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Abstract— In the lion and man game, a lion tries to capture
a man who is as fast as the lion. We study a new version of
this game which takes place in a Euclidean environment with
a circular obstacle. We present a complete characterization of
the game: for each player, we derive necessary and sufficient
conditions for winning the game. Their (continuous time)
strategies are constructed using techniques from differential
games and arguments from geometry. Our main result is a
decision algorithm which takes arbitrary initial positions as
input, declares one of the players as the winner of the game
and outputs a winning strategy for that player. We extend our
approach to explicitly construct, in closed form, the decision
boundary that partitions the arena into win and lose regions.

I. OVERVIEW AND RELATED WORK

In a game of pursuit and evasion, one player (the pursuer)
tries to get close to, and possibly capture the other (the
evader). The evader, in turn, tries to avoid being captured.
Pursuit-evasion games are of fundamental importance to
researchers in the field of robotics. Consider the task of
surveillance, where a guard (pursuer) has to chase and
capture an intruder (evader). Another scenario is search-and-
rescue, where a rescue worker has to locate a lost hiker.
Since the actions of the hiker are not known a priori, worst-
case pursuit and evasion strategies guarantee that the hiker is
found no matter what he does. Problems arising from diverse
applications such as collision-avoidance [9], search-and-
rescue [6], [14], air-traffic control [3], and surveillance[9]
have been modeled as pursuit-evasion games.

A classical pursuit-evasion game is theLion and Man
game. It was originally posed in 1925 by Rado as follows

A lion and a man in a closed arena have equal
maximum speeds. What tactics should the lion
employ to be sure of his meal?

The first solution was generally accepted by 1950: the lion
moves to the center of the arena and then remains on the
radius that passes through the man’s position. Since they
have the same speed, the lion can remain on the radius and
simultaneously move toward the man. Although this strategy
works in discrete-time, it was later shown by Besicovitch
that exact capture in continuous time takes infinitely long in
a bounded arena [13]. However, if the capture distance is
set to somec > 0, Alonso et al. [2] showed that the lion can
capture the man in timeO

(
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, where r is the radius
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of the circular arena ands is the maximum speed of the
players. In [15], Sgall studied the discrete time, continuous
space variant in a semi-bounded environment: the positive
quadrant. He showed that the lion captures the man, if certain
invariants are satisfied initially.

Recently, researchers have studied variants of the lion and
man game played in environments more complex than a
circular disc or the real plane. Isler et al. showed that the lion
can capture the man in any simply-connected polygon [10].
Alexander et al. presented a sufficient condition for the
greedy strategy to succeed in arbitrary dimensions [1].

The lion and man game in the presence of obstacles
remains a challenge. In this paper, we take an important step
for solving the lion and man game in an environment with
obstacles. We present full characterization of the game in the
presence of a single circular obstacle. That is, we present a
decision algorithm which determines the winner of the game.
We also construct the winner’s strategy.

As in the original version of the game, we assume that
the players know exact locations of each other at all times
and have equal maximum speeds.An important line of re-
search is to study the effect of sensing limitations. Recent
progress in this direction includes the study of range-based
limitations [5] and bearing-based limitations [11].

Other variants of pursuit-evasion games studied in the
robotics community are visibility based pursuit-evasion [8]
and maintaining the visibility of an adversarial target [4].

II. CONTRIBUTIONS

We study the lion and man game played in a convex polyg-
onal environment, where both time and space are continuous.
There is a single circular obstacle in the environment. The
main question we study is: Given initial locations of the
players, which player wins the game?

In earlier work [10], researchers have shown that the
pursuer can capture the evader in any simply-connected
polygon. This intuitively suggests that the evader has to reach
the obstacle to win the game. Conversely, the pursuer wins
the game if he can separate the obstacle from the evader, and
simultaneously make progress toward capture.

Verifying these conditions from an arbitrary initial con-
figuration is difficult. For example, it is easy to see that the
evader wins the game if he is closer to the obstacle. However,
the condition is not necessary, as shown by the following
instance. Consider a circular obstacleO with centerA and
radius 10 units. (see Fig. 1). The initial configuration is such
that the pursuerP and the evaderE are separated by a relative
angle ofπ radians, measured w.r.t.A. The closest point on the

obstacleO to the evader isF , such that|EF |= 10π = |
⌢
PF |.
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Fig. 1. A counterexample: The evader wins even though the pursuer is
closer to all points on the obstacle.

