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Abstract— We study a path planning problem which arises In our recent work, we presented an alternative to static
when multiple robots are used to gather data from stationary relay-nodes for such applications: using robots as datasnul
devices with wireless communication capabilities. Each dice to collect the data from sensors [9]. This approach has a

has a given communication range, and stores a fixed amount of b f advant denlovi d tati t
data. The objective of the robots is to gather the data from tlese number of advantages over deploying a daense static net-

devices and to upload it to a base-station/gateway. We intduce ~ Work. First of all, since relay nodes are no longer needed,
a new optimization problem called the Data Gathering Problen ~ operational costs are minimized. Second, the lifetime ef th

(DGP). In DGP, the objective is to compute a tour for each network is maximized because the robots can get close to the
robot in such a way that minimizes the time to collect data  gangor nodes to download the data. In addition to reducing

from all devices. In order to download the data from a device, th ti during t .. | .
a robot must visit a point within the communication range of e energy consumption during transmission (less power is

the device. Then, it spends a fixed amount of time to download Needed), proximity also reduces the data loss rate, which
the data. Thus, the time to complete a tour depends on not results in smaller number of transmissions per byte. In [9],
only the travel time but also the time to download the data, e experimentally demonstrated the utility of a robotic enul
and the number of devices visited along the tour. system for gathering data.

F.irst,. we stydy a special case of DGE where the robpts’ In th t K dd th bl f ol .
motion is restricted to a curve which contains the base statin n the present work, we address the problem ot planning
at one end. Next, we study the 2D version. We show that two the routes of robotic mules: given locations ofsensors,
existing algorithms for variants of the Traveling Salespeson compute the routes of robots so that the time to download
Problem can be combined and adapted to obtain a constant the data from all sensors is minimized. Throughout the paper
factor approximation to DGP. Afterwards, we present an im- o \vii| refer to this problem as thBata Gathering Problem
provement for sparse deployments. We also present simulains . .

which shed light on the utiiity of data gathering using mobile  (£-DGP). Note that in DGP, the cost incurred by a robot
robots. depends on not only the robot’s travel time but also the time
to download data from a sensor, and the number of sensors
) assigned to the robot.

In the last decade, Wireless Sensor Networks (WSNS) The well-known Traveling Salesperson Problem (TSP)
have been utilized in numerous automation tasks such gsys for the shortest path for a salesperson towisities [1].
monitoring structural integrity of bridges. In these appli There is a variant of TSP, callde- TSP, wherek travelers
cations, sensing devices equipped with communication aRgkit 4, cities, and the objective is to minimize the length of

computation capabilities collect data, and form a network tine maximum tour [4]. Even though DGP resembles TSP, a
relay it back to a gateway. At the moment, there are stil\|oser look reveals important differences.

obstacles preventing the scalability of WSN technology. It
was envisioned that the cost of the network nodes would
be minimal. Further, it was expected that tiny and long-
lasting batteries would be available for long term operatio
However, sensor nodes are still costly (a basic device rans o
AA batteries and costs around $100). In parallel, maintajni
the network (e.g. replacing batteries) requires manuairlab
which adds significantly to the operation costs.

There are some applications where a large area must be
covered with a sparse deployment. For example, in habitat
monitoring, soil humidity and temperature at areas visitgd F9- 1.  Two robots charged with collecting data from the semsand

. . . relaying them to the base statid®. The filled circles correspond to sensor
a particular species is collected. In order to use the ctirrecations. The circle around a sensor illustrates its conication range.
WSN technology in such applications, deploying a densgie figu_re shows optimum TSP tours for the_two ropots_ Whichinmi_ize
network is necessary because WSN nodes typically ha?l? maximum t_ravel distance by any robc_)t. This solution isagmpropriate
.. or data gathering because the robot assigned to the lefppgrould spend
short communication ranges, and many nodes must act &t of time downloading the data from the sensors.

