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Abstract— We study a path planning problem which arises
when multiple robots are used to gather data from stationary
devices with wireless communication capabilities. Each device
has a given communication range, and stores a fixed amount of
data. The objective of the robots is to gather the data from these
devices and to upload it to a base-station/gateway. We introduce
a new optimization problem called the Data Gathering Problem
(DGP). In DGP, the objective is to compute a tour for each
robot in such a way that minimizes the time to collect data
from all devices. In order to download the data from a device,
a robot must visit a point within the communication range of
the device. Then, it spends a fixed amount of time to download
the data. Thus, the time to complete a tour depends on not
only the travel time but also the time to download the data,
and the number of devices visited along the tour.

First, we study a special case of DGP where the robots’
motion is restricted to a curve which contains the base station
at one end. Next, we study the 2D version. We show that two
existing algorithms for variants of the Traveling Salesperson
Problem can be combined and adapted to obtain a constant
factor approximation to DGP. Afterwards, we present an im-
provement for sparse deployments. We also present simulations
which shed light on the utility of data gathering using mobile
robots.

I. I NTRODUCTION

In the last decade, Wireless Sensor Networks (WSNs)
have been utilized in numerous automation tasks such as
monitoring structural integrity of bridges. In these appli-
cations, sensing devices equipped with communication and
computation capabilities collect data, and form a network to
relay it back to a gateway. At the moment, there are still
obstacles preventing the scalability of WSN technology. It
was envisioned that the cost of the network nodes would
be minimal. Further, it was expected that tiny and long-
lasting batteries would be available for long term operation.
However, sensor nodes are still costly (a basic device runs on
AA batteries and costs around $100). In parallel, maintaining
the network (e.g. replacing batteries) requires manual labor
which adds significantly to the operation costs.

There are some applications where a large area must be
covered with a sparse deployment. For example, in habitat
monitoring, soil humidity and temperature at areas visitedby
a particular species is collected. In order to use the current
WSN technology in such applications, deploying a dense
network is necessary because WSN nodes typically have
short communication ranges, and many nodes must act as
relays to transmit the data.
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In our recent work, we presented an alternative to static
relay-nodes for such applications: using robots as data mules
to collect the data from sensors [9]. This approach has a
number of advantages over deploying a dense static net-
work. First of all, since relay nodes are no longer needed,
operational costs are minimized. Second, the lifetime of the
network is maximized because the robots can get close to the
sensor nodes to download the data. In addition to reducing
the energy consumption during transmission (less power is
needed), proximity also reduces the data loss rate, which
results in smaller number of transmissions per byte. In [9],
we experimentally demonstrated the utility of a robotic mule
system for gathering data.

In the present work, we address the problem of planning
the routes of robotic mules: given locations ofn sensors,
compute the routes ofκ robots so that the time to download
the data from all sensors is minimized. Throughout the paper,
we will refer to this problem as theData Gathering Problem
(κ-DGP). Note that in DGP, the cost incurred by a robot
depends on not only the robot’s travel time but also the time
to download data from a sensor, and the number of sensors
assigned to the robot.

The well-known Traveling Salesperson Problem (TSP)
asks for the shortest path for a salesperson to visitn cities [1].
There is a variant of TSP, calledk-TSP, wherek travelers
visit n cities, and the objective is to minimize the length of
the maximum tour [4]. Even though DGP resembles TSP, a
closer look reveals important differences.
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Fig. 1. Two robots charged with collecting data from the sensors and
relaying them to the base stationB. The filled circles correspond to sensor
locations. The circle around a sensor illustrates its communication range.
The figure shows optimum TSP tours for the two robots which minimize
the maximum travel distance by any robot. This solution is not appropriate
for data gathering because the robot assigned to the left group would spend
a lot of time downloading the data from the sensors.

For example, consider the scenario illustrated in Figure 1
where the optimal TSP tours for two robots are shown.
Note that the objective of TSP is to minimize the travel
distance. However, in data gathering, downloading the data
takes time. If we use the TSP solution, the robot on the left



can spend significantly more time to download the data from
all assigned sensors. In fact, we can make the TSP solution
arbitrarily bad by increasing the number of nodes in the left
cluster.

