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Lion and Man Game in the Presence of a Circular Obstacle

Nikhil Karnad" and Volkan Islet

Abstract— In the lion and man game, a lion tries to capture  of the circular arena and is the maximum speed of the
a man who is as fast as the lion. We study a new version of players. In [15], Sgall studied the discrete time, contimio
this game which takes place in a Euclidean environment with - gaca variant in a semi-bounded environment: the positive
a circular obstacle. We present a complete characterization of . . .
the game: for each player, we derive necessary and sufficient .quad-rant. He showgd th.at- t.he lion captures the man, if certai
conditions for winning the game. Their (continuous time) invariants are satisfied initially.
strategies are constructed using techniques from differential Recently, researchers have studied variants of the lion and
games and arguments from geometry. Our main result is a man game played in environments more complex than a
decision algorithm which takes arbitrary initial positions as  ¢jrcylar disc or the real plane. Isler et al. showed thatithe |
input, declares one of the players as the winner of the game can capture the man in any simply-connected polygon [10]
and outputs a winning strategy for that player. We extend our e e )
approach to explicitly construct, in closed form, the decision Alexander et al. presented a sufficient condition for the
boundary that partitions the arena into win and lose regions.  greedy strategy to succeed in arbitrary dimensions [1].
The lion and man game in the presence of obstacles
g OVERVIEV_V AND RE_LATED WORK remains a challenge. In this paper, we take an important step
~Ina game of pursuit and evasion, one player (the pursuggy solving the lion and man game in an environment with
tries to get close to, and possibly capture the other (thghstacles. We present full characterization of the gamksn t
evader). The evader, in turn, tries to avoid being capturedresence of a single circular obstacle. That is, we present a
Pursuit-evasion games are of fundamental importance {@cision algorithm which determines the winner of the game.
researchers in the field of robotics. Consider the task @fe also construct the winner's strategy.
surveillance, where a guarchufsuer) has to chase and  As in the original version of the game, we assume that
capture an intruderefader). Another scenario is search-and-the players know exact locations of each other at all times
rescue, where a rescue worker has to locate a lost hikghd have equal maximum speeds.An important line of re-
Since the actions of the hiker are not known a priori, Worstsearch is to study the effect of sensing limitations. Recent
case pursuit and evasion strategies guarantee that theishikeprogress in this direction includes the study of range-thase
found no matter what he does. Problems arising from diversgnitations [5] and bearing-based limitations [11].
applications such as collision-avoidance [9], search-and Other variants of pursuit-evasion games studied in the

rescue [6], [14], air-traffic control [3], and surveillan{®]  ropotics community are visibility based pursuit-evasi@ [

have been modeled as pursuit-evasion games. and maintaining the visibility of an adversarial target.[4]
A classical pursuit-evasion game is thén and Man
game. It was originally posed in 1925 by Rado as follows Il. CONTRIBUTIONS
A lion and a man in a closed arena have equal We study the lion and man game played in a convex polyg-
maximum speeds. What tactics should the lion onal environment, where both time and space are continuous.
employ to be sure of his meal? There is a single circular obstacle in the environment. The

The first solution was generally accepted by 1950: the lioft@in question we study is: Given initial locations of the
moves to the center of the arena and then remains on tR&yers, which player wins the game?

radius that passes through the man’s position. Since they!n earlier work [10], researchers have shown that the
have the same speed, the lion can remain on the radius a#¢Suer can capture the evader in any simply-connected
simultaneously move toward the man. Although this strateg?f'ygon- This intuitively suggests that the evader has4ofre
works in discrete-time, it was later shown by BesicovitcHhe obstacle to win the game. Conversely, the pursuer wins
that exact capture in continuous time takes infinitely lomg ithe game if he can separate the obstacle from the evader, and
a bounded arena [13]. However, if the capture distance ®Mmultaneously make progress toward capture.

