(Pi) > n(Pi+1), the number of vertices in Pi+1 are strictly smaller than the number
of vertices in Pi.

15

2. Pi+1 ⊂ Pi, i.e., the new polygon is a subset of the previous one.

3. the paths guarded by the pursuers forming the boundary of Pi+1 are both the shortest
paths in Pi+1.

We are now ready to present the two types of moves and analyze their properties.

5.1 Obstacle Move

π1

π3

π2

O

uk

u1

um

ul

(a)

1 2

ui

uj
um ul

uk

u1

π2

π1

(b)

Figure 8: Two possible obstacle moves. In (a), to compute π3, we extend the boundary ∂Pi

to include ∂O (shown as the bold path). We then compute the shortest path from u1 to uk.
In (b), an obstacle move where new paths to be guarded are portions of the old paths.

This move is performed when an obstacle O is touching either π1 or π2. First consider
the case where there is an obstacle touching exactly one of π1 or π2. Suppose there is an
obstacle touching π1 but not π2 as shown in Figure 8(a). In this case, the obstacle move is
performed by finding a shortest path from u1 to uk in the interior of Pi excluding the points
on π1 that touch O. To compute this path, we treat obstacles touching π1 as part of the
boundary and compute a shortest u1 − uk path as shown in Figure 8(a). More precisely,
let G be the visibility graph of Pi. We remove every edge of G which contains a point in
(π1 ∩O). Then, we compute the shortest path from u1 to uk in this reduced visibility graph.

Let this shortest path be π3. The third pursuer starts guarding π3. Since the evader can
be either between π3 and π1 or between π3 and π2, one of the pursuers from π1 or π2 will be
free and the evader will be restricted to a smaller region.

In the remaining case, there is an obstacle which is touching the boundary of Pi in
multiple points resulting in multiple connected components (see Figure 8(b)). This means
that the interior of Pi is composed of multiple connected components. In this case the evader
is already restricted to the connected component it lies in. The obstacle move is to simply
switch to guarding the portion of π1 and π2 which are part of the boundary of this region.
For example, on the right side of the Figure 8, if the evader is in region 2 then the new π1

(resp. π2) is the path from ui to uk (resp. ul to uj).

Lemma 11. After an obstacle move, all the invariants mentioned above are maintained.

16

Proof. We verify that each invariant is maintained.

1. In each obstacle move, we remove an obstacle from Pi and at least one vertex of this
obstacle is not included in Pi+1.

2. An obstacle move divides Pi into at least two regions, and we pick one. Therefore,
Pi+1 ⊂ Pi.

3. π3 is a shortest path in Pi+1. So are π1 and π2. Hence, the two guarded paths in Pi+1

are both shortest paths.

5.2 Slicing Move

The slicing move is used to restrict the evader to a smaller polygon when no obstacle touches
the guarded paths. In a slicing move two points ua and ub are picked from δPi such that ua

(respectively ub) lies on the boundary portion between uk and ul (respectively u1 and um).
We compute a shortest path between ua and ub and use the third pursuer to guard this path
as shown in Figure 9. Note that if there is no path between ua and ub in Pi, this means that
ua and ub are in two different components (i.e. Pi is disconnected). This can happen only
when there is an obstacle whose boundary is touching δPi at multiple locations making it
disconnected. In this case we can use the obstacle move presented in the previous section
(Figure 8(b)).

We now describe how ua and ub are chosen.
First, we observe that π1 and π2 can not have common endpoints at both ends. Since

π1 and π2 are both shortest paths, it must be that π1 = π2 and the evader has already been
captured, otherwise we get a contradiction with the fact that neither π1 nor π2 is touching
an obstacle.

Second, if π1 and π2 intersect at a vertex which is not an end-point, then Pi is disconnected
and the evader can be trapped in a smaller polygon simply by discarding the components
which do not contain the evader.

Hence, we are left with three possibilities which yield three variants of the slicing move
based on the number of boundary vertices between the endpoints of π1 and π2 (Figures 9
and 10).

Case 1: If π1 and π2 share no common endpoints, π3 is chosen as the shortest path
connecting uk and um (i.e. we pick uk as ua and um as ub). This case is illustrated in
Figure 9(a).

Case 2: In the second case, π1 and π2 share a common endpoint (say uk), and there is
at least one vertex on the boundary between the other endpoints (um and u1). In this case
π3 is chosen as the shortest path connecting uk = ul and an arbitrary vertex between the
other two endpoints. This case is illustrated in Figure 9(b).

