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Abstract We explore the problem of energy-efficient, time-consedipath plan-
ning of a solar powered robot embedded in a terrestrial enmient. Because of
the effects of changing weather conditions, as well as sgrincerns in complex
environments, a new method for solar power prediction isreésWe present a
method that uses Gaussian Process regression to buildrarsgan a data-driven
fashion. With this map, we perform energy-optimal path plag using a dynamic
programming algorithm. We validate our map constructiod path planning al-
gorithms with outdoor experiments, and perform simulation our solar maps to
determine under which conditions the weight of added sadawefs is worthwhile
for a mobile robot.

1 Introduction

Mobile robots have the potential to perform many criticatdmor tasks but their
potential for long-term deployment is limited due to eneocgycerns. A possible
method to increase the battery life of robots is by harvgstinergy from the en-
vironment, e.g. with photovoltaic solar panels. Solar kating has proven to be
useful in marine and extra-terrestrial robotics applmasi[11, 1] which take place
in open space. However, in applications where the robot mpstate in complex
environments, such as urban search and environmentalaniogitthe utility of so-
lar harvesting is not obvious. In this work we focus on extegdhe battery life of
mobile robots using solar panels in such settings.

We study techniques for energy-minimizing path planningaamobile robot
with a photovoltaic panel that uses recent measurementslaf mtensity as its
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only source of information about future solar power. Thiansinteresting problem

because there are many applications where mobile robotsteh@nessarily have the
sensors or computing power to estimate solar maps usingssigaed techniques
such as raytracing on 3d models of the environment. Howewnergy-efficient paths

are still desired. Intuitively, it seems feasible for a gsotar map of the environment
to be built if the robot is in the field long enough. We provideerimental evidence

to support this intuition.

To accomplish energy-efficient path planning, we first bailshap of how much
solar power the robot is likely to get in its operating enmiment (Section 2). Next
we show how the robot’s energy consumption can be modelechemdwe can
compute energy efficient paths given a solar map (SectiokVV@)present results
from experiments that demonstrate the utility of our tegnes (Section 4). We also
present simulation results on our solar maps to demonstratdility of added solar
panels on a robotic platform (Section 5).

1.1 Related Work

Energy efficient planning for mobile robots has receivedéased attention re-
cently. Mei [8] studied the problem of modeling the powersamption of motion,
sensing, communication and embedded hardware for comaigmyailable robots.
These power models are then used to compare various segfeghigh-level tasks
such as coverage, exploration and networking betweensphod increase the life-
time of the system.

Motion is a major source of power consumption for typicalotsh Tokekar et
al. [15], Wang et al. [17], and Kim and Kim [6] have studied fiv@blem of mini-
mizing the energy consumption by optimizing the velocitgffles for a given path.
Sun and Reif [13] studied the problem of finding energy oplipaghs between two
points on terrains where the cost depends on friction andtgrand is thus direc-
tion dependent. They present an approximation algorithrfiriding the minimum
energy path, but do not optimize the velocity profile alorgplath. Liu and Sun [7]
recently studied the problem of computing energy-effigeaths and trajectory pro-
files by optimizing the parameters of Bezier curves usingremngy-based heuristic.
However, the presented method is not guaranteed to miniemeegy and the gen-
eral problem of simultaneously optimizing the path and e#jofor given start and
goal pose remains unsolved.

Energy efficient motion planning in the context of applioas such as coverage
and data muling is a subject of recent study. Derenick eRhbktlidied the problem
of maintaining persistent coverage using a network of relgt deriving control
laws that allow robots with depleted batteries to reachesponding access points.
Similarly, Jensen et al. [5] presented strategies for riégoring robot formations
for patrolling application.

Sugihara and Gupta [12] presented path planning algorifoma data muling
system for optimizing the trade-off between the energy aomsion of the sensors
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and latency of the data carried by the robot. Tekdas et a].gtidlied the problem
of finding time-efficient trajectories for a mobile robot dolwading data from a set
of wireless nodes, and by setting the parameters propaittorenergy cost their
approximation algorithm can minimize energy instead oftiiim these works, the
energy consumption of the robot is not considered. Here wsgnt energy harvest-
ing and path planning techniques that can potentially b&iufge such applications.