As another example, consider a special case where all
sensors and the base station are on a line. Imagine that all
sensors are to the right of the base station. In TSP, there
is no utility in employing more than one robot for this
case: the robot that will visit the furthest sensor can visit
all other sensors on the way. However, when the download
time is incorporated, the utility of employing multiple robots
becomes evident.

Another aspect where DGP differs from TSP is due to
the presence of a non-zero communication range. As shown
in Figure 1, the robot does not need to visit the precise
location of a sensor. Instead, it needs to visit a point in
its acceptable communication range1 to download the data.
There is a variant of TSP, called TSP with Neighborhoods
(TSPN) which captures this aspect of DGP. In the geometric
version of TSPN, we are givenn disks. The objective is to
compute the shortest tour that visits at least one point in each
disk. Even though efficient algorithms for TSPN exist [2],
[7], there are no algorithms fork-TSPN where the objective
is to compute TSPN tours fork robots.

Our results and organization of the paper: In Section III,
we formalize the Data Gathering Problem. In the present
work, we make three main contributions. First, in Section IV,
we present an optimal algorithm for the 1D version where the
robots are restricted to move along a curve which contains
a base station at the starting point. For the 2D case, we
make two contributions in Section IV. We show that thek-
TSP algorithm presented in [4] can be combined with the
TSPN algorithm of [2], and the resulting algorithm can be
modified to obtain a constant-factor approximation algorithm
for DGP in 2D (Section V-B). Next, we focus on sparse
deployments where the utility of using robots is significant,
and present an improved algorithm for this case in Section V-
C. In Section VI, we present simulations which provide
further insights on the use of robots for gathering data. In
the next section, we start with a brief overview of the related
work.

II. RELATED WORK

The Traveling Salesperson Problem is a fundamental,
widely studied optimization problem to the extent that there
are books dedicated to it [1]. The work presented in this
paper relies on algorithms for two variants of TSP. The
geometric version of TSP with Neighborhoods [2], andk-
TSP [4]. An overview of these two algorithms is presented
in Section V-A.

Exploiting mobility in collecting sensor data has received
some recent attention. For example, in [8], Shah et al
presented an architecture that uses mobile entities in the
environment for data delivery. However, in most of the

1This is an application dependent parameter that depends on the charac-
teristics of the signal, environment and acceptable signalquality and energy
consumption levels.

related literature, mobility is treated as an uncontrolled
process. A recent review on the state of the art in exploiting
sink mobility can be found in [6]. In [5] the robot’s velocity
is controlled (along a fixed path) to improve transmission
quality. The authors do not address the problem of computing
optimal tours.

Yuan et al. formulate the problem of collecting sensor
data using a single robot as a TSPN instance [11]. They
do not address the time spent in downloading data. As
shown in Figure 1, ignoring transmission time can worsen the
performance of the system drastically. Tirta et al. presented
algorithms to schedule visits of a mobile agent to collect data
from cluster heads [10]. The authors present heuristics which
focus on data latency and data aggregation rate of clusters.

In [3], Dunbabin et al. present an underwater data muling
system. In the underwater scenario, sensors and underwater
vehicles communicate through optical communication, which
requires a close proximity as well as good view-angle to
start the communication. Moreover, since GPS localization
is not available under the water, the vehicle has to navigate
under high localization uncertainty. This makes designing
global routing algorithms challenging. The authors propose
a solution where the vehicle performs a spiral movement to
find the sensors. This strategy is not efficient for our scenario,
in which the sensor locations are known and the robot can
localize itself.

III. PROBLEM DEFINITION

Suppose we are given the locations ofn identical sensors.
There is a base stationB, andκ robots which can navigate
in the environment are charged with downloading the data
from each sensor and uploading it to the base station. We
definecoverage of a sensor as receiving all data from that
sensor and transmitting it to the base station.

We make the following assumptions:
• The sensors are identical. The amount of data to be

downloaded from each sensor is the same. Further, the
sensors’ transmission range and data sending rate are
identical. We assume that each sensor can sense data
and transmit it up to a distanceTr units with uniform
data rate. Therefore, the time required to download data
from every sensor,Td, is identical.