Case 3: In the third case, π1 and π2 have exactly one common endpoint and the other
endpoints are adjacent (See Figure 10). Since an obstacle move is not possible, π1 and π2

17

π1
π2

π3

um

u1

uk ul

δP

(a) Case 1: The endpoints of π1 and π2 are
different

uk ul

π2

π3

π1

u1
um

δP

(b) Case 2: The paths share one endpoint.
The other endpoints are not adjacent

Figure 9: The first two instances of the slicing move.

are not touching any obstacles. In this case, π1 and π2 along with the boundary edge (uk, ul)
form a structure called a funnel [7]. The common end-point (u1 in Figure 10) is the apex
of the funnel. Both π1 and π2 are inwardly convex: when walking from the apex to uk, one
would always turn locally right. This is because π1 is a shortest path and no obstacle is
touching it from the inside. Therefore, if there was a left turn, one could find a shorter path
from u1 to uk than π1 which is a contradiction. A symmetric argument holds for π2.

We now show that when the evader’s current region Pi is a funnel formed by π1, π2 and
the polygon boundary, the pursuers can trap the evader inside a triangle in such a way that
at least one side of the triangle is a subset of the polygon boundary and the remaining sides
are guarded by the pursuers. We start with the case when there are no obstacles inside the
funnel. Even though the pursuers can readily win the game in this case by using the third
pursuer and the strategy for simply connected polygons, reducing the game to a triangle
yields improved capture time.

No obstacles: When there are no obstacles inside the funnel, the inward convex structure
of π1 and π2 yields a simple partition of the funnel which can be used for computing shortest
paths easily. The partition is obtained by extending each edge of π1 and π2 toward the edge
(uk, ul) as shown in Figure 10(a). Suppose edge e on π1 was extended to form the boundary
of a partition cell. The shortest path from u1 to point a in this partition cell continues along
π1 until it leaves e, followed by a line segment from the last vertex of e to a. We refer the
last vertex on the boundary as the corner vertex of a point.

The pursuers scan the funnel from left to right until they reduce it to a triangle as follows:
Extend all edges on π1 and π2 and let x1, . . . , xm be the intersection of the extensions with
the boundary edge (uk, ul) as shown in Figure 10(a). We define x0 = uk. Pursuer 3 guards
the shortest path from u1 to x1. If the evader is to the left of π3, we get a triangle. If the
evader is to the right, we iterate by releasing the pursuer guarding the path from u1 to uk

18

uk ul

u1

e

a
x1 x2 x3 x4 x5

(a) A funnel without obstacles is partitioned
by extending the edges on π1 and π2.

uk ul

u1

e

x1 x2 x3 x4 x5o

(b) A funnel with an obstacle inside. There
exists a point o on the boundary such that
the shortest path from uk to o touches the
obstacle.

Figure 10: Case 3. π1 (resp. π2) are the shortest paths from u1 to uk (resp. ul). They
share one endpoint (u1) and the other endpoints are adjacent. i.e. (uk, ul) is an edge on the
polygon boundary.

and use him to guard the shortest path from u1 to x2. The pursuers continue guarding the
paths from u1 to x2, x3, . . . , xm until a triangle is reached.

Note that every time the funnel is shrunk by guarding xi, the number of vertices is
reduced by one: when guarding xi, we introduce a vertex at xi but remove two vertices: xi−1

and the corner of xi. Hence the invariant n(Pi+1) < n(Pi) is maintained.
Obstacles inside the funnel: In this case, we show that there exists a point on the edge

(ul, uk) whose shortest path from u1 touches an obstacle: Remove all the obstacles from the
funnel and compute the partition described above. We start from the leftmost partition and
move toward right. For each partition, we order all the obstacle vertices in that partition
in anti-clockwise direction with respect to their corner vertex. We extend the line segment
from the corner vertex to the first obstacle vertex in this ordering until it hits edge (ul, uk).
In Figure 10(b), for partition tx2x3 we extend the line segment from t to the first vertex in
the ordering until it hits (ul, uk) at o. Therefore the shortest path π3 from u1 to o touches
the obstacle. The third pursuer guards this path. We now consider the part of the funnel the
evader is restricted to. If the part contains no obstacles, we continue as in the previous case
and reduce it to a triangle. Otherwise, π3 is touching an obstacle. We perform an obstacle
move and consider this a part of the move.

Observe that in forming π3 we introduced a new vertex in Pi (at o in Figure 10(b)).
However, in computing Pi+1 we removed at least two vertices: if the evader and the obstacle
are on opposite sides of π3, either uk or ul as well as all vertices on the obstacle touching π3

are removed. If they are on the same side either uk or ul in addition to at least one of the
obstacle vertices π3) are removed. Hence the invariant n(Pi+1) < n(Pi) is maintained.