set to some > 0, Alonso et al. [2] showed that the lion can Verifying these conditions from an arbitrary initial con-

capture the man in tim®(Llog®), wherer is the radius figuration is difficult. For example, it is easy to see that the
evader wins the game if he is closer to the obstacle. However,
TNikhil Karnad is with the Department of Computer Science and Enthe condition is not necessary, as shown by the following
gineering at the University of Minnesota, 200 Union St SEnpiMiapolis, instance. Consider a circular obsta®ewith centerA and
Minnesota 55455, USAkar nad@s. umm. edu . . . L . . .
*Volkan Isler is with the Department of Computer Science andi€ng radius 10 units. (See Fig. 1)' The initial conflguratlon isfsu

neering at the University of Minnesota, 200 Union St SE, Mimpolis, that the pursuelP and the evaddt are separated by a relative

Minnesota 55455, USA.s| er @s. umm. edu angle ofrrradians, measured w.rA. The closest point on the
This work was supported by the grants NSF CCF-0634823 and NSF . —~
11S-0745537. obstacleO to the evader i§, such thatEF| = 10m=| PF |.
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// p Fig. 2. The pursueP guarding the obstacl® from the evadeE.

Fig. 1. A counterexample: The evader wins even though theupuris

closer to all points on the obstacle players goes to zero as time goes to infinity. On the other

hand, if the evader can guarantee a non-zero lower-bound on
the distance between the players, the outcome of the game
Thus every point on the obstacle is closer to the pursuer thihan evader-win.
the evader. The game is played in continuous time and continuous
If the evader heads straight ¥ along EF, the pursuer SPace. _ . _
picks one of the directions (clockwise or counterclockyise LetRbe the radius 0 (see Fig. 2). Atany timee [0, o],
to go around the obstacle and reacest the same time the state of the game is defined by three variables:
as the evader, r.esulting in_ capture and a pursuer-win. “_ﬁhis [ x(t) = [rp(t), re(t), 9(t)}T
true for any pointF € 80 if the evader just heads straight
to F from E along the shortest path. However, considewhere6(t) is angle between the playesandP, subtended
the following strategy: the evader heads towdtdfor 2  at the center oD. The radial distance d? from the center
units and switches direction toward the tangent point th&f O is denoted asp(t) and that ofE is re(t). We drop the
is farther from the pursuer. For instance, if the pursuekgpic dependency on time from the notation and just usere
the clockwise direction to go around the obstacle, the avadand 6 where appropriate.
heads toT. The time taken by the pursuer to reaEfin the Both players are modeled as point objects with the same
clockwise direction is computed as.85 units, whereas the Maximum speedy = 1. This is done by scaling all distances
evader reache§ at time 40126 units. Thus the evader hits W.I't. the value ofv (normalization). The pursué? (respec-
the obstacle aT faster than the purser and then continues tively the evaderE) can pick a direction relative to his/her
loop around the obstacle away from the pursuer. Since thdiusrp (respectivelyre) to move along. This is the control
evader avoids capture indefinitely, the evader wins the gamBPUtUp(t) (resp.ug (t)), whereup(t), Ug (t) € S'vt. We study
In this paper, we present a complete characterization f 9ame of complete information: both players know each
determine the outcome of the pursuit-evasion game for aiffhers’ locations at all times.
given initial condition. Our results are organized as feo ~ 1he kinematic equations (KE) for the state are
In Section I, we formulate the task of the pursuer guarding

' : fp = COSUp
the obstacle from the evader as a differential game. In Fe — cosu
Section IV-A, we use concepts from optimal control theory E= VSR )
to derive optimal control laws. We provide the geometric g — SNUe _ sinup @