• The data is downloaded byκ identical robots which
have wireless communication capabilities and can travel
at a constant speed ofν. In this work, we do not
consider higher order constraints such as acceleration.
The robots have infinite buffer capacities (since they
can carry large storage devices). Similarly, we do not
consider energy limitations for robots. We assume that
the robots can localize themselves and navigate in the
environment.

• Even though there may be obstacles in the environment,
we assume that the communication disks are obstacle-
free. That is, no obstacle intersects the communication
disk of any sensor.

We present the algorithms in the succeeding sections under
these assumptions. In Section VII we discuss them further.



IV. T HE 1-D DATA GATHERING PROBLEM.

In this section, we study the 1-D version of the data
gathering problem where the robots are restricted to move
along a curveX . This case has practical applications in
scenarios where robots move along a rail-line, or there is
a single path they can move along in a rough terrain.

We assume that base station is at an end point of the
curve X ; i.e. at x = 0 wherex is the parameterization of
the underlying curve.

For each sensors, compute the intersection the communi-
cation disk (centered ats with radius isTr) with the curveX .
Suppose all intersections are on one side of the base-station.

Let xs be the first point of this intersection alongX . We
will choosexs as thedownload location of a sensors. Since
all intersections are assumed to be on one side of the base
station, any robot which will download data froms can
do so from locationxs without incurring additional travel
costs. Hereafter, we represent each sensor with its download
location. For this version of the problem wherexs > 0 for
all s, we will present an optimal algorithm for gathering data
with κ robots.

Consider a solution to the 1D data gathering problem.
Let U = {u1, u2, . . . , uk} and V = {v1, v2, . . . , vl} be the
sets of sensors assigned to robotsu andv (we overload the
notation and useui to refer both a sensor and its download
location) ordered and labeled such thatu1 ≤ u2 ≤ . . . ≤ uk

andv1 ≤ v2 ≤ . . . ≤ vl. While ordering download locations
we break ties arbitrarily. Without loss of generality, assume
that u1 ≤ v1. We say thatu and v are non-overlapping if
uk ≤ v1.

The following lemma sheds light onto the structure of
optimal data collection.

Lemma 4.1: There exists an optimal solution to covern
sensors withκ robots in which every pair of robots is non-
overlapping.

Proof: Among all optimal solutions, consider the opti-
mal solutionS with the largest number of non-overlapping
pairs of robots. We claim that no pair of robots inS is
overlapping.

Suppose, to the contrary, that there is a pair of robotsu
& v in S which are overlapping. LetU = {u1, u2, . . . , uk}
andV = {v1, v2, . . . , vl} be the sets of sensors assigned to
u andv.

The sensors inU andV can overlap in two primary ways
shown in Figure 2.

Case (a): When there is a partial overlap. Let the coverage
time taken byu andv be T (u) andT (v).

T (u) =
uk

ν
+ kTd and T (v) =

vl

ν
+ lTd

We reassign sensoruk to robot v and sensorv1 to robot
u. New sets of sensorsU ′ = U − {uk} + {v1} and V ′ =
V −{v1}+{uk} are assigned tou andv. Let u′

k be the sensor
in U ′ which is farthest from base station. New coverage times
are:

T ′(u) =
u′

k

ν
+ kTd and T ′(v) =

vl

ν
+ lTd

Sinceu′
k ≤ uk, we haveT ′(u) ≤ T (u). Also T ′(v) = T (v).

The reassignment operation does not increase the coverage
cost of any of the two robots. Continue reassigning in the
similar way untilu′

k ≤ v1.
Case (b): When there is a complete overlap. In this case

reassign sensoru1 to robotv and sensorv1 to robotu. This
does not increase the cost of coverage of by any of the robot
u andv. Now the case is similar to case (a) but with robots
swapped. This case can be dealt in a similar way as (a).

Let S′ the solution obtained by reassignment ofS. S′ is at
most as costly asS and has one more pair of non-overlapping
robots. This contradicts the maximality ofS. Hence,S has
no overlapping pair of robots.

(a)

(b)

... ...

...

...