The aforementioned works have not considered energy hargdésom the envi-
ronment, and solar-aware path planning has received tnaiteention. In extrater-
restrial applications and some environments on earth i@ gntarctica [10]) col-
lected solar energy can be treated as mostly independehéeqfath chosen. The
TEMPEST mission-level path planner [16] uses ephemerisvaoé to determine
the position of the sun and then performs raytracing on knoearby terrain to
build a solar map that is used to estimate the energy costtb§ pahis is feasible
when nearby terrain is known or when it can be accuratelyctitie but many other-
wise feasible platforms for long-term environmental moriitg lack the necessary
sensors to do this. In this paper we focus on predicting gaater in complex en-
vironments using only the robot’s previously recorded pasiestimates and solar
power measurements.

1.2 Problem Statement

Our problem statement is as follows: Suppose we have a neidde-powered robot
that has been performing a task while also logging the poeasived from an on-
board solar array. Each solar measurement is associatedawiestimated robot
position. Suppose the robot is required to perform a new tiagkrequires it to
reach a goal position within some time limit. How can the rioplan the path that
minimizes its net energy consumption?

2 Solar Modeling

In this section we introduce the method we use to predict hawimsolar power the
robot will receive at a given position. Before we presentdbtails of our Gaussian
Process (GP) regression, we first cover the basics of pieglietectrical output
from a photovoltaic panel.

2.1 Basics of Solar Power Prediction

The amount of currerita solar cell will output when itis fixed to a particular voleag
V is the solution to the equation
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wherels is the reverse saturation current of the diode ¥pe: ¥T which is known

as the thermal voltagé. is proportional to the number of photons that impact the
solar cell, and therefore solisl decreases with higher voltage, but the effect isn’t
pronounced until the diode knee voltage is reached at arOumdolts for a sili-
con cell. The knee voltage increases with decreased tetperaut in general the
voltage limit varies much less than the current.

Because the voltage of an individual cell is low, cells areally connected in
one or more strings such that each string is electricallgites. These strings have
the property that the amount of current output is limited thyweakestell in the
string (ignoring the effect of bypass diodes). The weakeltould be the cell with
the smallest dot product between its normal vector and theasgle vector, or it
could be a cell which happens to be in a shadow. This respornptial shading of
the array causes the correct solar map to have sharp edge=ebetun and shade.

Sunlight reaches a solar panel in three different waysfit tomes directly
from exactly the part of the sky that contains the sun, it ifedadirect insolation.
If it comes from any other part of the sky, it is called diffussolation. Finally,
if it comes from anywhere else (i.e. from terrain or objecitsjs called reflected
insolation. Reflected insolation is most relevant when argmhnel is tilted towards
a reflective surface (such as snow), or near a reflectiveibgildn a sunny day
directinsolation is high and diffuse insolation is low weas on a cloudy day direct
insolation is low and diffuse insolation is high (and totasaélation is much lower
than on a sunny day). If a cell has no line of sight to the sus ihia shadow,
and direct insolation drops to zero. However, for diffussoliation to drop to zero
the entire sky must be blocked. Therefore we can expect sfsadod therefore the
correct solar map to be much sharper on a sunny day than ondyaiiay.

Itis challenging to detect the environment and performresyng for these three
types of insolation so we sidestep and instead constructalar map using regres-
sion from prior measurements of solar power associatedpuaigitions.

2.2 Gaussian Process Regression

A Gaussian Process (GP) is defined as a set of random vargigleshat any subset
of the random variables has a joint Gaussian distributign@® regression is a
general regression technique used to predict the mosy likalie of a function
at any point given measured values of the function at somer gibints, without
assuming an explicit parametric model for the function. @gression, however,
requires a suitable covariance function to model the joimtigsian distribution for
points. For more details on GP regression in general see [9].

In our application we associate each measurement of solampmith a position
and use GP regression to predict the distribution of solargp@t any desired po-
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sition. When all of the solar cells are horizontal, or if theme otherwise suitably
symmetric, the rotation of the robot can be ignored in thesdtipn measurements.
This makes the solar map easier to learn by eliminating a mina along which
solar power can vary. In this paper we neglect the solar miaps dependence
from the changing position of the sun. This is justified whea tobot stays in the
same environment each day, and can therefore build a sejgatat map for various
discrete time segments.

In Section 4.4 we present more details of our particular @npntation of GP
regression, and we empirically compare the performancéffareint covariance
functions.

3 Path Planning

In this section we show how we use a solar map to plan the pattwili reach the
goal within the time limit while consuming the least amouhépergy overall.

