Roadmap Based Pursuit-Evasion and Collision
Avoidance

Volkan lIsler, Dengfeng Sun and Shankar Sastry
CITRIS
University of California Berkeley, CA, 94720
Email: {isler,sundf,sastiy@eecs.berkeley.edu

Abstract— We study pursuit-evasion games for mobile robots collision, each robot can execute an evasion strategyreai
and their applications to collision avoidance. In the first part as the solution of a pursuit-evasion game where the othet rob
of the paper, under the assumption that the pursuer and the 05 a5 g pursuer trying to collide. Such a solution would

evader (possibly subject to physical constraints) share the sam . - -
roadmap to plan their strategies, we present sound and complete guarantee that each robot will avoid collision regardiefsthe

strategies for three different games. In the second part, we ilize actions of the other robot. In Section Ill, we present solui
the pursuit-evasion results to post-process the workspace afat to pursuit-evasion games on roadmaps. Our model studies

configuration space and obtain a collision probability map of jnteractions between a pursuer and an evader who use the
the environment. Next, we present a probabilistic method 10 g5me roadmap to plan their trajectories. Under this assampt
utilize this map and plan trajectories which minimize the collision ; . .
probability for independent robots. we present algorithms based on the dynamlg programming
principle to generatsound and completstrategies for both
I. INTRODUCTION players.

Motion planning is one of the fundamental problems in The pursuit-evasion models we study in the first part assume
robotics. Broadly speaking, it is the problem of selecting that the players havglobally conflicting objectivesin this
set of actions or controls which, upon execution, would takwvodel, the pursuer is truly adversarial and its objectivéois
the robot from a given initial state to a given final state. collide with the evader. In most motion-planning settirgsch

Motion planning is a challenging problem whose complexa model can be too strict for modeling collision-avoidance.
ity stems primarily from two sources: environment compexi Typically, robots plan their trajectories independentiow-
and system complexity. The former refers to the complexiver, when they get close to each other, they may switch to a
of planning trajectories for perhaps simple robots but ifeactive collision-avoidance mode and become unpredétab
complex environments. For example, finding shortest patAs this point, it is desirable to have the worst-case gu@est
in 3D is an NP-hard problem [1]. By system complexitygiven by the game theoretic formulation. In the second plart o
we refer to the complexity of planning trajectories for comthe paper (Section IV) we propose a model for such scenarios.
plex, high degree-of-freedom systems even in the absencdrofthis formulation, independent (neither collaboratingr n
obstacles. Traditionally, the former complexity is addexs conflicting) agents operate in the workspace while avoiding
by algorithmic/combinatorial techniques and data stmastu collisions locally. We utilize the results of the first pad t
(e.g. Dijkstra’s algorithm on visibility graphs) wheredset definelocal pursuit-evasion gameshere the players react to
latter type of complexity is addressed using control-teéor each other only when they are within a given interaction zone
techniques. Under this model we show how

Developing techniques that address both types of complex- the workspace and/or configuration space can be post-
ity has been the focus of significant recent research (see [2] processed to obtain a collision probability map of the
[3] for an overview). Notable success has been achieved by environment,
sampling-based roadmap methods [4], [5] which we review in. the players can compute worst-case collision avoidance
Section 1. strategies after they are enter the interaction zone, and

In this paper, we present algorithms which solve two dy- « compute optimal trajectories that minimize the expected
namic motion planning problems that take place on roadmaps: probability of a collision.
pursuit-evasion and collision avoidance. We start with an overview of related literature.

In the first part of the paper, we study pursuit-evasion games
that take place on roadmaps. In a pursuit-evasion gameAaRelated work
pursuer tries to capture an evader while the evader is ttging Due to their many applications, literature on pursuit-evas
avoid capture. In robotics, solutions to pursuit-evasiamgs games is vast. To model the adversarial nature of the game,
are used to obtain worst-case guarantees to collisiordakoe pursuit-evasion games are usually studied in a game theoret
problems and, in general, to motion planning in dynamic-enyramework [6], [7]. The conditions under which the pursuer
ronments. For example, suppose two robots are indepegdentin capture the evader are obtained by studying a Hamilton-
operating in the same workspace. When there is a dangerJatobi-lsaacs equation which brings together the systemeq