interpretation of the player strategies in Section IV-B. In e e
Section V, we derive necessary and sufficient conditions farhe players occupy the part of the polygon outside of the
each player to win the game. Our main result provides abstacleO. Thusrp(t) > R, Vt andrg(t) > R, Vt. We restrict
decision algorithm for the pursuit-evasion problem, pnésé  the relative angle between the playersfas [—, 1]
in Section VI. We extend the win-condition to derive an In order to win, the evader must guarantee a lower-bound
explicit expression for the decision boundary: in Sectidh V on the distance between the players. This happens when the
we present a partitioning of the arena into a pursuer-wiavader reaches the boundary of the obst@ahgthout getting
region and an evader-win region, for a given initial evadecaptured. In fact, this is the only way the evader can win the
location. We conclude in Section VIII and suggest directiongame as we will see in Section V-B. On the other hand,
for future research. if the pursuer can prevent the evader from reachihgnd
simultaneously make the distance between them go to zero,
the pursuer will win the game. The pursuer can do so, if he
An evadelE and a pursuel are playing a game of pursuit is able to make the relative angl go to zero before the
and evasion inside a simply-connected convex polygdn evader hitsO (This statement is formalized and proven as
with a single circular obstacl®. We say that the pursuer Theorem 1 of Section V-B.). We use these observations to
captures the evader if the geodesic distance between tleemulate an equivalent game with the following objective.

Ill. PROBLEM STATEMENT AND FORMULATION
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Suppose the evadé&r hits the boundary oD at timeT >
0, i.e. rg(T) = R Then, the value ofd(T) describes the
outcome of the game: {B(T)| # 0, we know thaE reached
O beforeP and thusk wins the game. If not, we will show
that the pursuer can align himself with the evader before

and proceed to win the game by playing the Lion’s strategy
(see Theorem 1). The objective, or value, of the game is thus

given by

J=16(T)|

where
T=min{t:rg(t) =R}

We wish to solve the optimal control problem: what shoul
be up(t) andug(t) so thatE maximizesd and P minimizes

it? It is worth noting that we study the game of kind, and

seek strategies that are optimal in terms of the outcome

We use a standard result from optimal control theory to
obtain necessary conditions fop, and ug to optimize the
Hamiltonian (see [12], 5.1-17b, pp. 187-188). For all titne
the following is true.

oo OH
X (t)—ﬁ—p
. oH
P'(t):—ﬁ
oH
0=%u

Since the final state at tineis free, except forg(T) =R,
e have additional boundary conditions (commonly referred
0 as transversality conditions) given by

Jh

ax X (1), T)=p*(T)=0

of

the game. Applying these necessary conditions to our problem, we
This problem falls in the context of differential games.have

Although the solution process is along the lines of the Lady (1) = _OH _ ppsinup
in the Lake problem (see [3], Sec. 8.5, pp. 452-456), our Ppll) = orp rs?
problem is significantly different: if both the lady and the . SH  ppsinug
man had equal velocities, the lady would always win the PE(t) = Tore T gi2
game by swimming along the line joining them, in the 5H E
direction away from the man. In contrast, the outcome of Ph(t) = ——= =0 (3)
our game, depends on the initial conditions. 639 -
_ _ CaP * 0 *
IV. OPTIMAL PLAYER STRATEGIES = Sup  PeSiNte— TSCOSUP
In this section, we use optimal control theory, in the realm OH . . P .
of differential games, to derive the optimal strategies for 0= Sug —Pe SmuE"‘ECOSUE
the pursuer and evader. Further, we present the geomet.fiﬁe boundary (transversality) condition is
interpretation of the strategies. oh(T)
A. Optimal control solution 55 Pe(1)=0
Let x(t) be the state vector, and(t) the control input. L py(T) = a(|1e(m))) _ sgr(O(T)) @

Optimizing an objective function of the form

h(x(T).T) 4+ [ g(x(®),u(t), et

fo

J(u)

with a terminal payoffh(-) and an integral payoff(-)

subject to the KE (1) is equivalent (Pontryagin’s Maximum

Principle) to optimizing the Hamiltoniakhl given by
H(x(t),u(t),p(t).t) = g(x(t),u(t),t) +p" (t)[a(x(t), u(t),t)]

06
From (3) and (4) we havet, pp(t) =sgn(8(T)). Solutions
for up andug that optimizeH are

P
r pP)

(sinug, cosug) || (ff, pE) (5)
E

Let the constants of proportionality for the parallel vesto

(sinus, cosui) | (—

wherep(t) is a vector of Lagrange multipliers, also knownpe ¢, and ce. Substitute in the Isaacs equation (2) to get

as the costate variablea(t) is the vector of state transition
equations from the KE (1).