Thus every point on the obstacle is closer to the pursuer than
the evader.

If the evader heads straight toF along EF , the pursuer
picks one of the directions (clockwise or counterclockwise)
to go around the obstacle and reachesF at the same time
as the evader, resulting in capture and a pursuer-win. This is
true for any pointF ∈ δO if the evader just heads straight
to F from E along the shortest path. However, consider
the following strategy: the evader heads towardF for 2
units and switches direction toward the tangent point that
is farther from the pursuer. For instance, if the pursuer picks
the clockwise direction to go around the obstacle, the evader
heads toT . The time taken by the pursuer to reachT in the
clockwise direction is computed as 44.55 units, whereas the
evader reachesT at time 40.126 units. Thus the evader hits
the obstacle atT faster than the purser and then continues to
loop around the obstacle away from the pursuer. Since the
evader avoids capture indefinitely, the evader wins the game.

In this paper, we present a complete characterization to
determine the outcome of the pursuit-evasion game for any
given initial condition. Our results are organized as follows.
In Section III, we formulate the task of the pursuer guarding
the obstacle from the evader as a differential game. In
Section IV-A, we use concepts from optimal control theory
to derive optimal control laws. We provide the geometric
interpretation of the player strategies in Section IV-B. In
Section V, we derive necessary and sufficient conditions for
each player to win the game. Our main result provides a
decision algorithm for the pursuit-evasion problem, presented
in Section VI. We extend the win-condition to derive an
explicit expression for the decision boundary: in Section VII,
we present a partitioning of the arena into a pursuer-win
region and an evader-win region, for a given initial evader
location. We conclude in Section VIII and suggest directions
for future research.

III. PROBLEM STATEMENT AND FORMULATION

An evaderE and a pursuerP are playing a game of pursuit
and evasion inside a simply-connected convex polygonP,
with a single circular obstacleO. We say that the pursuer
captures the evader if the geodesic distance between the
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Fig. 2. The pursuerP guarding the obstacleO from the evaderE.

players goes to zero as time goes to infinity. On the other
hand, if the evader can guarantee a non-zero lower-bound on
the distance between the players, the outcome of the game
is an evader-win.

The game is played in continuous time and continuous
space.

Let R be the radius ofO (see Fig. 2). At any timet ∈ [0,∞[,
the state of the game is defined by three variables:

x(t) = [rP(t),rE(t),θ(t)]T

whereθ(t) is angle between the playersE andP, subtended
at the center ofO. The radial distance ofP from the center
of O is denoted asrP(t) and that ofE is rE(t). We drop the
dependency on time from the notation and just userP, rE

andθ where appropriate.
Both players are modeled as point objects with the same

maximum speed,v = 1. This is done by scaling all distances
w.r.t. the value ofv (normalization). The pursuerP (respec-
tively the evaderE) can pick a direction relative to his/her
radiusrP (respectivelyrE ) to move along. This is the control
inputuP(t) (resp.uE(t)), whereuP(t),uE(t)∈ S1∀t. We study
a game of complete information: both players know each
others’ locations at all times.

The kinematic equations (KE) for the state are

ṙP = cosuP

ṙE = cosuE

θ̇ =
sinuE

rE
− sinuP

rP
(1)

The players occupy the part of the polygon outside of the
obstacleO. ThusrP(t)≥R, ∀t andrE(t)≥R, ∀t. We restrict
the relative angle between the players asθ ∈ [−π,π]

In order to win, the evader must guarantee a lower-bound
on the distance between the players. This happens when the
evader reaches the boundary of the obstacleO without getting
captured. In fact, this is the only way the evader can win the
game as we will see in Section V-B. On the other hand,
if the pursuer can prevent the evader from reachingO and
simultaneously make the distance between them go to zero,
the pursuer will win the game. The pursuer can do so, if he
is able to make the relative angleθ go to zero before the
evader hitsO (This statement is formalized and proven as
Theorem 1 of Section V-B.). We use these observations to
formulate an equivalent game with the following objective.
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Suppose the evaderE hits the boundary ofO at timeT ≥
0, i.e. rE(T ) = R. Then, the value ofθ(T ) describes the
outcome of the game: if|θ(T )| 6= 0, we know thatE reached
O beforeP and thusE wins the game. If not, we will show
that the pursuer can align himself with the evader beforeT
and proceed to win the game by playing the Lion’s strategy
(see Theorem 1). The objective, or value, of the game is thus
given by

J = |θ(T )|
where

T = min{t : rE(t) = R}
We wish to solve the optimal control problem: what should

be u∗P(t) andu∗E(t) so thatE maximizesJ andP minimizes
it? It is worth noting that we study the game of kind, and
seek strategies that are optimal in terms of the outcome of
the game.