Our robot is differential-driven, so it can turn in placedanrning is a relatively
expensive operation. We empirically determine in Sectid@ that for our robot
the energy consumption of a path with a certain top speed lisregresented as
a short initial spike during acceleration, and then a steady per meter traveled.
the planned path as time-stamped waypoints with straigktdegments connect-
ing them, each line segment traversed at a constant speeéhatiantaneous speed
changes between line segments. We model the energy seetitaotiors as the fol-
lowing: At any particular speed, there is a constant costnpeter traveleds, a
constant cost per radian rotat€d and an initial acceleration coSt. When tran-
sitioning from a non-zero speed, the acceleration costa€ihfor the new speed
minus theC, for the old speed, but with a minimum cost of 0. This makes eséns
we assume that acceleration cost is proportional to kiregtergy. We can mathe-
matically state the cost of traversing line segmgnt

cost = Cs(speed)|li| +Cr (speed)|6 — 61| + maxCa(speed) — Ca(speed 1),0)

The cost constants as functions of speed are specific tollo¢aad the terrain. The
terrain where our experiments were conducted was flat aridramiso in this work
we do not consider changes in elevation, friction, or rglliasistance.

The total cost of a path is given by the sum over the @L‘rblcost minus the
expected amount of solar energy collected while travergiagpath. An idle power
draw (constant) can be subtracted from the solar power; weod@onsider idle
power draw because our focus is on path planning and idle pdees not affect
the optimal path to reach the target in the time scales weidens
The Algorithm:

The expected value for any particular point in our solar map lee determined
in closed form, however there is no convenient closed forrdehfor the entire map
as a whole; that is, there is no general geometric model weisaro represent our
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environment. Therefore some amount of discretization@stilar map is necessary
for us to do planning. It is possible in this domain to plan aetof sampled actions
or path shapes (e.g. with an sampling based planner) bu #ircstate space is
relatively small we use a complete grid. We then perform dyisgprogramming to
compute the optimal solution for a given resolution. We aitze both space and
time, and we also have a dimension in the dynamic programtalvig for heading
and a dimension for whether the robot is moving or the robaigging, to account
for the cost to rotate and the cost for initial acceleratlarthis way we ensure that
the output path is always optimal in its resolution, accogdio our power to drive
model. The trajectories generated by our algorithm movecainatant speed when
they are on Manhattan edges and a faster constant speedhéyeare¢ on diagonal
edges; traversing to any neighboring state takes the samerdmf time.

We observe from the output of this algorithm that optimajeicéories consist of
either continuous movement, continuous movement with aatahe beginning or
the end, or continuous movement broken up by a wait in the lmidd more time
is allowed the optimal path transitions between those ttyes: at first there is no
time to wait anywhere, then there is time to wait but not edmotagcompensate for
the energy loss from having to re-accelerate, and thenyitiadre is enough time to
wait somewhere in the middle for long enough to recoup theaeadceleration cost
and possibly enough time to allow deviation from a shortas pSee Figure 3a for
examples of planned paths output by our algorithm.

4 Field Experiments

We performed three sets of experiments in the environmentisin Figure 1b: we

calibrated our power to drive parameters, we measured palal current along
paths and used this to construct solar maps using diffecaatrimance functions, and
we executed energy-minimal paths that were planned on thaps.

4.1 System Description

The chassis of our system was a Husky A100, built by Clearpatbotics. The
A100 is a six wheel, two motor, differential drive machindeTdatasheet mass is
35 kg, the maximum payload is 40 kg, and the dimensions agO0r&eters long by
0.605 meters wide by 0.350 meters tall. In its experimergafiguration the A100
was powered by a single lead-acid battery that was nomitaiand 21 amp hours.
See Figure 1a for a photo of the A100 during one of our expetisme

1 http://www.clearpathrobotics.com/
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The solar panels used by our system were two SPM020Ps fraant&ch Powe.
The SPMO020P supplies 20w at the optimal voltage of 17.2v ustindard test
conditions of 1000 w/rhinsolation and a temperature of%5 The panel is wired
as a single series string with 36 cells in it. The dimensiaes5®0x360x18(mm),
and each panel nominally weighs 2.5kg.

We placed the panels horizontally on the robot for ease ofrtiiog, for quality
in overcast conditions, and to eliminate the dimension oigbeotation in the solar
map built. Both panels were connected in parallel with thigelog; therefore solar
panel current was proportional to solar power. Batteryagsdtand motor current
measurements were provided by the A100, and current froahel to the battery
was measured with a hall-effect current sensor.

Localization of the robot was achieved by using an EKF to IG&S measure-
ments with wheel-encoder propagation.