relays to transmit the data.
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can spend significantly more time to download the data fromelated literature, mobility is treated as an uncontrolled
all assigned sensors. In fact, we can make the TSP solutiprocess. A recent review on the state of the art in exploiting
arbitrarily bad by increasing the number of nodes in the leink mobility can be found in [6]. In [5] the robot’s velocity
cluster. is controlled (along a fixed path) to improve transmission
As another example, consider a special case where gliality. The authors do not address the problem of computing
sensors and the base station are on a line. Imagine that @fitimal tours.
sensors are to the right of the base station. In TSP, thereYuan et al. formulate the problem of collecting sensor
is no utility in employing more than one robot for thisdata using a single robot as a TSPN instance [11]. They
case: the robot that will visit the furthest sensor can visilo not address the time spent in downloading data. As
all other sensors on the way. However, when the downloahown in Figure 1, ignoring transmission time can worsen the
time is incorporated, the utility of employing multiple rots  performance of the system drastically. Tirta et al. presgnt
becomes evident. algorithms to schedule visits of a mobile agent to colle¢tada
Another aspect where DGP differs from TSP is due tdrom cluster heads [10]. The authors present heuristicshwhi
the presence of a non-zero communication range. As shovworus on data latency and data aggregation rate of clusters.
in Figure 1, the robot does not need to visit the precise In [3], Dunbabin et al. present an underwater data muling
location of a sensor. Instead, it needs to visit a point isystem. In the underwater scenario, sensors and underwater
its acceptable communication radge download the data. vehicles communicate through optical communication, Wwhic
There is a variant of TSP, called TSP with Neighborhoodgequires a close proximity as well as good view-angle to
(TSPN) which captures this aspect of DGP. In the geometritart the communication. Moreover, since GPS localization
version of TSPN, we are givem disks. The objective is to is not available under the water, the vehicle has to navigate
compute the shortest tour that visits at least one pointdéh eaunder high localization uncertainty. This makes designing
disk. Even though efficient algorithms for TSPN exist [2],global routing algorithms challenging. The authors pr@pos
[7], there are no algorithms fde-TSPN where the objective a solution where the vehicle performs a spiral movement to
is to compute TSPN tours fdr robots. find the sensors. This strategy is not efficient for our saenar
Our results and organization of the paper: In Section Ill, in which the sensor locations are known and the robot can
we formalize the Data Gathering Problem. In the presemcalize itself.
work, we make three main contributions. First, in Section IV
we present an optimal algorithm for the 1D version where the ) ) . )
robots are restricted to move along a curve which contains SUPPOSe we are given the locationsroidentical sensors.
a base station at the starting point. For the 2D case, wd'€re is a base statiol, and« robots which can navigate
make two contributions in Section IV. We show that the [N the environment are charged with downloading the data
TSP algorithm presented in [4] can be combined with thE0m each sensor and uploading it to the base station. We
TSPN algorithm of [2], and the resulting algorithm can bélefinecoverage of a sensor as receiving all data from that
modified to obtain a constant-factor approximation algyonit  S€nsor and transmitting it to the base station.
for DGP in 2D (Section V-B). Next, we focus on sparse Ve make the following assumptions:
deployments where the utility of using robots is significant « The sensors are identical. The amount of data to be
and present an improved algorithm for this case in Section V-  downloaded from each sensor is the same. Further, the
C. In Section VI, we present simulations which provide  sensors’ transmission range and data sending rate are
further insights on the use of robots for gathering data. In  identical. We assume that each sensor can sense data

the next section, we start with a brief overview of the radate ~ and transmit it up to a distancg. units with uniform
work. data rate. Therefore, the time required to download data

from every sensof{y, is identical.
Il. RELATED WORK « The data is downloaded by identical robots which
The Traveling Salesperson Problem is a fundamental, have wireless communication capabilities and can travel
widely studied optimization problem to the extent that éher at a constant speed of. In this work, we do not
are books dedicated to it [1]. The work presented in this  consider higher order constraints such as acceleration.
paper relies on algorithms for two variants of TSP. The  The robots have infinite buffer capacities (since they