This problem falls in the context of differential games.
Although the solution process is along the lines of the Lady
in the Lake problem (see [3], Sec. 8.5, pp. 452–456), our
problem is significantly different: if both the lady and the
man had equal velocities, the lady would always win the
game by swimming along the line joining them, in the
direction away from the man. In contrast, the outcome of
our game, depends on the initial conditions.

IV. OPTIMAL PLAYER STRATEGIES

In this section, we use optimal control theory, in the realm
of differential games, to derive the optimal strategies for
the pursuer and evader. Further, we present the geometric
interpretation of the strategies.

A. Optimal control solution

Let x(t) be the state vector, andu(t) the control input.
Optimizing an objective function of the form

J(u) = h(x(T ),T )+
∫ t f

t0
g(x(t),u(t), t)dt

with a terminal payoffh(·) and an integral payoffg(·)
subject to the KE (1) is equivalent (Pontryagin’s Maximum
Principle) to optimizing the HamiltonianH given by

H(x(t),u(t),p(t), t) = g(x(t),u(t), t)+pT (t)[a(x(t),u(t), t)]

wherep(t) is a vector of Lagrange multipliers, also known
as the costate variables.a(t) is the vector of state transition
equations from the KE (1).

In our problem, we only have a terminal payoff
h(x(T ),T ) = |θ(T )| and no integral payoff. Thus the Hamil-
tonian for our system is

H = pP(t)ṙP(t)+ pE(t)ṙE(t)+ pθ (t)θ̇(t)

= pP(t)cosuP(t)+ pE(t)cosuE(t)

+ pθ (t)

(

sinuE(t)
rE(t)

− sinuP(t)
rP(t)

)

The Isaacs equation is

min
uP

max
uE

H = 0 (2)

We use a standard result from optimal control theory to
obtain necessary conditions foru∗P and u∗E to optimize the
Hamiltonian (see [12], 5.1-17b, pp. 187-188). For all timet
the following is true.

ẋ∗(t) =
∂H
∂p

ṗ∗(t) =−∂H
∂x

0 =
∂H
∂u

Since the final state at timeT is free, except forrE(T ) = R,
we have additional boundary conditions (commonly referred
to as transversality conditions) given by

∂h
∂x

(x∗(T ),T )−p∗(T ) = 0

Applying these necessary conditions to our problem, we
have

ṗ∗P(t) =− δH
δ rP

=− p∗θ sinu∗P
r∗P

2

ṗ∗E(t) =− δH
δ rE

=
p∗θ sinu∗E

r∗E
2

ṗ∗θ (t) =−δH
δθ

= 0 (3)

0 =
δH
δuP

=−p∗P sinu∗P−
p∗θ
r∗P

cosu∗P

0 =
δH
δuE

=−p∗E sinu∗E +
p∗θ
r∗E

cosu∗E

The boundary (transversality) condition is

∂h(T )

∂θ
− p∗θ (T ) = 0

⇒ p∗θ (T ) =
∂ (|θ(T )|)

∂θ
= sgn(θ(T )) (4)

From (3) and (4) we have∀t, p∗θ (t) = sgn(θ(T )). Solutions
for u∗P andu∗E that optimizeH are

(sinu∗P,cosu∗P) ‖
(

− p∗θ
r∗P

, p∗P

)

(sinu∗E ,cosu∗E) ‖
(

p∗θ
r∗E

, p∗E

)

(5)

Let the constants of proportionality for the parallel vectors
be cP and cE . Substitute in the Isaacs equation (2) to get
cP =−cE . Now use the evader’s boundary condition in (5):

cE sinu∗E =
p∗θ
r∗E

At t = T , the evader hits the boundary of the obstacle i.e.
rE(T ) = R. The evader wins the game then on by remaining
on the boundary ofO and moving in the direction that takes
him away from the pursuer i.e. his velocity vector is tangent
to O thereafter. In terms of his control variableuE , we have
uE(T ) = sgn(θ(T )) · π

2 . Therefore

cE sgn(θ(T )) =
sgn(θ(T ))

R
⇒ cE = R−1
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Fig. 3. E moves away fromP along a tangent toO.