tions of the pursuer and the evader. This approach has #w anyvi,vj €V, the edge(v;,vj) € E if and only if there
advantage of yielding a closed-form solution of the gamexists a simple controllesn € U such thatc(vi) — c(vj). The
Unfortunately, as the environments get complicated, aglvifunction u: E — U returns the controller associated with an
Hamilton-Jacobi-Isaacs equations become intractable. edge?. For a given vertew, N(v) = {V : (v,V') € E} denotes
Recently, there has been increasing interest in developitig neighborhood of.
pursuit strategies (which incorporate sensing limitatjoto For we are interested in pairwise interactions between the
capture intelligent evaders contaminating a complex envir robots, we define thetatic interaction spacds = {(v;,V;) :
ment [8], [9], [10]. Vvi,vj € V}. Similarly, the dynamic interaction spacdy =
In robotics, complex environments are modeled eithg(e,ej): &, ej € E}. For pursuit-evasion games, we assume the
topologically (usually with a graph-based representatioavailability of a capture functiorgapture: Iy — {true, false}
or geometrically (usually a polygonal/polyhedral repréae which, given (e, €)) € lg with & = (vi,V{) and & = (v}, V)),
tion). Classical work on pursuit-evasion games on grapbapturg(e,ej)) returns true if and only if capture occurs
includes [11], [12], [13], [14]. See [15], [16] for recentsidts. while the first robot is executing; —) Vi and the second
Pursuit-evasion games in polygonal environments are aédlo wobot is executingvj —ye;) vj. Again, the simplicity of the
studied. See [17], [18], [19] and recently [20], [21], [22]. controllers become a crucial factor in computing the captur
As mentioned earlier, solving pursuit-evasion games bgmction. In addition, note that for simplicity of notatiome
tween robots subject to physical constraints (such asngrniassume that the robots use the same roadmap for planning
radius) which takes place in a complex environment is vetieir trajectorie$
challenging. Note that such problems inherit all difficestiof We demonstrate these concepts with the well-known Dubins
traditional motion-planning. To tackle these two diffiéett, car, which will be used as an ongoing example for the pursuit-
our approach in this paper is to reduce a game between te@sion results.
robots subject to physical constraints to a pursuit-evegame
that takes place on a graph, a.k.a. the roadmap. We defer #heDubins Vehicle

details to Section II. _ ' We model each agent as a Dubins car by assuming that an
planning and collision avoidance. For basic results in iplalt steering angle iSpnax, Which results in a minimum turning

robot planning see [23]. For recent work in collision aveida (adius p,in. As the agent travels, its movement is governed
and multi-robot planning see [24], [25], [26], [27]. Recenpy the following dynamics:

research on extending the probabilistic roadmap framewmrk

multi-robot and dynamically changing environments can be X(t) = uscosd(t)
found in [28], [29], [30], [31]. y(t) = ussinB(t) Q)
[1. NOTATION AND PRELIMINARIES 8(t) =u

In this section, we present the main concepts and thgere (x(t),y(t)) € R? is the position of the agent at time
notation used throughout the paper. Iiebe the configuration t and 6(t) is the orientationu is chosen from the interval
space of a robot. We assume that we are given a discrefe= [— tan@max, tan@max -
set of pointsC that represent the configuration space. Such alet us define three motion primitives such that in each
set can be obtained, for example, by randomly sampling thestion primitive a constant steeringis applied:
configuration space as in the case of probabilistic roadroaps
by putting a grid on the configuration space which is prattica Sym.bol S L R
for low dimensional configuration spaces. When the robot is Steeringu | 0 | —Umax | Umax
in a configurationc € C, we use the notatiod/(c) to denote S primitive means that an agent moves straight ahead, while
the subset of the workspace occupied by the robot. L and R primitives mean that an agent turns as sharply as

We are also givert/ = {uy,...,ux }, a set of deterministic, possible to the left and right, respectively. The primiti@e
‘simple’ controllers for the robot. Given two arbitrary daqu- refers to eithelL or R.
rationsc;, cj € C, the notatiorc; —y ¢j is interpreted asvhen Dubins showed in [32] that given any two configuratians
in configuration ¢, if the robot executes controller & U, it andc,, the shortest path can be expressed as a combination
reaches configuration;dn a single time unitThe significance of no more than three of these motion primitives. Dubins
of the simplicity of the controllers it lies in easy verification also showed that only six “words” (combinations of the three

of ¢ —y ¢; for arbitrary configurations. motion primitives) are possible:
The main data structure that will be utilized throughout the
paper is the notion of imed roadmapA timed roadmap is {LRLRLRLSL RSLLSRRSR. 2)

a graphG = (V,E). The vertex seV is given by the discrete
sarr.!pllr!g of the configuration spacé = C'. Let C V= b.e élmbiguities are resolved arbitrarily.
a _b”eCtlon such tha‘t(v) returns the_ conflgL_Jratlon associated 2t there are two different roadmaps, we simply define the it#oa space
with the vertexv. The edge seE is obtained as follows: as the product of these two graphs.