In our problem, we only have a terminal
h(x(T),T)=6(T)| and no integral payoff. Thus the Hamil-
tonian for our system is

H = pe(t)fp(t) + pe(t)fe(t) + po(t)B(t)
= pp(t) COSUp(t) + P (t) COSUE (1)
sinug(t)  sinup(t)
a0 (ST -0
The Isaacs equation is

minmaxH =0
Up Ug

)

payoff

cp = —ceg. Now use the evader’s boundary condition in (5):
Po

*

E
At t =T, the evader hits the boundary of the obstacle i.e.
re(T) =R The evader wins the game then on by remaining
on the boundary o® and moving in the direction that takes
him away from the pursuer i.e. his velocity vector is tangent
to O thereafter. In terms of his control variahle, we have
Ug(T) =sgn6(T))- 5. Therefore

cesgno(T)) = 9T

R
= Cg = R1

Ce SINUE =
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Fig. 3. E moves away fronP along a tangent t®.

. " Fig. 4. An illustration of the Lion’s move used by the pursieto stay
Finally, solve forup andug by substituting known values ,y'the evaders radial line w.rQ.

into (5).

_— . pick either direction to go aroun®. If not, he picks the
re(t) sinup(t) = —re(t) sinug(t) smaller of the angles. Once he picks a direction, the pursuer

= Rsgn(6(T)) (6) will not switch. This is because by switching directionsg th
pursuer allows the relative angl@ to increase while the
evader is decreasing his distance to the obstacle. Therevade
would then be in a better configuration i.e. same angular
separation as before, but with a lesser distance to the the
B. Geometric interpretation obstacle.

To understand the physical meaning of (6), consider thg Time to termination
evader: rg(t),ug(t). The argument holds for the pursuer
usingrp(t),up(t) instead.

The time at which the evader hits the obstaclg:) is
the length of the tangent w.r.t. his initial location, sinoe
Sinuz (t) = 7%%“9(1-)) moves with unit velocity. By Pythagoras’ theorem, we get
Let Q be the center of the obstadle(see Fig. 3). Consider
triangleAQET, whereT is the point onO where the tangent  The pursuer wins the game if he cahign himself with
from E touches it. Clearly, Equation (6) is satisfied, meaninghe evader. The time at which this happen3,g;, such that
that the solution for the evadéris to always head towar®  8(Tyign) = 0. If Tt < Taign, the evader reaches the obstacle
along the direction of the tangent frolrto O. Since there before the pursuer prevents him, and thus the evader wins the
are two possible tangents for any evader location, he piclgame. If not, the pursuer can align himself with the evader,
the one in accordance with the value of §8(T)). Since after which the pursuer can execute the Lion’s strategy and
6 € [—m, ], we know that he will pick the tangent in suchwin the game. The Lion’s strategy guarantees capture for
a way that his direction of motion makes the value of th¢he pursuer when he stays on the radius of a growing circle,
relative anglef greater. between a fixed center point and the evader’s location (see
The pursuelP, being the minimizing player, moves alongFig. 4). A description of this pursuit strategy in continsou
the tangent circle in the direction thegduces the relative time can be found in [13].
angle between the players. There are two ways to computg,. First, we can
integrate the relative angle between the players (Equation
(1)) from 6(0) to O as time goes from O tduign. This
Given an initial condition for our game, and the optimalmethod is presented in Appendix A. The second method,
strategies derived in Section IV, we characterize undeclwhi uses arguments from geometry and worst-case player strateg
conditions the game ends in a pursuer-win and an evader-wamalysis, comparing the total lengths of the paths that each
First, we use a direct observation to eliminate one casplayer takes. We present the second method as follows.
when the evader is initially closer to the obstacle than Given the optimal strategies for both players, we know
the pursuer. Ifrg(0) < rp(0), the evaderE reaches the the exact points of tangency of their trajectories w.r.e th
boundary of the obstacle before the pursiesimply by obstacle. This allows us to compute the time taken by the
heading directly to the point on the obstacle closesEto pursuerP to reach the point of tangency of the evader
Thereafter, the evader loops around the obstacle and avoldst us call that point a§ .
being captured indefinitely, leading to an evader-win. If the pursuer does not align himself with the evader
Next, consider the case wheg(0) > rp(0). Let the initial by this time, the evader wins because he hits the obstacle
relative angle b&(0) = 6y, say. If 6o = £, the pursuer can without getting captured. We therefore have an upper bound