Finally, solve foru∗P andu∗E by substituting known values
into (5).

rP(t)sinu∗P(t) =−rE(t)sinu∗E(t)

= Rsgn(θ(T )) (6)

B. Geometric interpretation

To understand the physical meaning of (6), consider the
evader: rE(t),uE(t). The argument holds for the pursuer
using rP(t),uP(t) instead.

sinu∗E(t) =− R
rE(t)

sgn(θ(T ))

Let Q be the center of the obstacleO (see Fig. 3). Consider
triangle∆QET , whereT is the point onO where the tangent
from E touches it. Clearly, Equation (6) is satisfied, meaning
that the solution for the evaderE is to always head towardO
along the direction of the tangent fromE to O. Since there
are two possible tangents for any evader location, he picks
the one in accordance with the value of sgn(θ(T )). Since
θ ∈ [−π,π], we know that he will pick the tangent in such
a way that his direction of motion makes the value of the
relative angleθ greater.

The pursuerP, being the minimizing player, moves along
the tangent circle in the direction thatreduces the relative
angle between the players.

V. DECIDING A WINNER

Given an initial condition for our game, and the optimal
strategies derived in Section IV, we characterize under which
conditions the game ends in a pursuer-win and an evader-win.

First, we use a direct observation to eliminate one case:
when the evader is initially closer to the obstacle than
the pursuer. IfrE(0) < rP(0), the evaderE reaches the
boundary of the obstacle before the pursuerP simply by
heading directly to the point on the obstacle closest toE.
Thereafter, the evader loops around the obstacle and avoids
being captured indefinitely, leading to an evader-win.

Next, consider the case whenrE(0)≥ rP(0). Let the initial
relative angle beθ(0) = θ0, say. Ifθ0 =±π, the pursuer can

E

PO

∆t

A

Q
l

CQ

E ′

P′

Fig. 4. An illustration of the Lion’s move used by the pursuerP to stay
on the evader’s radial line w.r.t.Q.

pick either direction to go aroundO. If not, he picks the
smaller of the angles. Once he picks a direction, the pursuer
will not switch. This is because by switching directions, the
pursuer allows the relative angleθ to increase while the
evader is decreasing his distance to the obstacle. The evader
would then be in a better configuration i.e. same angular
separation as before, but with a lesser distance to the the
obstacle.

A. Time to termination

The time at which the evader hits the obstacle (Thit) is
the length of the tangent w.r.t. his initial location, sincehe
moves with unit velocity. By Pythagoras’ theorem, we get

Thit =
√

rE(0)2−R2 (7)

The pursuer wins the game if he canalign himself with
the evader. The time at which this happens isTalign such that
θ(Talign) = 0. If Thit < Talign, the evader reaches the obstacle
before the pursuer prevents him, and thus the evader wins the
game. If not, the pursuer can align himself with the evader,
after which the pursuer can execute the Lion’s strategy and
win the game. The Lion’s strategy guarantees capture for
the pursuer when he stays on the radius of a growing circle,
between a fixed center point and the evader’s location (see
Fig. 4). A description of this pursuit strategy in continuous
time can be found in [13].

There are two ways to computeTalign. First, we can
integrate the relative angle between the players (Equation
(1)) from θ(0) to 0 as time goes from 0 toTalign. This
method is presented in Appendix A. The second method,
uses arguments from geometry and worst-case player strategy
analysis, comparing the total lengths of the paths that each
player takes. We present the second method as follows.

Given the optimal strategies for both players, we know
the exact points of tangency of their trajectories w.r.t. the
obstacle. This allows us to compute the time taken by the
pursuerP to reach the point of tangency of the evaderE.
Let us call that point asF .