We now show that a slicing move maintains all invariants.

Lemma 12. After a slicing move, all the invariants are maintained.

Proof. For case 3, we have already shown that n(Pi+1) < n(Pi). In all other cases, similar
to the proof of Lemma 11, it can be easily verified that the slicing move maintains all
invariants.

19

5.3 Complete Strategy and Analysis

We are now ready to describe the full strategy. At the beginning of the game, two pursuers
pick two separate edges on the boundary and guard them as π1 and π2. Afterward, the
pursuers continue with performing either an obstacle move or a slicing move until the evader
region becomes a triangle as follows: If an obstacle is touching π1 or π2, they perform an
obstacle move. If an obstacle move is not possible and Pi is not a funnel, they perform one of
the slicing moves given in case 1 or case 2 until they reach a funnel. Once a funnel is reached,
the pursuers reduce it to a triangle as described in case 3. When a triangle is reached, they
use the third pursuer and the strategy for simply-connected polygons to capture the evader.

We now present our main result which shows that the sequence of moves described above
result in capture in finite number of steps.

Theorem 2. By following the Shortest Path Strategy, three pursuers can capture an evader
in O(n · diam(P)2) moves in a polygon with n vertices and any number of holes.

Proof. Suppose the step size of the pursuers and the evader is one. Let P be the initial
polygon and n be the number of vertices of P . In order to guard a shortest path Π ∈ Pi, a
pursuer must reach Π and move along it toward the evader’s projection. Since the length of
Π is bounded by diam(P)2 by Lemma 4, it can be guarded in O(diam(P)2) steps.

At each round, at most two paths are guarded (Case 3 of a slicing move may contain an
obstacle move) and at least one vertex is removed. Hence the total number of steps until
the evader is trapped in a triangle is bounded O(n · diam(P)2). Once the evader is trapped
in a triangle Pi, by Lemma 13, it can be captured in O(3 · diam(Pi)

2) steps. Since Pi is
a triangle, the shortest paths inside Pi are the same as shortest paths inside P , hence its
diameter is no greater than diam(P). Therefore, the number of steps to capture the evader
inside a triangle is O(diam(P)2) .

To sum up, the strategy takes at most n rounds and the length of each round is O(diam(P)2).
Therefore the total number of steps is O(n · diam(P)2).

6 Necessity of 3 Pursuers

In this section, we complement the sufficiency of three pursuers with a lower bound. We
show that any deterministic strategy requires at least 3 pursuers in the worst-case, and thus
the upper bound of the previous section is tight.

Theorem 3. There exists an infinite family of polygons with holes that require at least three
pursuers to capture an evader even with complete information about the evader’s location.

Proof. The proof is based on a reduction from searching in planar graphs. In particular,
consider a planar graph G, with vertices of degree 3, and no cycles of length three or four
(see Figure 11(a)). Aigner and Fromme [1] proved the correctness of a simple strategy to
avoid capture on such a graph, which involves moving only when a pursuer is capable of
capturing it. Consider a vertex u of G with neighbors ux, uy and uz. Then it is easy to

20

u

ux

uy

uz

(a)

u

ux

uy

uz

δ

δ δ

δ

δδ

(b)

ε

ε

(c)

uy ux

uz

xu
yu

zu

zxzy

yx xy

xzyz

(d)

Figure 11: A planar graph with min-degree 3 and no three or four cycles (a), example con-
structed intersection (b), example edge construction (c), and example of corridors connecting
intersections for the complete graph on four vertices (d), where jagged edges denote length
1 − 2δ and straight edges 2δ.

see that no other vertex in the graph has more than one neighbor in the set {ux, uy, uz}.
Therefore, if there are only two pursuers, at least one of u’s neighbors is not adjacent to any
pursuer, and the evader can move to that neighbor without being captured on the pursuer’s
next turn. This argument repeats ad infinitum, showing that two pursuers cannot capture
the evader in this graph. We now describe how to construct a polygon from G where the
evader can mimic this reactive strategy and avoid capture forever against two pursuers.