Thit = 1/re(0)2 - R? (7)

V. DECIDING A WINNER
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him. If not, the evader can always maintain angular separa-
tion from the pursuer by looping around the obstacle along
the boundary ofO, maintaining a non-zero lower-bound on
the relative angle between the players — a contradictionsTh
the pursuer aligns himself with the evader before, or exactl
at, the time the evader hits the obstacle. When the evader hits
the obstacle at the poifit, we haveTyign < Tyt by definition.

S = S: Supposelyign < Thit. By definition, we have

PG+ GF< EF (8)
Fig. 5. Different cases for when the evader hits the obstack: (a) H

We have two possible cases: either the evader hits the
is on GF, and, (b)EH intersectsPG at S.

obstacle at some finite time, or, he does not hit the obstacle
ever. In the second case, the pursuer has a higher angular
velocity than the evader about the cen@rand since the
evader does not hit the obstacle, the relative angle between
them goes to zero (players are aligned) in finite time.

We now focus on the first case: the evader hits the obstacle

on the alignment timélyigh. The time taken by a pursuer
traveling at unit velocity to reach the point of tangerieyf
the evader w.r.t. the obstac® is the sum of the length of

the pursuer’s tangent 10, and, the length of the arc from at some point, call iH. We show that the pursuer is closer

the pursuer's point of tangen.cy fo (see Fig. 5_)' ) to H no matter whereH lies on the boundary oD. Thus
For the rest of the paper, instead of denoting the time &he yrsuer can readt before the evader no matter where
which 6(t) becomes 0 aJajign, we let Taign be the time } jiaq 500 Note that we consider that the evader takes the
at which the pursuer reaches the pditin essence, iP g eqt possible path to reaeh but our argument holds
reaches- beforeE reaches~, we have that the pursuer wins. ¢ any evader strategy that takes himHo because it will

However, the_exact time of allgnment I|e§ in the interval, e him at least as long as the time along the shortest path
[0, Talign], Provided the evader plays his optimal strategy. |

the following section, we show that no matter what the evader
does, the game is decided just by comparing the time both
players take to reach the poift Our denotation offyigy as PG+ GE<EF
the time taken to reach is therefore justified.

Case 1. H lies onC/;T: (see Fig. 5 (a)). Expand (8)

— PG} GH + HF < EF

B. Pursuer-win condition ~ ~
) = PG+ GH< EF—- HF
In general, the evader may choose not to play the optimal

strategy, which affects two aspects of the game: (i) thetpoil/Se triangle inequality iMEFH, whereFH is a chord of
on the boundary of the obstadBeat which the evader hitS,  the obstacleD i.e. FH <FH to get
and, (ii) the time at which an alignment possibly occurs. In —~
this section, we show that wheneviyig, < Thit, the pursuer PG+ GH<EF —HF
\;v:]rés(;tir)\'e game irrespective of what the evader does with (i) — PG GH< EH