If the pursuer does not align himself with the evader
by this time, the evader wins because he hits the obstacle
without getting captured. We therefore have an upper bound
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Fig. 5. Different cases for when the evader hits the obstacleat H: (a) H

is on
⌢
GF , and, (b)EH intersectsPG at S.

on the alignment timeTalign. The time taken by a pursuer
traveling at unit velocity to reach the point of tangencyF of
the evader w.r.t. the obstacleO is the sum of the length of
the pursuer’s tangent toO, and, the length of the arc from
the pursuer’s point of tangency toF (see Fig. 5).

For the rest of the paper, instead of denoting the time at
which θ(t) becomes 0 asTalign, we let Talign be the time
at which the pursuer reaches the pointF . In essence, ifP
reachesF beforeE reachesF , we have that the pursuer wins.
However, the exact time of alignment lies in the interval
[0,Talign], provided the evader plays his optimal strategy. In
the following section, we show that no matter what the evader
does, the game is decided just by comparing the time both
players take to reach the pointF . Our denotation ofTalign as
the time taken to reachF is therefore justified.

B. Pursuer-win condition

In general, the evader may choose not to play the optimal
strategy, which affects two aspects of the game: (i) the point
on the boundary of the obstacleO at which the evader hitsO,
and, (ii) the time at which an alignment possibly occurs. In
this section, we show that wheneverTalign ≤ Thit , the pursuer
wins the game irrespective of what the evader does with (i)
and (ii).

For the rest of our discussion, we adopt the following
notation (see Figure 5). LetP be the pursuer’s initial location
andE that of the evader. LetF be the point of tangency of
E w.r.t. O in the direction he heads away fromP to increase
the relative angle between the players. LetG be the point
of tangency, w.r.t.O, of the pursuer along the direction he
heads to decrease the relative angle between the players.

As derived earlier,Thit is the length of line segmentEF .

Further,Talign is given byPG+
⌢
GF .

Lemma 1: The following two statementsS1 and S2 are
equivalent.

S1: Talign ≤ Thit

S2: The pursuer can align with the evader in finite time i.e.
the relative angle between the players goes to zero in
finite time, irrespective of the evader’s actual trajectory.
Proof: S2 ⇒ S1: Let the relative angle between the

players go to zero in finite time. The evader cannot be on the
boundary of the obstacle unless the pursuer is coincident with

him. If not, the evader can always maintain angular separa-
tion from the pursuer by looping around the obstacle along
the boundary ofO, maintaining a non-zero lower-bound on
the relative angle between the players – a contradiction. Thus
the pursuer aligns himself with the evader before, or exactly
at, the time the evader hits the obstacle. When the evader hits
the obstacle at the pointF , we haveTalign≤ Thit by definition.

S1⇒ S2: SupposeTalign ≤ Thit . By definition, we have

PG+
⌢
GF≤ EF (8)

We have two possible cases: either the evader hits the
obstacle at some finite time, or, he does not hit the obstacle
ever. In the second case, the pursuer has a higher angular
velocity than the evader about the centerO and since the
evader does not hit the obstacle, the relative angle between
them goes to zero (players are aligned) in finite time.

We now focus on the first case: the evader hits the obstacle
at some point, call itH. We show that the pursuer is closer
to H no matter whereH lies on the boundary ofO. Thus
the pursuer can reachH before the evader no matter where
H lies onO. Note that we consider that the evader takes the
shortest possible path to reachH, but our argument holds
for any evader strategy that takes him toH, because it will
take him at least as long as the time along the shortest path
to H.

Case 1. H lies on
⌢
GF (see Fig. 5 (a)). Expand (8)

PG+
⌢
GF≤ EF

⇒ PG+
⌢

GH +
⌢
HF≤ EF

⇒ PG+
⌢

GH≤ EF−
⌢
HF

Use triangle inequality in∆EFH, whereFH is a chord of

the obstacleO i.e. FH <
⌢
FH to get

PG+
⌢

GH≤ EF−HF

⇒ PG+
⌢

GH≤ EH

Thus the pursuer is closer toH than E and thus can align
himself with the evader before the evader reachesH.