Using Fary’s Theorem, embed G so that each edge maps to a straight line segment. We
now transform this straight-line embedding into a polygon with holes. First replace each
node of G with an intersection shown in Figure 11(b). An intersection replacing a node u
of G with neighbors x, y, z has three points labeled ux, uy and uz, which we call intersection
points or i-points for short. The intersection is constructed such that the shortest path
between any pair of i-points (within a single intersection) has length exactly 2δ, and a
shortest path through a given intersection will visit two i-points. To finish the construction,
we then connect each of these intersections with corridors, such that a corridor replacing an
edge from u to x will contain the i-points ux and xu, and by introducing artificial bends (as
seen in Figure 11(c)) we can guarantee the shortest ux, xu path in each corridor has length

21

1− 2δ. The resulting connections between intersections for the complete graph on 4 vertices
are depicted in Figure 11(d). It is easy to see that such a construction can ensure that all
the corridors are non-overlapping, and by proper scaling of the environment we can meet all
corridor length conditions. With this transformation, the outer face of the graph becomes
the boundary of the polygon P , while each face of the plane graph becomes a hole.

We now argue that in the constructed polygon P , the evader can indefinitely avoid
capture from two pursuers. To do so, the evader will move between the i-points of P , and
guarantee that after each move the following invariant holds: both p1 and p2 are at least
distance 1+2δ from all i-points of e’s current intersection. The game begins by each pursuer
choosing a location in P , and it is easy to see that the evader can then choose some i-point
such that the invariant initially holds. We then must show, that at each turn if this invariant
is violated, e can move to re-establish it. By doing so we guarantee neither pursuer is ever
closer than 2δ to e, and thus e can indefinitely avoid capture.

Suppose e is located at an i-point of an intersection u such that the invariant is satisfied,
and the following move by the pursuers violates the invariant. Let the i-points of u be ux,
uy, and uz. We claim a pursuer can be within distance 1 + 2δ of an i-point of at most one
of x, y, and z, and break our analysis into two cases, either p lies within distance 1 − 2δ of
an i-point of u, or not.

In the first case, suppose without loss of generality p is within distance 1 − 2δ of ux,
meaning it lies in the corridor from u to x. Then, as the invariant held before p moved
necessarily d(p, ux) ≥ 2δ. Further, as the i-points of u are 2δ apart, it is easy to see that
d(p, uy) ≥ 4δ, and d(p, uz) ≥ 4δ. Thus, as d(uy, yu) = 1− 2δ and d(uz, zu) = 1− 2δ it follows
that p is at least distance 1 + 2δ from the i-points of y and z.

Consider the second case where p is further than 1−2δ from the i-points of u and within
1 + 2δ of i-points of two intersections in the set {x, y, z}. Without loss of generality suppose
they are y and z. Then there exists i-points yv and zw such that d(p, yv) < 1 + 2δ and
d(p, zw) < 1 + 2δ. Consider the following cycle, p, yv, yu, uy, uz, zu, zw, p, which has length at
most (1 + 2δ) + 2δ + (1 − 2δ) + 2δ + (1 − 2δ) + 2δ + (1 + 2δ) = 4 + 6δ. This cycle then has
length less than 5, as we can always construct P with an arbitrarily small δ. Further, as p is
at least 1−2δ from the i-points of u, the shortest paths from p to yv and zw to p cannot pass
through a corridor adjacent to u without being longer than 1 + 2δ, thus this cycle surrounds
one or more holes of P . However, G has no cycles of length three or four, thus the cycle in
P then must have length five or more, and this is a contradiction.

Thus each pursuer is within distance 1 + 2δ of an i-point of at most one intersection in
the set {x, y, z}. Thus one of xu, yu, and zu will satisfy the invariant and as they are all
within distance one of the i-points of u, e can move to the one which satisfies the invariant.
Thus, at each turn e can re-establish the invariant and indefinitely avoid capture.

22

7 Closing Remarks

In this paper, we proved that three pursuers are always sufficient to capture an evader in
a polygonal environment of arbitrary complexity, under the assumption that pursuers have
access to evader’s location at all times. We also proved a matching lower bound, showing that
three pursuers are also necessary in the worst-case. Traditionally, the papers on continuous
space, visibility-based pursuit problem have focused on simply detecting the evader, and
not on capturing it. One of our contributions is to isolate the intrinsic complexity of the
capture from the associated complexity of detection or localization. In particular, while
Θ(

√
h + log n) pursuers are necessary (and also sufficient) for detection or localization of

an (arbitrarily fast) evader in a n-vertex polygon with h holes [8], our result shows that
full localization information allows capture with only 3 pursuers. On the other hand, it
still remains an intriguing open problem whether Θ(

√
h+log n) pursuers can simultaneously

perform localization and capture. We leave that as a topic for future research.

8 Acknowledgements

The authors would like to thank Lijie Ren for helpful insights into the proof of Lemma 2.