For the rest of our discussion, we adopt the followingrhus the pursuer is closer td than E and thus can align
notation (see Figure 5). L& be the pursuer’s initial location himself with the evader before the evader readHes
and E that of the evader. LeE be the point of tangency of Case 2. H lies on the boundary oD such thatEH inter-
E w.r.t. O in the direction he heads away fromto increase sectsPG. Call the point of intersection & (see Fig. 5 (b)).
the relative angle between the players. IGtbe the point Expand (8)
of tangency, w.r.tO, of the pursuer along the direction he

heads to decrease the relative angle between the players. PG+ GF<EF
As derived earlier]Tyi; is the length of line segmeriF. — PS4+ SG+ él\:< EE
Further, Taign is given byPG+ GF. —~
Lemma 1. The following two statement§; and S, are = PS<EF -SG-GF
equivalent. Use triangle inequality imMSGF, where S lies outside the
Sii Talign < Thit circle O such that=Sis a secant oD i.e. S < SG+ GF to

S: The pursuer can align with the evader in finite time i-eget

the relative angle between the players goes to zero in

finite time, irrespective of the evader’s actual trajectory PS<EF —SF

Proof: & = S Let the relative angle between thefrinally, triangle inequality imMEF S gives us
players go to zero in finite time. The evader cannot be on the
boundary of the obstacle unless the pursuer is coincideht wi PS<ES
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with a fixed cente@Q. The continuous time Lion’s strategy is
discussed in [13]. For a detailed analysis of the discrete ti
version of the Lion’s strategy in simply-connected polygon
the interested reader is directed to [10].

The game terminates at the boundary of the polygonal
arena where the evader is captured. If the evader plays sub-
optimally, the game could terminate before he reaches the

Co boundary as well, but the outcome of the game remains
unchanged i.e. the pursuer wins by capturing the evamler.

We combine Lemma 1 and Lemma 2 to state our main

Fig. 6. Existence of a separating circle when the playersabgaed. result.
Theorem 1. WhenTgign < Thit, the pursuer wins the game
by first aligning himself with the evader, then executing the
Thus the pursuer is closer ®thanE and thus can align Lion’s strategy. If not i.e. ifTyy < Taign, the evader reaches
himself with the evader before the evader reacBe@nd the obstacle and wins the game thereafter by looping around
therebyH). its boundary and avoiding capture indefinitely.
Case 3. H lies on the part of the boundary @‘beyongf.

The shortest path frorg to H wraps aroundr: it is EF- FH.
The shortest path frorR to H wraps arounds and is given

VI. DECISION ALGORITHM

Let the initial configuration of the game b&(0) =
. . ) (rp(0),re(0),6(0), Z2,0), whererp(0) is the initial radial
by PG- GF - FH. SincePG+ GF < EF, addingFH gives Us  gistance of the pursuer from the center of the obstale
the required result® is closer toH thanE and thus reaches gnq rz(0) that of the evaderf(0) is the initial relative
H beforeE. SinceE hits O atH, we have that the players gngle between the players? is a description of the simply-

are aligned. _ connected polygonal arena that contains the obs@dad
In all of the cases, we observe that the pursuer is closer {Re players in its interior.

all points on the obstacle than the evader when the conditionThe radius of the circular obstad®is R, a given constant.

Talign < Thit is true. Consequently, he can align himself with_et the center ofO, denoted byA, be the origin of our

the evader in finite time. B coordinate frame. We further set the positive X-axis along
Lemma 1 results in a configuration of the game wherghe evader's radius, which makes the relative ar@ifle the

the pursuer and evader are radially aligned wd.such that angle subtended by the pursuer’s radius w.r.t. evaderissad

the pursuer is closer to the center@fthan the evader. We for all time't.

show that from this point on, the pursuer wins the game by we assume that a feasible description is provided i.e. un-

following the Lion’s strategy, adapted to a simply-coneect expected conditions, such as the players starting frondénsi

polygon (as explained in [10]). We summarize this result ifhe obstacle, are not checked for. Our decision algorithm is

the following lemma by proving that the initial conditions jisted as Algorithm 1. The three subroutines are used in our
for the existence of a winning pursuer strategy are satisfiegdgorithm are

at the time of alignment. « CARTESIAN(T, 8)