IIl. PROBLEM DEFINITION

geometric version of TSP with Neighborhoods [2], akd can carry large storage devices). Similarly, we do not
TSP [4]. An overview of these two algorithms is presented  consider energy limitations for robots. We assume that
in Section V-A. the robots can localize themselves and navigate in the

Exploiting mobility in collecting sensor data has received  environment.
some recent attention. For example, in [8], Shah et al « Even though there may be obstacles in the environment,
presented an architecture that uses mobile entities in the we assume that the communication disks are obstacle-
environment for data delivery. However, in most of the free. That is, no obstacle intersects the communication

disk of any sensor.
1This is an application dependent parameter that dependseochiarac- Wi he al ith in th di . d
teristics of the signal, environment and acceptable signality and energy e present the algorithms In the succeeding sections under

consumption levels. these assumptions. In Section VII we discuss them further.



IV. THE 1-D DATA GATHERING PROBLEM. Sinceu), < uy, we haveT”(u) < T'(u). Also T"(v) = T'(v).
4 he reassignment operation does not increase the coverage

In this section, we study the 1-D version of the dat A - UM
gathering problem where the robots are restricted to mo@@St 0f any of the two robots. Continue reassigning in the
similar way untilu), < v;.

along a curveX. This case has practical applications in _ i
scenarios where robots move along a rail-line, or there is €ase (b): When there is a complete overlap. In this case

a single path they can move along in a rough terrain. reassign sensar; to robotv and sensop; to robotu. This

We assume that base station is at an end point of ifloes not increase the cost of coverage of by any of the robot
curve X: i.e. atz — 0 wherez is the parameterization of andv. Now the case is similar to case (a) but with robots

swapped. This case can be dealt in a similar way as (a).

For each sensar, compute the intersection the communi- -6t 5" the solution obtained by reassignmentofS” is at
cation disk (centered atwith radius isT}) with the curve. MOst as costly as and has one more pair of non-overlapping

Suppose all intersections are on one side of the baserstatifPPOts- This contradicts the maximality 6t Hence,S has
Let =, be the first point of this intersection along. We O overlapping pair of robots. u

will choosex, as thedownload location of a sensos. Since

all intersections are assumed to be on one side of the base x Uy vy U o

station, any robot which will download data fromcan @ — 00—

do so from locationzs without incurring additional travel

costs. Hereafter, we represent each sensor with its dodnloa

location. For this version of the problem where > 0 for ®) x o v 0 v Uk

all s, we will present an optimal algorithm for gathering data 5 ® ® —

with « robots. Fig. 2. Data collection on the line: (a) partial overlap (bjnplete overlap.
Consider a solution to the 1D data gathering problem.

Let U = {uy,uz,...,ux} andV = {vy,vq,...,v;} be the

sets of sensors assigned to robotandv (we overload the ~ Lemma 4.1 sheds light onto the structure of sensor as-

notation and use; to refer both a sensor and its downloadsignments in an optimal solution. We now present a dynamic

location) ordered and labeled such that< u, < ... < uy programming algorithm to exploit this structure and to gath

andv; < v, < ... < v;. While ordering download locations the data fromm sensors using robots in an optimal fashion.

we break ties arbitrarily. Without loss of generality, asgu L€t us order and label sensors framto s,, with increas-
that u; < v;. We say thatu and v are non-overlapping if ~ ing distance of their download locations from base station

the underlying curve.

g < vl. (again, s; refers to both thei’” sensor and its download
The following lemma sheds light onto the structure ofocation). Letcost(k,l) be the cost to cover sensoss to
optimal data collection. s1, k < I by arobot. Thereforeost(k, 1) = 2t +(I—k+1)Tq.