4.2 Terrain Description

We performed our experiments in the field next to the McNanduwanni Center,
on the Minneapolis campus of the University of Minnesota (Begure 1b). The
field is roughly 40 meters by 30 meters and it is relatively, fiéth uniform short
grass. Other than a few poles the only objects that occlugestin are scattered
trees. While our calculated power to drive parameters aleat stap parameters are
likely to change in other environments, the methodology vesent here to obtain
those parameters remains the same.

We performed our experiments on dry days when there was neo snothe
ground. We would expect power to drive to significantly chamg wet weather
or if there is accumulated snow. All solar parameters exttepthosen covariance
function were re-learned for each new solar map; this wasssary to account for
short term changes from the varying position of the sun, oraderm changes from
varying weather, and long term changes. One of these longdkanges was a sea-
sonal change in solar power that occurred as the leavedfétieotrees as summer
turned to winter.

4.3 Power to Drive Experiments

We controlled the forward movement of the A100 by directlyting the motor
voltage. We found that this method required less energy tisarg a closed loop
PID speed controller. For a particular motor voltage and artiqular terrain, the
A100 travels at a particular steady-state speed and corssansteady amount of
energy per unit distance traveled, after a brief accelamgieriod. To characterize

2 http://www.solartechpower.com/
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(a) Clearpath Husky A100 (b) Test Site

Estimated Panel Current (amperes) Estimated Panel Current (amperes)

y (meters)
y (meters)

‘ 190 200 210 220 190 200 210 ze0 230
X (meters) ¥ (meters)

(c) Sunny Solar Map (d) Cloudy Solar Map

Fig. 1: Our configuration of the A100 (a), top-down view of tiest site (b), solar
map constructed for 13:42 on November 18, 2011 (c) (this wasnay day), and
solar map constructed for 11:22 on September 16, 2011 (&)wts a cloudy day).

Both solar maps are overlayed with their source paths. Thelgimap was built by
sampling with only a single solar panel.

the steady-state cost and acceleration cost we drove lstratiga variety of com-

manded motor voltages and fit a line to the plot of cumulato® @s. distance for
each voltage. The slope of the line determined the steatly stest and the inter-
cept determined the acceleration cost. Then we performediiregression on the
steady state costs as functions of speed and quadratissegr®n the acceleration

costs as functions of top speed, and ended up with the follpwquations for our
parameter€s andC, (see Figure 2):

Cs = (—17.6624x speed- 1394576) Joules per meter
Ca = (3210671+ speed — 2853912+ speed- 154.9553) Joules to accelerate
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Then to characterize turning cost we commanded a tightdeftand tight right
turn, and examined the steady state energy per radian.
C; = 4065963 Joules per radian

O measured steady cost per mete
O measured initial cost
) e} @0
fit steady cost per meter [e]
200 N
fit initial cost
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Fig. 2: Power To Drive Test Results

4.4 Solar Map Construction

The input for the solar map is a long path with noisy measurgsef solar cur-
rent taken at 20 Hz, each measurement associated with #gopasit the path. This
accumulates to a very large number of measurements if thet islembedded in
the environment for a long time. As GP regression relies ofrimaultiplication
of all training points, using all measurements as individgning points becomes
infeasible. Fortunately, since we only care about assagiaolar current tox—y
position we can discard information about rotation and tamd combine measure-
ments with similax — y position. In this way the number of measurements consid-
ered by the GP regression is bounded by the size of the emé@ntrather than the
length of time the robot is collecting data. Also it is vallefor optimizing the GP
hyperparameters for measured positions to be weightediginstiead of weighted
in proportion to the amount of time the robot has spent there.

In our implementation we placed in a bucket all measurentaatsvere within
0.3 meters of the first measurement and then removed themtfrerist, and re-
peated this process until every measurement was in a budkebucket’s position
was set as the centroid of the positions of the measurenreitisind its value was
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set as the mean of the values of the measurements in it. Welai@ld the variance
of each bucket from the variance of the measurements in tbleebutreating the
bucket solar current as an average of uncorrelated randdabies. Then for the
regression we treated the noise variance as equal to thegevef the variances of
the buckets. This was again to induce balanced weightingffefent areas; if the
robot had waited 20 minutes at the same position we did not thanbucket con-
taining that position to be significantly more valuable tim@arby buckets because
still only a small portion of the possible points that coutdigto that bucket would
have been explored. The prior mean and prior variance warguated from the
mean and variance of the set of buckets.