......u1

u1

uk

uk

v1

v1

vl

vl

Fig. 2. Data collection on the line: (a) partial overlap (b) complete overlap.

Lemma 4.1 sheds light onto the structure of sensor as-
signments in an optimal solution. We now present a dynamic
programming algorithm to exploit this structure and to gather
the data fromn sensors usingκ robots in an optimal fashion.

Let us order and label sensors froms1 to sn with increas-
ing distance of their download locations from base station
(again, si refers to both theith sensor and its download
location). Letcost(k, l) be the cost to cover sensorssk to
sl, k ≤ l by a robot. Thereforecost(k, l) = sl

v
+(l−k+1)Td.

We create ann×κ tableT . Each entryT [i, j] represents the
optimal cost to covers1 to si sensors byj robots. The table
is computed using the following recurrence equation:

T [i, j] =

{

si

v
+ iTd if j = 1

mink∈{1,j−1}(T [k, j − 1] + cost(k, i)) otherwise
(1)

Lemma 4.2: T [i, j] will give us the optimal coverage time
for the first i sensors usingj mules.

Proof: We prove the lemma by induction onj, the
number of robots.Basis: For j = 1 the minimum time to
covers1 to si, T [i, 1] = si

v
+ iTd for all i ∈ {1, n}. This is

minimum because to coveri sensors any robot has to travel
up to download location of farthest sensor and download data
from all the sensors.Induction hypothesis: Let T [l, j−1] be
minimum time required to cover firstl sensors usingj − 1
robots∀l ∈ {1, n}. Now for j robotsT [i, j] = min(T [l, j −
1] + cost(l + 1, i)) wherel ∈ {1, i− 1}. SinceT [l, j − 1] is
minimum coverage time forl sensors withj − 1 mules and
the value ofT [i, j] is set to minimum of alli − 1 possible
values,T [i, j] is minimum coverage time ofi sensors with
j mules.

Thus, the entryT [n, κ] gives us the desired solution. The
running time of the algorithm can be easily seen to be



O(n2κ). The main result of this section is summarized by
the following theorem.

Theorem 4.3: There exists an optimal polynomial time
algorithm to solve the 1-D version of the data gathering
problem when all the sensors are on one side of the base
station.

V. K-ROBOT COVERAGE IN2D

We start this section by reviewing algorithms for two rel-
evant TSP variants: In Section V-A, we present an overview
of a constant factor approximation algorithm by Dumitrescu
and Mitchell [2] for TSP with Neighborhoods where the
neighborhoods are uniform disks, as well as a constant
factor k-TSP algorithm. In Section V-B, we show how these
two algorithms can be modified and combined to obtain
a constant factor algorithm for the data-gathering problem.
Finally, in Section V-C, we present an algorithm which gives
improved results when the sensors are “sparse”2

A. TSPN tour algorithm and TSP splitting algorithm

In [2], Dumitrescu and Mitchell present a constant-factor
approximation algorithm for TSPN with uniform disk neigh-
borhoods. The approximation ratio of the algorithm which
we refer to asTSPN TOUR is 11.15.

TSPN TOUR first finds out a maximal independent set
(MIS) of non-intersecting disks. Then it creates a TSP tour
TI which visits the center of each disk in MIS. A TSPN tour
is formed from the TSP tour as follows: the TSPN tour starts
from the intersection of an arbitrary disk in MIS andTI . It
then followsTI in clockwise direction. If the boundary of a
MIS disk D is encountered,D is traversed clockwise along
the boundary until the next intersection ofTI with D. This
continues until the tour returns to starting point. Now the
TI is traversed in similar fashion but in counter clockwise
direction until start point is encountered. Fig 3 illustrates a
TSPN tour obtained by the algorithm TSPNTOUR.

a

Fig. 3. A TSPN tour constructed by algorithm TSPNTOUR. . The disks
in MIS are drawn with heavy solid lines. The tour contains twosubtours.
After visiting a circle, one subtour traverses its boundaryclockwise until
the next intersection of the disk with the tour. On the way back, the other
tour traverses the disk counter-clockwise.