Lemma 2: When the players are aligned radially w.c, Converts from Polar coordinates to Cartesian coordi-
with the pursuer closer tO than the evader, the pursuer wins nates.
the game by following the Lion’s strategy. « TANGENTOFEVADER(E,P)

separates the pursuer from the evader, constructed aw$ollo the evader’s locatio to the circular obstacl®, taking

(see Fig. 6). into account the value of sgn(@) to decide which of
Suppose the pursuer is Btand the evader &E. Let the the two possible tangents to use.

center of the obstacl® be A. Let | be the line passing TANGENTOFPURSUERP,E)

throughE, P and A. Pick a pointQ on | such that a circle Computes the point on intersection of the tangent from

Cq centered a passes througR and completely contains the pursuer’s locatioR to the circular obstacl®, taking

O. For example, ifQ coincides withP, thenO is the same as into account the value of s¢f) to decide which of the

Cgq. We can pick any other poir@ on | farther away from two possible tangents to use.

P than A and that will work as well. The other extreme is

whenQ is at infinity onl, at which pointCq degenerates to VII. DECISION BOUNDARY

the tangent td at P. Therefore, such a circle always exists The winning condition derived in Section V is a compar-

when the players are aligned. ison of the length of the evader’s tangent to the length of

The pursuer follows the Lion’s strategy, depicted in Fig. 4the pursuer’s path to the evader’s point of tangency. We can
he always remains on the radi@E’ for an evader move use this result to answer a more general question: given the
from E to E’ (say). This sandwiches the evader between thevader’s initial locatiorE, a description of the polygon?,
boundary of the polygonal aren and a growing circl€g  and the obstacl®, what is the pursuer-win region? In other
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Algorithm 1 DECIDEWINNER(rp(0),rg(0),6(0), Z#,0)

if re(0) <rp(0) then > E is closer toO thanP
OuUTPUT “EVADER WINS”
return

cend if

: A« CENTER(O)

. E — CARTESIAN(rg(0),0) > Convert to Cartesian

coordinates

7: P« CARTESIAN(rp(0), 6(0))

8: F «— TANGENTOFEVADER(E,P)

9: G« TANGENTOFPURSUERP,E)

10: Thit < |EF| = \/re(0)2—R2 > Evader’s hit time to the

=

obstacle Fig. 7. For each evader locatidfy (moved along positiveX away from

11: Baign = LGAF 0), the shaded regions are pursuer-win regions. The eva@ecents ta)
- are also shown.
12: Talign = |PG| + | GF | =/ I’|:>(0)2 —R2+ Rea“gn
13: if Taign < Thit then > Theorem 1
14 OUTPUT"PURSUER WINS can check on which side of the boundary the pursuer lies. In
15: I return that sense, we call this equation the decision boundarg Thi
16: else gives us an alternate method for deciding which player wins
17: OuTPUT “EVADER WINS”
the game.

ig: endr?ftum In comparison, our solution approach in Section V uses

lengths of simple curves (tangent and arc of a circle), and an
analysis of worst-case strategies to derive a simpler idecis
EIormula.

words, what is the boundary of the region within which th

pursuer starts and wins the game, and outside of which the

pursuer is unable to capture the evader? VIIl. CONCLUSIONS ANDFUTURE WORK
Given an initial evader locatiok, the points of tangency

from E to O, call themT and S as before, are fixed and We presented a decision algorithm for a pursuit-evasion

can be computed directly (see Fig. 7). Since the length game plf”ly?d na convgx.polygonal arena with a circular
the evader's tangent is known, callit (W — Tyy), we can obstacle: given a description of the environment, and the
’ e initial location of a pursuer and an evader, our algorithm

compute the set of all points that are at most a distance ofd termi hich ol ins th W tended th
from T andS. However, we need to account for the directiorc ¢ o' nes WhICh player wins the game. We extended the

of traversal of the pursuer. For instance, we retain theqfart hecessary and sufficient condition for winning the game to

the region of distance at mosatfrom Sthat lies on the other compute a partitign of Fhe arena into a pursuer-win region
side of the lineEO when compared t& i.e. if the pursuer ar}d an evader-wm region. To the be?t of our knowledge,
were to head towar8 from close by, the evader would ratherthIS Is the first work in Wh'Ch a pursuit-evasion game h_as
head toT and thus it is necessary to check the distance of t een completely characterized in the presence of a naaitriv

pursuer fromT rather tharS. The region is symmetric about obstacle. _ .
the line EO (the evader's radius) because the evader can Although both of our solution approaches (Section V and

switch tangents when the relative angle between the playep§ction VII) are equivalent, the best solution depends on
hits 7. the application. For example, if we have control over where