Case 2. H lies on the boundary ofO such thatEH inter-
sectsPG. Call the point of intersection asS (see Fig. 5 (b)).
Expand (8)

PG+
⌢
GF≤ EF

⇒ PS +SG+
⌢
GF≤ EF

⇒ PS≤ EF−SG−
⌢
GF

Use triangle inequality in∆SGF , whereS lies outside the

circle O such thatFS is a secant ofO i.e. SF < SG+
⌢
GF to

get

PS≤ EF−SF

Finally, triangle inequality in∆EFS gives us

PS≤ ES
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Thus the pursuer is closer toS than E and thus can align
himself with the evader before the evader reachesS (and
therebyH).

Case 3. H lies on the part of the boundary ofO beyondF .

The shortest path fromE to H wraps aroundF : it is EF ·
⌢
FH.

The shortest path fromP to H wraps aroundG and is given

by PG·
⌢
GF ·

⌢
FH. SincePG+

⌢
GF≤ EF , adding

⌢
FH gives us

the required result:P is closer toH thanE and thus reaches
H beforeE. SinceE hits O at H, we have that the players
are aligned.

In all of the cases, we observe that the pursuer is closer to
all points on the obstacle than the evader when the condition
Talign ≤ Thit is true. Consequently, he can align himself with
the evader in finite time.

Lemma 1 results in a configuration of the game where
the pursuer and evader are radially aligned w.r.t.O such that
the pursuer is closer to the center ofO than the evader. We
show that from this point on, the pursuer wins the game by
following the Lion’s strategy, adapted to a simply-connected
polygon (as explained in [10]). We summarize this result in
the following lemma by proving that the initial conditions
for the existence of a winning pursuer strategy are satisfied
at the time of alignment.

Lemma 2: When the players are aligned radially w.r.t.O,
with the pursuer closer toO than the evader, the pursuer wins
the game by following the Lion’s strategy.

Proof: First, we show that there exists a circle that
separates the pursuer from the evader, constructed as follows
(see Fig. 6).

Suppose the pursuer is atP and the evader atE. Let the
center of the obstacleO be A. Let l be the line passing
throughE, P and A. Pick a pointQ on l such that a circle
CQ centered atQ passes throughP and completely contains
O. For example, ifQ coincides withP, thenO is the same as
CQ. We can pick any other pointQ on l farther away from
P than A and that will work as well. The other extreme is
whenQ is at infinity on l, at which pointCQ degenerates to
the tangent toO at P. Therefore, such a circle always exists
when the players are aligned.

The pursuer follows the Lion’s strategy, depicted in Fig. 4:
he always remains on the radiusCE ′ for an evader move
from E to E ′ (say). This sandwiches the evader between the
boundary of the polygonal arenaP and a growing circleCQ

with a fixed centerQ. The continuous time Lion’s strategy is
discussed in [13]. For a detailed analysis of the discrete time
version of the Lion’s strategy in simply-connected polygons,
the interested reader is directed to [10].

The game terminates at the boundary of the polygonal
arena where the evader is captured. If the evader plays sub-
optimally, the game could terminate before he reaches the
boundary as well, but the outcome of the game remains
unchanged i.e. the pursuer wins by capturing the evader.

We combine Lemma 1 and Lemma 2 to state our main
result.

Theorem 1: WhenTalign ≤ Thit , the pursuer wins the game
by first aligning himself with the evader, then executing the
Lion’s strategy. If not i.e. ifThit < Talign, the evader reaches
the obstacle and wins the game thereafter by looping around
its boundary and avoiding capture indefinitely.

VI. D ECISION ALGORITHM

Let the initial configuration of the game beG(0) =
(rP(0),rE(0),θ(0),P,O), where rP(0) is the initial radial
distance of the pursuer from the center of the obstacleO
and rE(0) that of the evader.θ(0) is the initial relative
angle between the players.P is a description of the simply-
connected polygonal arena that contains the obstacleO and
the players in its interior.

The radius of the circular obstacleO is R, a given constant.
Let the center ofO, denoted byA, be the origin of our
coordinate frame. We further set the positive X-axis along
the evader’s radius, which makes the relative angleθ(t) the
angle subtended by the pursuer’s radius w.r.t. evader’s radius
for all time t.

We assume that a feasible description is provided i.e. un-
expected conditions, such as the players starting from inside
the obstacle, are not checked for. Our decision algorithm is
listed as Algorithm 1. The three subroutines are used in our
algorithm are

• CARTESIAN(r,θ)
Converts from Polar coordinates to Cartesian coordi-
nates.