Frederickson et al [4] present an algorithm,k-SPLITOUR,
to split a TSP tour intok subtours. In this algorithm one

2We will quantify the notion of sparsity in Section V-C as well.

travels along the TSP tour and the tour is split each time
when the cost reaches a threshold which is decided by
the average cost of ak-subtour. This algorithm gives an
approximation bound of5

2
− 1

k
for k-TSP.

In the next section, we show how these two algorithms
can be combined to solve the data gathering problem in 2D.

B. Algorithm for DGP in 2D

The main idea of the algorithm is to create a TSPN tour
of sensors and divide that tour intoκ subtours such that
each subtour is of almost similar cost. The main steps of the
algorithm are as follows:

1) For n sensors and base stationb find a TSPN tour
R = (b, s1, s2, ..., sn, b) with cost(R) = τ1, where
si is a sensor node andτ1 is the coverage time ofn
sensors by one robot.

2) For eachj, 1 ≤ j < κ find the last sensorsnj
, nj ∈

{1, n} such that the cost (time to travel plus download
data) of path fromb to snj alongR is not greater than
(j/k)(τ1−2cmax)+cmax. Herecmax is the time taken
for a robot to travel from base station to the download
location farthest from base station.

3) Let sj
i represents theith sensor injth subtour. Obtain

the κ subtours by formingjth subtour asRj =
(b, sj

1
, sj

2
, ..., sj

nj
, b) for all j ∈ {1, κ}. Note that

sj−1

nj−1
= sj

1
for j ∈ {1, κ− 1} andsκ

nκ
= sn.

We now show that by combining the two algorithms for
TSPN and k-TSP, one obtains a constant factor algorithm for
the data gathering problem.

Theorem 5.1: If τk is the cost of the largest subtour
generated by algorithm andτ∗

k is cost of the largest subtour
in the optimal solution for the data gathering problem, then

τk/τ∗
k ≤ e + 2 − 1/k (2)

wheree is the approximation ratio of the algorithm used to
find TSPN tour at step 1 of DGP algorithm.

Proof: We sketch the main steps in the proof which
parallels the proof of the performance of thek-SPLITOUR
algorithm by [4]. The cost of any tourRi, 1 ≤ i ≤ k, does
not exceed(1/k)(τ1 − 2cmax) + 2cmax.

Therefore

τk = max(cost(Ri)) ≤ (1/k)(τ1 − 2cmax) + 2cmax (3)

By triangle inequalityτ∗
k ≥ (1/k)τ∗

1
where τ∗

1
is the

optimal cost of coverage with1 robot. This can be proven
by contradiction: Let us assume thatτ∗

k < (1/k)τ∗
1

. We can
combine the subtours in such a way that the last sensor of
each subtour is connected to the first sensor of the next
subtour. By the triangle inequality the new edge will be
shorter than the sum of the edges deleted (edge from last
sensor of the subtour to the base station and edge from the
first sensor of the next subtour to the base station). But this
meansτ∗

1
is not optimal which is a contradiction.

Let the cost of TSPN tour at step 1 of the algorithm
with Td = 0 (Cost of a “regular” TSPN tour) beτ and the
cost of optimal TSPN tour withTd = 0 be τ∗. Depending



on implementation a robot may download some amount
of data while it is traveling inside the disk (i.e. overlap
time of traveling and downloading) of a sensor. We have
τ1 ≤ τ + nTd. Also τ∗

1
≥ max(τ∗, nTd). So we get

τ1

τ∗
1

≤
τ + nTd

τ∗
1

≤
τ

τ∗
1

+
nTd

τ∗
1

≤ e + 1 (4)

where e is the approximation ratio of the algorithm used
to find TSPN tour. Combining the results from Equation 3,
triangle inequality, Equation 4 and from the fact thatcmax ≤
1

2
τ∗
k we getτk/τ∗

k ≤ e + 2 − 1/k.
If TSPN TOUR is used for finding TSPN tour for step 1

of the above algorithm we have to be careful in dividing the
tour. This is because of the fact that the last sensor coveredin
a subtour may be the one whose disk is not in MIS. For such
cases we need to know the exact point on the disk boundary
where we have to make the split. LetA be a disk in MIS
andB be another disk intersectingA. To cover sensor atB,
a robot stops at the point where the line joining center of
A and the center ofB intersects with boundary of diskA
for downloading data fromB. After downloading data from
sensor atB, the mule continues its TSPN tour. Note that data
from sensor atA is downloaded from the point where tour
first meets boundary ofA. By fixing the download location
of sensors whose disk intersect withA it becomes easy to
divide the tour. Fig 4 shows one such subtour division. Note
that second subtour does not visit the base station when it
starts the tour in anti-clockwise direction.