The equation for the boundary of the region in polar fornj® deploy & guard (pursuer) to prevent an intruder (evader)

is (r,8) where from reaching his goal (obstacle), we might compute the

’ decision boundary and pick the most suitable location from
r(0)={R+wW-RO—0a))}

Nl

the interior of the pursuer-win region depending on other
R criteria. However, if the initial conditions have alreadgem
where, cost = T decided, we can just use the condition from Algorithm 1 to

Fig. 7 was obtained by varyin@ in discrete steps and check whether (?apture Is pqssible or no_t. ) _
computing the corresponding8). The resulting region was Researchers in the robotics community are interested in

plotted in Java and the snapshot produced. the incorporation of sensing limitations in pursuit-ewasi
It can be seen that the polar coordinate equation is of tfg&mes. For instance, visibility [8], [4], field-of-view [7]
form and range [5] limitations have been studied in contrast to

complete information. These are interesting directions to
explore. As part of immediate future work, we plan to extend
wherea, b, ¢, andd are known constants. By substituting theour result to non-convex environments with multiple ciegul
initial radius and angle of the pursuer into the equation, webstacles and polygonal obstacles.

R
a9+br2+ccos‘1?+d:0
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APPENDIX Case 1. Consider the case whe@y =0 or 6y = 7T i.e.
A. Computing Taign by integrating (t) ks = 0. The quadratic simplifies to
To compute the relative angle between the playé)sas Taign KR+ kiR] + Taign [~Rre(0)* — Rrp(0)?] = 0
an explicit function of time, we first derive the evader’siedd Giving uS Tasign = O, which corresponds to the case when

distance functiome(t). =0 i.e. the players are aligned to begin with. In the other
The pursuer’s trajectory follows the same geometric 'de%ase divide byTyign # 0

differing only in the direction he picks to traverse arouhd t
obstacle. For simplicity of notation, left) =rg(t) vt be the
evader’s radial distance from the center@f Assume that
sgn8(T)) = +1 w.l.o.g. From (1) and (6), we have

1/|'2_R2
r

rp(0)? +re(0)2

Taiign = ki +ko

Case 2. 6o = =7, in which caseks = +o. Sinceks # 0,
divide throughout byks to get a new quadratic in which we
let ks — o i.e. k—ls — 0 to obtain
Ta%ign [klkz — Rz] +Talign [—klrE(O)Z — kzrp(O)Z}
+rp(0)%re(0)>=0
which is a simplified quadratic iffign.
1 In all other cases, the quadratic given by (11) applies. Thus
( (0)2-t2 -2t ( re(0) R2)>

i =cosut = /1-sirfus =
Change the variable to, wherer = Rcscw and integrate.
r2(t) =t?+2c;Rt + R2(1+¢2)

To solve forcy, use the given initial value(0) = rg(0).

r(t) = (9) the solution to (11) and the special cases listed aboveheget
allow us to solve forTyig, in closed form and compare
By definition, Tyign is the time at which the relative angle the value toTy; to decide which player wins the game.
between the players reaches zero. From (1) and (6) We equations are quadratics because the players can pick
express the rate of change of the relative angle between tbigher direction to travel about the obstacle. The appaberi
players as a function of their radial distances from theiorig solution can be picked by ensuring that the pursuer moves
The closed form solution for the latter was obtained as (9along the lesser of the two relative angles between the
The signs are chosen according to the direction of travel glayers.
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