Lemma 4.1: There exists an optimal solution to cover We create am x  tableT'. Each entryl'[i, j] represents the

sensors withx robots in which every pair of robots is non- Optimal cost to coves; to s; sensors by robots. The table
overlapping. is computed using the following recurrence equation:

Proof: Among all optimal solutions, consider the opti-

mal solutionS with the largest number of non-overlapping si L . P
. . . . .. + Ty if 7=1
pairs of robots. We claim that no pair of robots this T[i,j] =<4 ", . _ .
overlapping. mingeqy j—13(T'k, j — 1] + cost(k, i)) otherste
Suppose, to the contrary, that there is a pair of rohots Lemma 4.2: Tli. 1 will give us the optimal covera e(t'gne
& v in S which are overlapping. LelV = {uy,us,...,ux} or the f'rst" .sen[é’cfr]sWIs'?l“'l mu les Pl verage
andV = {v1,vs,...,v;} be the sets of sensors assigned t(.f> Irste using mules.

Proof: We prove the lemma by induction ofj the

. : . number of robotsBasis. For j = 1 the minimum time to
The sensors i/ and V' can overlap in two primary ways g
P P y way covers; to s;, T'[i, 1] = 3¢ + 4Ty for all i € {1,n}. This is

shown in Figure 2. - .
) : . minimum because to covérsensors any robot has to travel
Case (a): When there is a partial overlap. Let the coverage .
time taken byu andv be T'(u) and T'(v) p to download location of farthest sensor and download data
' from all the sensordnduction hypothesis: Let T'[l, j — 1] be
T(u) = L kT; and T(v) = uo IT, minimum time required to cover firgtsensors using — 1
v v robotsvi € {1,n}. Now for j robotsTi, j| = min(7T[l,j —
We reassign sensar, to robotv and sensow; to robot 1]+ cost(l+1,i)) wherel € {1, —1}. SinceT[l,j — 1] is
u. New sets of senso’ = U — {uy} + {v1} andV’ =  minimum coverage time faf sensors withj — 1 mules and
V —{v1}+{u} are assigned to andv. Letu), be the sensor the value ofT’[¢, j] is set to minimum of all — 1 possible
in U” which is farthest from base station. New coverage timeglues, T[4, j] is minimum coverage time of sensors with
are: j mules. |
/ Thus, the entryl'[n, k] gives us the desired solution. The
/ Uy d / _u . . . .
T'(u) = —*+kTq and T'(v) = — + 1Ty running time of the algorithm can be easily seen to be

w andw.



O(n?k). The main result of this section is summarized bytravels along the TSP tour and the tour is split each time
the following theorem. when the cost reaches a threshold which is decided by
Theorem 4.3: There exists an optimal polynomial time the average cost of &-subtour. This algorithm gives an

algorithm to solve the 1-D version of the data gatheringpproximation bound of — + for k-TSP.
problem when all the sensors are on one side of the baseln the next section, we show how these two algorithms
station. can be combined to solve the data gathering problem in 2D.

V. K-ROBOT COVERAGE IN2D B. Algorithm for DGP in 2D

We start this section by reviewing algorithms for two rel- - the main idea of the algorithm is to create a TSPN tour
evant TSP variants: In Section V-A, we present an overvieys sensors and divide that tour into subtours such that

of a constant factor approximation algorithm by Dumitresciach subtour is of almost similar cost. The main steps of the
and Mitchell [2] for TSP with Neighborhoods where thealgorithm are as follows:

neighborhoods are uniform disks, as well as a constant
factor k-TSP algorithm. In Section V-B, we show how these

two algorithms can be modified and combined to obtain

a constant factor algorithm for the data-gathering problem

Finally, in Section V-C, we present an algorithm which gives

improved results when the sensors are “spdrse”

A. TSPN tour algorithm and TSP splitting algorithm

In [2], Dumitrescu and Mitchell present a constant-factor
approximation algorithm for TSPN with uniform disk neigh-
borhoods. The approximation ratio of the algorithm which
we refer to asTSPN_.TOUR is 11.15. 3)

TSPN.TOUR first finds out a maximal independent set f _
(MIS) of non-intersecting disks. Then it creates a TSP tour (b, s1,53,....s}, ,b) for all j € {I,x}. Note that
T which visits the center of each disk in MIS. A TSPN tour sp ' =siforje{l,s—1} ands); = s,.
is formed from the TSP tour as follows: the TSPN tour starts \we now show that by combining the two algorithms for
from the intersection of an arbitrary disk in MIS afi@. It ~ TSPN and k-TSP, one obtains a constant factor algorithm for
then followsT7 in clockwise direction. If the boundary of a the data gathering problem.