Download location

Sensor

A

B

s1

s2

s3

s4

s5

s6

s7

s8

R1

R2

b

Fig. 4. Division of a TSPN tour into 2 subtours using DGP algorithm.

C. Improvement for sparse sensor networks

In TSPN TOUR algorithm each of the edges connecting
the pairwise disjoint disks is traversed twice. This can be
costly when the disks are far apart which is the case for
sparse sensor networks. For this case, we present an im-
proved algorithm which constructs the TSPN tour differently
than TSPNTOUR. Afterwards, we formalize the notion
of sparsity and provide the condition on which it will be
less costly than TSPNTOUR. We refer to this method of
construction asONE WAY TSPN TOUR.

We justify the utility of ONE WAY TSPN TOUR in sim-
ulations where we show that it yields considerable cost
reduction for sparse networks.

b

a

Fig. 5. ONEWAY TSPNTOUR makes a complete tour after visiting each
disk in the MIS. This approach improves the coverage time when there are
sensors which are far apart.

In ONE WAY TSPN TOUR, we start the TSPN tour simi-
larly as in TSPNTOUR, i.e., from the point of intersection
of boundary of disk of an arbitrary vertex andTI . Traverse
alongTI until the point of intersection,a, of the boundary
of an MIS disk is encountered. Make a complete tour of
the disk boundary untila is encountered again. Now, from
a traverse directly to the next point of intersection,b, of TI

and this disk (Figure 5). Fromb continue alongTI in similar
fashion until the point from where we started is reached. Let
the cost ofTI in terms of distance beCI and the number
of disks in MIS bem. We can compare TSPNTOUR with
ONE WAY TSPN TOUR as follows. When compared with
ONE WAY TSPN TOUR, TSPNTOUR covers an extra dis-
tance ofCI − 2mTr, since it traverses the tour twice. On
the other hand, ONEWAY TSPN TOUR may cover an extra
distance of2mTr (along the diameter of the disk to get back
on the tour). Therefore, we can use ONEWAY TSPN TOUR
whenever2mTr ≤ CI − 2mTr. This gives the condition

Tr ≤
CI

4m
(5)

When this condition is satisfied we will prefer
ONE WAY TSPN TOUR over TSPNTOUR because it
gives at leastCI − 4mTr saving in distance to travel. We
believe that this improvement will be significant in environ-
mental monitoring applications where clusters of sensors are
sparsely deployed over large areas. In figure 6, we present
an instance of DGP where the proposed modification yields
significant improvements.

VI. SIMULATIONS AND FURTHER INSIGHTS

In this section, we further study DGP with simulations. In
the first experiment, we investigate the utility of increasing
the number of robots. In Figure 7, we plot the coverage time
as a function ofκ, the number of robots. In this experiment,
we placed 100 sensors uniformly at random in a600 × 600
environment. The communication radiusTr was chosen to
be 30. As the figure shows there is a steep decrease in cost
as the number of robot increases. As the number of robots
approach the number of independent disks the decrement in
cost is lesser.



Fig. 6. Data gathering tours for a single robot based onLeft: TSPNTOUR
(the total coverage time is 4044 units),Right: ONE WAY TSPN TOUR (the
total coverage time is 2765 units). In this instance, the proposed modification
yields significant improvements. In both figures, gray diskscorrespond to
the disks in MIS. The base station is the yellow disk on the topleft.
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Fig. 7. The coverage time as a function of robots for 100 sensors deployed
uniformly at random in a600× 600 area.

In TSPN-based partitioning, we compute a single TSPN
tour which is then divided among the robots. When the
sensors are uniformly deployed, a reasonable alternative is
to divide the environment intoκ equal regions and to assign
a robot to each region. After this assignment, the robots can
compute TSPN tours for the sensors in their region. In the
next experiment, we compare these two approaches.