To perform GP regression we need a covariance function hiowe considered
different versions of the Matérn covariance function &let in [9]). The Matérn
class of covariance functions is given by:

Kr) — 21V [/ 2wr VK Vvr
O=rw |7 A

wherev is a positive parameter that affects the smoothness of theeps/ is the
positive length parameter, akg is a modified Bessel function. ¥fis 1/2 the func-
tion becomes the exponential covariance function, and-ase the function be-
comes the squared exponential covariance function. Otlaerthe exponential and
the squared exponential, the most commonly used Matémriamce functions are
wherev = 3/2 andv=>5/2, so those are the covariance functions we tested in addi-
tion to the exponential and squared exponential.

To optimize the Matérn function’s length hyperparameterperformed numer-
ical gradient-descent searches maximizing the likelihobthe observed values
given the covariance function. We compared the likelihaafdbe different Matérn
functions on various data sets we collected and we foundrthat/2 was the most
likely on two out of three of the cloudy days tested, and five afeleven of the
sunny days tested, with= 3/2 the most likely on the other days. However, even
on the days where it was the most likely, the solar maps oectsil usingr = 3/2
had overshooting at the sharp boundaries between sun add.sHas overshoot-
ing made it so that the positions with the most predictedrgotaver were close
to boundaries, and therefore planned energy-minimal patre pulled towards
boundaries. As a real system always has some localization erbetter strategy
is to stay away from shadows if possible. This is the behahiat results when we
usev = 1/2 in our regression, so that is what we did even though it wendéss
likely given the data and our GP assumption.

Holdingv = 1/2, the most likely length varied between 2.05 meters and512.6
meters on sunny days, and between 3.68 meters and 18.6&raeteloudy days.
This difference is because diffuse insolation dominatesr @lirect insolation on
cloudy days, and diffuse insolation varies slower thanadingth changing position.



Energy-Efficient Path Planning for Solar-Powered Mobilé&s 11

4.5 Path Planning and Execution

At 13:10 on February 18, 2012 we drove the A100 around the firekigure 1b,
optimized the length hyperparameter for that dataset wittx@onential covariance
function, used GP regression to build a solar map, plann#ds peith our planner
detailed in Section 3, and then executed the paths. The AA@@dme localization
error even when GPS worked well, so a fairly low spatial nesoh of 5m was used.
Temporal resolution was set to 8 seconds. To calculate thecterd solar currentin
a grid square the expected solar current was calculated aghartresolution 1m
grid and then downsampled. In addition to the planned solare paths the A100
also executed shortest paths after we removed the solalsgahghtly decreasing
the power to drive due to decreased weight) from the samtgtsition to the same
end position. These paths provide a comparison, allowirig dsectly demonstrate
the utility of the added panels. See Table 1 for summarielseoékecuted paths.

Solar Trial |Duration | Expected Solafl Actual Solar|Expected Cos{Actual Cost|Control Trial |Duration| Cost

A a01s | 7.0255] | 697413 | 577167 | 74463 F 255 [6.29547
B 400s | 6.6066J | 6.8286J | —3,2659J | —3.2567J

c 104s | 114833 | 611263 | 879997 | 2.25343 G 19.1s 12,8881 J
D T04s | 160097 | 129767 | 290737 | 3.4803J - 3045 353043

104 s 1,6009J 1,1562J 2,907.3J 2,82257]

Table 1: Path Execution Results

5 Power Comparison

To further investigate the benefits gained from solar pamedgan simulated com-
parisons between our solar powered robot using our pathptetiner and our robot
stripped of its panels driving straight towards the desitoma \We picked a start po-
sition and end position, planned the optimal solar-awath f@ a range of time
limits, and compared the cost to drive straight without agbavith the distribution
of likely solar robot costs. For these simulations we did cantsider localization
errors, so we increased the resolution of our planning grimeters per square, 3
seconds per square. We intentionally chose start and eiitibpssn the shade, to
see how the system would perform under somewhat adverséioosd

First we considered a robot traveling from the southwest @fathe trees to the
northeast part of the trees, at 13:10 on February 18 (the gayas our path exe-
cution trials). For details of this simulation see Figurasaéd 4b. The start position
was(188 —109) and the end position wd208 —89). At a speed of 1 m/s we expect
the baseline path to consume 3,065.0 Joules. For the sdiat tw be on average
more energy efficient than the baseline it requires at leasedonds to execute its
path. This is an overall speed 06034 m/s. For the solar robot to be more energy



12

Power (watts)