MIS disk D is encounteredD is traversed clockwise along  Theorem 5.1: If 75, is the cost of the largest subtour
the boundary until the next intersection ﬁf with D. This generated by a|gorithm amq is cost of the |argest subtour

continues until the tour returns to starting point. Now thgn the optimal solution for the data gathering problem, then
Ty is traversed in similar fashion but in counter clockwise
(2)

direction until start point is encountered. Fig 3 illuststa
TSPN tour obtained by the algorithm TSPROUR. wheree is the approximation ratio of the algorithm used to
find TSPN tour at step 1 of DGP algorithm.

Proof: We sketch the main steps in the proof which
parallels the proof of the performance of tkeSPLITOUR
algorithm by [4]. The cost of any touRk;, 1 < i < k, does
not exceed1/k)(m1 — 2¢maz) + 2¢maz-

Therefore

1) For n sensors and base stationfind a TSPN tour
R = (b,s1,82,..., Sn,b) With cost(R) = 7, where
s; is a sensor node and is the coverage time of,
sensors by one robot.
2) For eachj,1 < j < & find the last sensos,,;, n; €
{1, n} such that the cost (time to travel plus download
data) of path frond to sn; along R is not greater than
(7/k) (11— 2¢maz) + Cmaz- HEr€CHmq, IS the time taken
for a robot to travel from base station to the download
location farthest from base station.
Let s? represents thé" sensor inj!" subtour. Obtain
the x subtours by formingj!" subtour asR; =

/T <e+2-1/k

Tk = maX(COSt(Ri)) < (1/k) (Tl - 2cmaw) + 2Cmas (3)

By triangle inequalityr; > (1/k)r{ where 7{ is the
optimal cost of coverage with robot. This can be proven
by contradiction: Let us assume that < (1/k)7{. We can
combine the subtours in such a way that the last sensor of
each subtour is connected to the first sensor of the next

Fig. 3. A TSPN tour constructed by algorithm TSAMUR. . The disks
in MIS are drawn with heavy solid lines. The tour contains tsuitours.
After visiting a circle, one subtour traverses its boundaigckwise until
the next intersection of the disk with the tour. On the waykbdlse other
tour traverses the disk counter-clockwise.

Frederickson et al [4] present an algorithkfGPLITOUR,

to split a TSP tour intok subtours. In this algorithm one

2We will quantify the notion of sparsity in Section V-C as well

subtour. By the triangle inequality the new edge will be
shorter than the sum of the edges deleted (edge from last
sensor of the subtour to the base station and edge from the
first sensor of the next subtour to the base station). But this
meansr; is not optimal which is a contradiction.

Let the cost of TSPN tour at step 1 of the algorithm
with T; = 0 (Cost of a “regular” TSPN tour) be and the
cost of optimal TSPN tour with; = 0 be 7*. Depending



on implementation a robot may download some amount
of data while it is traveling inside the disk (i.e. overlap

time of traveling and downloading) of a sensor. We have
71 <7+ nTy. Also 7 > max(7*,nTy). So we get

1 - T4+ nTy T nTy

— = ” S—*'F—*Se-f—l 4)
1 T T T

where e is the approximation ratio of the algorithm used
to find TSPN tour. Combining the results from Equation 3,
triangle inequality, Equation 4 and from the fact that,, <
117 we getr,/mf <e+2—1/k. ]