• TANGENTOFEVADER(E,P)
Computes the point on intersection of the tangent from
the evader’s locationE to the circular obstacleO, taking
into account the value of−sgn(θ) to decide which of
the two possible tangents to use.

• TANGENTOFPURSUER(P,E)
Computes the point on intersection of the tangent from
the pursuer’s locationP to the circular obstacleO, taking
into account the value of sgn(θ) to decide which of the
two possible tangents to use.

VII. D ECISION BOUNDARY

The winning condition derived in Section V is a compar-
ison of the length of the evader’s tangent to the length of
the pursuer’s path to the evader’s point of tangency. We can
use this result to answer a more general question: given the
evader’s initial locationE, a description of the polygonP,
and the obstacleO, what is the pursuer-win region? In other
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Algorithm 1 DECIDEWINNER(rP(0),rE(0),θ(0),P,O)

1: if rE(0) < rP(0) then ⊲ E is closer toO thanP
2: OUTPUT “EVADER WINS”
3: return
4: end if
5: A← CENTER(O)
6: E← CARTESIAN(rE(0),0) ⊲ Convert to Cartesian

coordinates
7: P← CARTESIAN(rP(0),θ(0))
8: F ← TANGENTOFEVADER(E,P)
9: G← TANGENTOFPURSUER(P,E)

10: Thit ← |EF |=
√

rE(0)2−R2 ⊲ Evader’s hit time to the
obstacle

11: θalign = ∠GAF

12: Talign = |PG|+ |
⌢
GF |=

√

rP(0)2−R2 +Rθalign

13: if Talign ≤ Thit then ⊲ Theorem 1
14: OUTPUT “PURSUER WINS”
15: return
16: else
17: OUTPUT “EVADER WINS”
18: return
19: end if

words, what is the boundary of the region within which the
pursuer starts and wins the game, and outside of which the
pursuer is unable to capture the evader?

Given an initial evader locationE, the points of tangency
from E to O, call them T and S as before, are fixed and
can be computed directly (see Fig. 7). Since the length of
the evader’s tangent is known, call itw (w = Thit), we can
compute the set of all points that are at most a distance ofw
from T andS. However, we need to account for the direction
of traversal of the pursuer. For instance, we retain the partof
the region of distance at mostw from S that lies on the other
side of the lineEO when compared toS i.e. if the pursuer
were to head towardS from close by, the evader would rather
head toT and thus it is necessary to check the distance of the
pursuer fromT rather thanS. The region is symmetric about
the line EO (the evader’s radius) because the evader can
switch tangents when the relative angle between the players
hits π.

The equation for the boundary of the region in polar form
is (r,θ) where

r(θ) =
{

R2 +(w−R(θ −α))
}

1
2

where, cosα =
R
r

Fig. 7 was obtained by varyingθ in discrete steps and
computing the correspondingr(θ). The resulting region was
plotted in Java and the snapshot produced.

It can be seen that the polar coordinate equation is of the
form

aθ +br2 + ccos−1 R
r

+d = 0

wherea, b, c, andd are known constants. By substituting the
initial radius and angle of the pursuer into the equation, we

Fig. 7. For each evader locationEi (moved along positiveX away from
O), the shaded regions are pursuer-win regions. The evader’stangents toO
are also shown.

can check on which side of the boundary the pursuer lies. In
that sense, we call this equation the decision boundary. This
gives us an alternate method for deciding which player wins
the game.

In comparison, our solution approach in Section V uses
lengths of simple curves (tangent and arc of a circle), and an
analysis of worst-case strategies to derive a simpler decision
formula.

VIII. C ONCLUSIONS ANDFUTURE WORK

We presented a decision algorithm for a pursuit-evasion
game played in a convex polygonal arena with a circular
obstacle: given a description of the environment, and the
initial location of a pursuer and an evader, our algorithm
determines which player wins the game. We extended the
necessary and sufficient condition for winning the game to
compute a partition of the arena into a pursuer-win region
and an evader-win region. To the best of our knowledge,
this is the first work in which a pursuit-evasion game has
been completely characterized in the presence of a non-trivial
obstacle.