Power (watts)
N
&
3

500

450

400

350

w
S
3

200

B
a 9o a
S 38 S

%

BN @ ow A Aa
a o a 8 & 8 & 9o
S 8 5 8 5 8 5 8

=
1)
3

50

Patrick A. Plonski, Pratap Tokekar, Volkan Isler

Estimated Panel Current (amperes)

Trial B, C, G start

-80

T -80
[4F)
5
E
100

-110

Trial D, E, H start

0.5

\Tr_iaj 4. F start

190 Zoo

210
* (meters)

220

(a) Solar map at 13:10 on February 18, 2012, with plannedspathed and
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Fig. 3: Planned solar-aware paths and example trials. Natert trial D the planner
chose to wait at the beginning given the information it hatlibturned out the
position at the end of the path received more solar power.
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efficient with 95% confidence, it requires at least 57 secamuish is an overall
speed of 0.4962 m/s.

Second we considered a robot traveling south through traesbisthe west line
of trees, at 13:42 on November 28. For details of this sinmeatee Figures 4c and
4d. The start position wag 95 —80) and the end position wgd 95 —100). At a
speed of 1 m/s we expect the baseline path to consume 2,2 FnBthe solar robot
to be on average more efficient than the baseline it requiteast 63 seconds which
is an overall speed of 0.3175 m/s. For the solar robot to bemfficient with 95%
confidence it requires at least 78 seconds which is an owsgredid of 0.2667 m/s.
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Fig. 4: Simulations for 13:10 on 02-18-2012 (a and b) and 234 11-28-2011 (c
and d). When not much time is allowed the weight of the solaefmensures that
the cost of carrying them is greater than the benefit of saarep, however when
the robot is allowed to wait a while in the sun the benefit ofgdacan be large.
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6 Experimental Insights and Concluding Remarks

In our experiments, we observed that true solar energyatelieduring a trial was
close to the expected solar energy obtained from GP regreddowever, the pre-
dicted probability distributions did not necessarily mafde the true distributions.
This is because the probability distribution of sunlightgioint is poorly modeled
by a Gaussian distribution: on a sunny day the correct piitityabistribution of
expected solar power at any given point is bimodal, with ssegeaks of expected
power for the case where the panelis in the sun and the case igin the shade.
Since Gaussian models cannot capture this behavior welaytnot be best to op-
timize the covariance function hyperparameters for maxirfikelihood. This is an
issue we plan to investigate further.

On February 18 the system did not lose much accuracy by rnegjeo consider
the sun’s movement, though the solar map was constructeti3fé0 and the last
solar trial (trial E) began at 14:19. The impact of movingdihas may have been
mitigated by the fact that shadows were sparse due to banehwa on the trees.

Our power to drive model was reasonably accurate. It tendechtlerestimate
power to drive but not by much: on average it missed by 396ahith was on av-
erage 11.2% off from the true value. It underestimated fioue$ and overestimated
once. This indicates that our learned parameters wereatarel that the A100
waypoint havigation software was not performing too manyextive turns. To get
the waypoint navigation software to this state we disalldwacktracking and in-
stead counted the waypoint as reached whenever the plapengicular to the path
was crossed. This had the effect of slightly decreasing goéaliction accuracy, but
also significantly decreasing average power to drive foiah tr

Our path planner worked well at its resolution. If we move ighler resolution
there is a danger of the following: the path planner choasestit in a position that
has sun but due to localization error the A100 ends up waitirige shade, and an
expected good path becomes very bad. With our path planhérg tvas very high
cost to deviate from a straight path: the cost of fout #ns and at least 10 meters
increased distance. Therefore if there is not much time pienal path will choose
to wait at the sunniest spot on the shortest path insteadvidtiteg to a sunnier spot
that is slightly off the path. It might be feasible to use stimreg such as Field D*
[3] to plan smoother paths that vary only slightly from theghst path.

Our simulation results show that with our platform and in #m¥ironment we
tested, the addition of heavy commercial solar panels dsesecost on sunny days
in November and February only if the average speed is notinexjto be greater
than 0.6734 m/s for the trial in February or greater than 1631/s for the trial in
November. These were both sunny days, but they were patigwahallenging for
sunny days: it was the dark part of the year, and the trials bi@trted and ended in
the shade. We would therefore expect the addition of solaelgao be feasible in
many situations requiring higher average speeds.

In our future work, we will investigate the effect of the varg sun angle on
our solar maps, as well as methods to use the known sun angieptove our
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predictions. We also plan to further investigate methodspdimizing the hyperpa-
rameters, and methods to plan smoother paths on our solar map
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