If TSPN_.TOUR is used for finding TSPN tour for step 1
of the a.bo.ve algonthm we have to be careful in dIVIdIr?g th?—ig. 5. ONEWAY _TSPN.TOUR makes a complete tour after visiting each
tour. This is because of the fact that the last sensor coweredgisk in the MIS. This approach improves the coverage timenithere are
a subtour may be the one whose disk is not in MIS. For suctensors which are far apart.
cases we need to know the exact point on the disk boundary

where we have to make the split. Ldt be a disk in MIS o
and B be another disk intersecting. To cover sensor aB, In ONE_WAY_TSPN_TOUR, we start the TSPN tour simi-

a robot stops at the point where the line joining center dfly @s in TSPNTOUR, i.e., from the point of intersection
A and the center oB? intersects with boundary of disi ~ ©f boundary of disk of an arbitrary vertex afid. Traverse
for downloading data fronB. After downloading data from @long 77 until the point of intersectiong, of the boundary
sensor a3, the mule continues its TSPN tour. Note that dat®f @n MIS disk is encountered. Make a complete tour of
from sensor atd is downloaded from the point where tour the disk boundary untik is encountered again. Now, from
first meets boundary afl. By fixing the download location @ traverse directly to the next point of intersectién of 7;

of sensors whose disk intersect withit becomes easy to and this disk (Figure 5). Fromcontinue along’; in similar
divide the tour. Fig 4 shows one such subtour division. Notishion until the point from where we started is reached. Let

that second subtour does not visit the base station whentfte cost ofT; in terms of distance b€’; and the number
starts the tour in anti-clockwise direction. of disks in MIS bem. We can compare TSPNOUR with

ONE.WAY _TSPN.TOUR as follows. When compared with
ONE.WAY _TSPN.TOUR, TSPNTOUR covers an extra dis-
tance of C; — 2mT,., since it traverses the tour twice. On
the other hand, ONEVAY _TSPN.TOUR may cover an extra
distance omT,. (along the diameter of the disk to get back
on the tour). Therefore, we can use OMAY _TSPNTOUR
whenevermT, < Cr — 2mT,. This gives the condition

T < G (5)
4dm

When this condition is satisfied we will prefer
ONE.WAY _TSPNTOUR over TSPNTOUR because it
gives at leastC; — 4mT,. saving in distance to travel. We
believe that this improvement will be significant in environ
Fig. 4. Division of a TSPN tour into 2 subtours using DGP algmn.  menta| monitoring applications where clusters of sensms a
sparsely deployed over large areas. In figure 6, we present

an instance of DGP where the proposed modification yields
C. Improvement for sparse sensor networks L .
significant improvements.

In TSPN-TOUR algorithm each of the edges connecting
the pairwise disjoint disks is traversed twice. This can be VI. SIMULATIONS AND FURTHERINSIGHTS
costly when the disks are far apart which is the case for In this section, we further study DGP with simulations. In
sparse sensor networks. For this case, we present an ithe first experiment, we investigate the utility of increasi
proved algorithm which constructs the TSPN tour diffengntl the number of robots. In Figure 7, we plot the coverage time
than TSPNTOUR. Afterwards, we formalize the notion as a function ofs, the number of robots. In this experiment,
of sparsity and provide the condition on which it will bewe placed 100 sensors uniformly at random 08 x 600
less costly than TSPNOUR. We refer to this method of environment. The communication radii was chosen to
construction a®©NE_WAY_TSPN_TOUR. be 30. As the figure shows there is a steep decrease in cost
We justify the utility of ONE_WAY_TSPN_TOUR in sim- as the number of robot increases. As the number of robots
ulations where we show that it yields considerable costpproach the number of independent disks the decrement in
reduction for sparse networks. cost is lesser.




Area-based vs. TSPN-based partitioning Area-based vs. TSPN-based partitioning

Fig. 8. The histograms shows the ratio of the coverage timanoérea-
Fig. 6. Data gathering tours for a single robot based.eft TSPNTOUR t?"?‘se.d partitioning algonthm_ to the coverage time of the N¥@sed par-
(the total coverage time is 4044 unitRight: ONE.WAY TSPNTOUR (the titioning algorithmLeft: In this case the sensors were deployed uniformly
total coverage time is 2765 units). In this instance, th@psed modification gtl rr?tr']:jnotmhis?:r;dsetr;ﬁepseéaosrg::r\]/\(/zgreoziéh(leo t\g/g nag?](_)dlrt]ri}r;;lvv?s a(?i]fg)'
yields significant improvements. In both figures, gray disksrespond to gnt: ploy y(See