Figure 8 shows the histogram of the ratio of the coverage
time of area-based partition to the coverage time of the TSPN
based partition. To obtain the histogram, we performed 100
trials in a 600 × 600 environment with uniformly placed
sensors. The number of sensors in each trial was 100. In area
based partitioning we divided the enivronment into six300×
200 regions and covered each region by a single robot. For
uniform deployment, the performance of the two algorithms
was comparable. On the average, TSPN based partition was
only 1.03 times better. The highest ratio was 1.21 (i.e TSPN
based partition was 21% better.) The tours for this instance
are shown in Figure 9. The lowest ratio (where area based
partitioning was better) was 0.87.

However, when the distribution of the sensors in not
uniform, TSPN-based partition outperforms area-based par-
tition. In the next experiment, we deployed 100 sensors in
a 600 × 600 environment. The distribution of the sensors
were denser in the upper right and lower left portions of
the environment (Figure 10). The histogram of the ratio in
100 experiments clearly shows that TSPN-based partitioning
outperforms area-based approach (Figure 8). On the average,
TSPN based partition was 1.22 times better. The highest ratio
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Fig. 8. The histograms shows the ratio of the coverage time ofan area-
based partitioning algorithm to the coverage time of the TSPN-based par-
titioning algorithm.Left: In this case the sensors were deployed uniformly
at random, and the performance of the two algorithms was comparable.
Right: In this case the sensors were deployed non-uniformly(See Figure 10)
and the TSPN-based partitioning approach clearly outperformed the area-
based approach.

Fig. 9. Left: Data gathering using an area-based partitioning approach.
Right: Data gathering using a TSPN-based partition. In this instance, TSPN-
based partitioning was 21% better. In both figures, gray disks correspond
to the disks in MIS. The base station is the yellow disk on the top left.

was 1.37 (i.e TSPN based partition was 37% better.) The
tours for this instance are shown in Figure 10. The lowest
ratio was 1.11 (i.e. in all instance TSPN based partition
outperformed area-based).

Fig. 10. Left: Data gathering using an area-based partitioning approach.
Right: Data gathering using a TSPN-based partition. In this instance, TSPN-
based partitioning was 37% better. In both figures, gray disks correspond
to the disks in MIS. The base station is the yellow disk on the top left.

VII. C ONCLUDING REMARKS

In this paper, we introduced a new path planning problem,
the Data Gathering Problem (DGP), which arises in scenarios
where robots act asdata mules to download data from
stationary wireless devices. The problem differs from the
well-known TSP problem due to the fact that downloading
data takes time. Therefore, the cost of a tour is effected by
not only the travel time but also the download time as well
as the number of downloads.

We presented an optimal, polynomial-time algorithm for a
special case where the robots are restricted to move along a



curve which contains the base station at one end. This case
is applicable in scenarios where the robots are restricted to
move along a predetermined path such as a railroad track. For
the 2D version, we showed that two algorithms developed for
variants of the TSP problem can be combined and adapted to
obtain a constant factor approximation algorithm for DGP in
2D. We also presented an improvement for sparse networks
where robots spend significant time to travel between clusters
that are far away. This is one of the scenarios where the
utility of using robots for data collection is evident. We
also provided some insights into the DGP problem with
simulations.

One immediate problem for future work is to solve the
1D case when the location of the base station is arbitrary.
Another variation is downloading data from heterogeneous
devices with varying download ranges. It is not too difficult
to modify the algorithms presented in this paper to solve the
latter case. We hope to report results for the former case
soon.

Our future work also includes the following challenging
extensions: heterogeneous devices with varying communica-
tion ranges and obstacles in the environment. The algorithms
presented in the paper can accommodate obstacles as long as
they do not intersect with the communication disks. When
this happens, a new algorithm for DGP in the presence of
obstacles is needed.

We are currently building a data gathering system for
habitat monitoring applications. To accomplish this task,we
are working on building a robust system which requires
developing navigation and network discovery algorithms, in
addition to the route planning problems studied in the present
work. We expect to report results on these related aspects of
the problem soon.
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