Although both of our solution approaches (Section V and
Section VII) are equivalent, the best solution depends on
the application. For example, if we have control over where
to deploy a guard (pursuer) to prevent an intruder (evader)
from reaching his goal (obstacle), we might compute the
decision boundary and pick the most suitable location from
the interior of the pursuer-win region depending on other
criteria. However, if the initial conditions have already been
decided, we can just use the condition from Algorithm 1 to
check whether capture is possible or not.

Researchers in the robotics community are interested in
the incorporation of sensing limitations in pursuit-evasion
games. For instance, visibility [8], [4], field-of-view [7],
and range [5] limitations have been studied in contrast to
complete information. These are interesting directions to
explore. As part of immediate future work, we plan to extend
our result to non-convex environments with multiple circular
obstacles and polygonal obstacles.
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APPENDIX

A. Computing Talign by integrating θ(t)

To compute the relative angle between the players (θ ) as
an explicit function of time, we first derive the evader’s radial
distance functionrE(t).

The pursuer’s trajectory follows the same geometric idea,
differing only in the direction he picks to traverse around the
obstacle. For simplicity of notation, letr(t) = rE(t) ∀t be the
evader’s radial distance from the center ofO. Assume that
sgn(θ(T )) = +1 w.l.o.g. From (1) and (6), we have

ṙ = cosu∗E =

√

1−sin2 u∗E =

√
r2−R2

r

Change the variable tow, wherer = Rcscw and integrate.

r2(t) = t2 +2c1Rt +R2(1+ c2
1)

To solve forc1, use the given initial valuer(0) = rE(0).

r(t) =

(

rE(0)2 + t2−2t

(

√

rE(0)2−R2

))
1
2

(9)

By definition, Talign is the time at which the relative angle
between the players reaches zero. From (1) and (6) we
express the rate of change of the relative angle between the
players as a function of their radial distances from the origin.
The closed form solution for the latter was obtained as (9).
The signs are chosen according to the direction of travel of
the players.

θ̇ =−Rsgn(θ(T ))

r2
E

− Rsgn(θ(T ))

r2
P

Substitute forrP(t) andrE(t) from (9), separate the variables
and integrate using the standard form

∫

dx
x2 +a2 =

1
a

tan−1 x
a

We integrate from 0 toTalign, during which time the
relative angleθ goes fromθ(0) = θ0 (say) to θ(Talign) =

0. To reduce clutter, letk1 =
√

rP(0)2−R2 and k2 =
√

rE(0)2−R2.

sgn(θ(T )) ·θ0 = tan−1
[

t− k2

R

]Talign

0
+ tan−1

[

t− k1

R

]Talign

0
(10)

Substitute the endpoints fort, let k3 = tan(sgn(θ(T ))θ0) and
use the addition formula for inverse tangent1:

tan−1 u− tan−1 v = tan−1 u− v
1+uv

to obtain the following quadratic inTalign

T 2
align

[

k1k2k3− k3R2 + k1R+ k2R
]

+Talign
[

−k1k3rE(0)2− k2k3rP(0)2−RrE(0)2−RrP(0)2]

+k3rP(0)2rE(0)2 = 0
(11)

1To use this formula, we further need to verify that|uv|< 1

Case 1. Consider the case whenθ0 = 0 or θ0 = ±π i.e.
k3 = 0. The quadratic simplifies to

T 2
align [k2R+ k1R]+Talign

[

−RrE(0)2−RrP(0)2] = 0

Giving us Talign = 0, which corresponds to the case when
θ0 = 0 i.e. the players are aligned to begin with. In the other
case, divide byTalign 6= 0

Talign =
rP(0)2 + rE(0)2

k1 + k2

Case 2. θ0 = ±π
2 , in which casek3 = ±∞. Since k3 6= 0,

divide throughout byk3 to get a new quadratic in which we
let k3−→ ∞ i.e. 1

k3
−→ 0 to obtain

T 2
align

[

k1k2−R2]+Talign
[

−k1rE(0)2− k2rP(0)2]

+rP(0)2rE(0)2 = 0

which is a simplified quadratic inTalign.
In all other cases, the quadratic given by (11) applies. Thus

the solution to (11) and the special cases listed above together
allow us to solve forTalign in closed form and compare
the value toThit to decide which player wins the game.
The equations are quadratics because the players can pick
either direction to travel about the obstacle. The appropriate
solution can be picked by ensuring that the pursuer moves
along the lesser of the two relative angles between the
players.
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