A Capture in a Simply-Connected Polygon

Isler et al. [11] studied the visibility-based version of the cops-and-robbers game in simply-
connected polygons. In their model, a cop can see the robber only if the line segment
connecting the two players does not intersect the boundary of the polygon. They showed
that a single cop can locate the robber, and two cops can capture the robber in any simply-
connected polygon. In the two-cop strategy, one cop starts from an arbitrary point o and
moves so that it stays on the shortest path between the robber’s current location and o.
Further, whenever the cop moves, its squared distance from o increases by at least 1/n.
Since the cop can not see the robber when it is occluded from his field of view, the second
cop is used to determine the motion direction when the robber is not visible. They also
bound the number of searches necessary. Since in our model the players know each other’s
locations at all times, the second cop is not necessary, giving us the following result:

Lemma 13 (Capture in a simply connected polygon [11]). A single pursuer can capture the
evader in any simply-connected polygon P in O(n · diam(P)2) moves.

References

[1] M. Aigner and M. Fromme. A game of cops and robbers. Discrete Applied Mathematics,
8(1):1–12, 1984.

23

[2] D. Bhadauria and V. Isler. Capturing an evader in a polygonal environment with
obstacles. In International Joint Conference on Artificial Intelligence, 2011.

[3] D. Bienstock and P. Seymour. Monotonicity in graph searching. J. Algorithms,
12(2):239–245, 1991.

[4] T. H. Chung, G. A. Hollinger, and V. Isler. Search and pursuit-evasion in mobile
robotics. Auton. Robots, 31:299–316, November 2011.

[5] F. V. Fomin, P. A. Golovach, and J. Kratochv́ıl. On tractability of cops and robbers
game. In TCS, pages 171–185, 2008.

[6] A. S. Goldstein and E. M. Reingold. The complexity of pursuit on a graph. Theoretical
Computer Science, 143(1):93 – 112, 1995.

[7] L. Guibas, J. Hershberger, D. Leven, M. Sharir, and R.E. Tarjan. Linear-time algo-
rithms for visibility and shortest path problems inside triangulated simple polygons.
Algorithmica, 2(1):209–233, 1987.

[8] L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. Visibility-based
pursuit-evasion in a polygonal environment. IJCGA, 9(5):471–494, 1999.

[9] B. Halpern. The robot and the rabbit–a pursuit problem. The American Mathematical
Monthly, 76(2):140–145, 1969.

[10] J. Hershberger and S. Suri. ”Vickrey pricing and shortest paths: What is an edge
worth?”. In 43th FOCS, 2002.

[11] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion in a polygonal envi-
ronment. Robotics, IEEE Transactions on, 21(5):875 – 884, 2005.

[12] V. Isler, S. Kannan, and S. Khanna. Randomized pursuit-evasion with local visibility.
SIAM Journal on Discrete Mathematics, 1:26–41, 2006.

[13] V. Isler and N. Karnad. The role of information in the cop-robber game. TCS, 399(3):179
– 190, 2008.

[14] K. Klein and S. Suri. Complete information pursuit evasion in polygonal environments.
In Proceedings of the 25th Conference on Artificial Intelligence (AAAI), pages 1120–
1125, 2011.

[15] A. LaPaugh. Recontamination does not help to search a graph. J. ACM, 40(2):224–245,
1993.

[16] J. E. Littlewood. Littlewood’s Miscellany. Cambridge University Press, 1986.

[17] E. Nardelli, G. Proietti, and P. Widmayer. Finding the most vital node of a shortest
path. TCS., 296(1):167–177, 2003.

24

[18] S.-M. Park, J.-H. Lee, and K.-Y Chwa. Visibility-based pursuit-evasion in a polygonal
region by a searcher. In ICALP, pages 281–290. Springer-Verlag, 2001.

[19] T. D. Parsons. Pursuit-evasion in a graph. In Y. Alavi and D. R. Lick, editors, Theory
and Application of Graphs, pages 426–441. Springer-Verlag, Berlin, 1976.

[20] S. Sachs, S. Rajko, and S. M. LaValle. Visibility-based pursuit-evasion in an unknown
planar environment. International Journal of Robotics Research, 23(1):3–26, 2004.

[21] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region.
SIAM J. Comp., 21:863–888, 1992.

[22] M. Vieira, R. Govindan, and G. Sukhatme. Scalable and practical pursuit-evasion with
networked robots. Intelligent Service Robotics, 2(4):247–263, 2009.

[23] J. Yen. Finding the k shortest loopless paths in a network. Management Science,
17(11):pp. 712–716, 1971.

25