the disks in MIS. The base station is the yellow disk on thelédp gggegz&srg\&based partitioning approach clearly outpedd the area-
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In TSPN-based patrtitioning, we compute a single TSPN?® 137 (|..e_TSPN based partlthn was 37% better.) The
S . tours for this instance are shown in Figure 10. The lowest
tour which is then divided among the robots. When the_ A . .
. . ratio was 1.11 (i.e. in all instance TSPN based partition
sensors are uniformly deployed, a reasonable alternagive |
o . ) . . —outperformed area-based).
to divide the environment inte equal regions and to assign
a robot to each region. After this assignment, the robots can
compute TSPN tours for the sensors in their region. In the
next experiment, we compare these two approaches.

Figure 8 shows the histogram of the ratio of the coverage
time of area-based partition to the coverage time of the TSPN
based partition. To obtain the histogram, we performed 100
trials in a 600 x 600 environment with uniformly placed
sensors. The number of sensors in each trial was 100. In area
based partitioning we divided the enivionment into 30 x
200 regions and covered each region by a single robot. F@fy. 10. Left: Data gathering using an area-based partitioning approach.
uniform deployment, the performance of the two algorithmgight(;| Data gathering us;ng0 abTSPN-baSbedhpff:l_rtition. In thissoil?lsrrl;;ﬂliSPN;}|

e ed partitioning was 37% better. In both figures, gray respon
was compgrable. On the ave_rage’ TSPN based partmon v‘%ﬁhe disks in MIS. The base station is the yellow disk on the left.
only 1.03 times better. The highest ratio was 1.21 (i.e TSPN
based partition was 21% better.) The tours for this instance
are shown in Figure 9. The lowest ratio (where area based VIl. CONCLUDING REMARKS

partitioning was better) was 0.87. In this paper, we introduced a new path planning problem,
However, when the distribution of the sensors in nothe Data Gathering Problem (DGP), which arises in scenarios
uniform, TSPN-based partition outperforms area-based pavhere robots act aslata mules to download data from
tition. In the next experiment, we deployed 100 sensors istationary wireless devices. The problem differs from the
a 600 x 600 environment. The distribution of the sensorswell-known TSP problem due to the fact that downloading
were denser in the upper right and lower left portions oflata takes time. Therefore, the cost of a tour is effected by
the environment (Figure 10). The histogram of the ratio imot only the travel time but also the download time as well
100 experiments clearly shows that TSPN-based partitipniras the number of downloads.
outperforms area-based approach (Figure 8). On the ayerageWe presented an optimal, polynomial-time algorithm for a
TSPN based partition was 1.22 times better. The highest raspecial case where the robots are restricted to move along a




curve which contains the base station at one end. This casg]
is applicable in scenarios where the robots are restriacted t
move along a predetermined path such as a railroad track. For
the 2D version, we showed that two algorithms developed fgro]
variants of the TSP problem can be combined and adapted to
obtain a constant factor approximation algorithm for DGP in
2D. We also presented an improvement for sparse networks]
where robots spend significant time to travel between alsiste
that are far away. This is one of the scenarios where the
utility of using robots for data collection is evident. We
also provided some insights into the DGP problem with
simulations.

One immediate problem for future work is to solve the
1D case when the location of the base station is arbitrary.
Another variation is downloading data from heterogeneous
devices with varying download ranges. It is not too difficult
to modify the algorithms presented in this paper to solve the
latter case. We hope to report results for the former case
soon.

Our future work also includes the following challenging
extensions: heterogeneous devices with varying communica
tion ranges and obstacles in the environment. The algosithm
presented in the paper can accommodate obstacles as long as
they do not intersect with the communication disks. When
this happens, a new algorithm for DGP in the presence of
obstacles is needed.

We are currently building a data gathering system for
habitat monitoring applications. To accomplish this task,
are working on building a robust system which requires
developing navigation and network discovery algorithms, i
addition to the route planning problems studied in the prese
work. We expect to report results on these related aspects of
the problem soon.
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