1We assume that there is a unique controller associated withedge and

For the Dubin’'s car, we start with a discretization oSimilarly for anR primitive, we have
the configuration spac®/ x SQ(1) where W denotes the o
workspace. We restrict oursgve)s to three types of basic x(t)_xc+pc95(—uma><t+eo) (4)
controllers corresponding to each motion primitive: “tueft Y(t) = Yo + PSIN(—Umast +6o)
a degrees for 1 time-unit”, “turn rightt degrees for 1 time In the following, we usel primitive as a representative for
unit” and “move straight” for 1 time unit. We connect twoC type primitives. A similar result can be derived f&
configurationsc,c; if there c; is reachable fronc; by the primitives.
execution of a simple controller.

Figure 1 shows a simple workspace and the shortest trajec-
tory of an agent moving from configuration = (2,2,] to
c2 = (14,8, 7]. In this scenario, the orientation anglesdrare
coarsely discretized by/2.

Fig. 3. S primitive

An S primitive is shown in Figure 3, which starts e =
° (X0,Y0,60) and ends at; = (x1,Y1,60). The coordinates
are (again, we assunig=0,t; =Tg)
X(t) = ust cosB

4 E— (1) =0+ Ut cos (5)

y(t) = Yo + Ust SinBp
Suppose the positions & and s, are (x(t),ya(t)) and
’ S (X2(t),y2(t)) at timet. The distance betwees; ands; is

0 2 4 6 [10 12 14 16

— _ 2 _ 2
Fig. 1. An agent moves frons; to c;. Diamonds mark the intermediate d(t) - \/[Xl(t) Xz(t)} + [yl(t) yz(t)] : (6)
fi ti th t n Obstacl ist in th ked
g?;cng.ura fons the agent passes @ Obstacles exist In the areas mar ewherexi(t),yi (t), i=1,2, are defined in Equations (3, 4, 5).

Clearly d(t) is a continuous function of0, Tg]. To detect if

Collision detection:We define asafety distancesrsuch that collision exists, it is enough to check if
whenever the distance between agestands; is less than
rs, collision occurs. Notice that in practieg is time varying
depending on both positions and orientations of the agents.
In this paper we assume that the agents are in the form I SOLUTIONS TO TYPICAL PURSUIFEVASION PROBLEMS
discs and assume that the radius of an agentlis this case, USING THE TIMED-ROADMAP
re=2r. In this section, we show how typical pursuit-evasion prob-

Since every trajectory of an agent is a combination of tHems can be solved when the motion-plans of the players are
motion primitives, for collision detection between agerits restricted to the timed-roadmap.
is enough to check whether there is collision between anyWe use the following formulation for all the games we
C—C, C—SandS- Sprimitives along the two trajectories ofconsider. The games take place between a purguemd
the agents. evaderE. We assume that the players are identical and they
plan their trajectories using the same timed-roadmap (Blenc
they use the same controller sé€f). In this section, we
consider games with full state information where the player
can observe each other’s configuration throughout the game.
We begin with the following basic version:

GAME 1. Given initial configurationspy and ey, can P
eventually collide withE?

min d(t) <rs. 7
te[OI,Ts] (t)y<rs (7)

Fig. 2. L primitive The algorithm in Table | allows us to preprocess the
static interaction space and answer this query for allahiti
conditions.

Consider the curve of ah primitive centered atxc,Yc)
in Figure 2. The curveLy starts from configuratiorcy =
(Xo,yo,§+90) at time tg and ends at configuration; =
(X1,y1,5 + 60 + @) at time t;. Without loss of generality,
assumety = 0, t; = Ts. The coordinategx(t),y(t)) at time
t € [0, Ts] can be derived as:

After the execution of the algorithm, the variable
(p,e).timestamps set to the number of time-steps to a colli-
sion after the pursuer and the evader reach the configusation
p and e respectively. The following two lemmas show that
Algorithm Collision-Detection can used to solve GAME 1
in a sound and complete fashion. We assume, without loss
X(t) = Xc + pcogUmat + Bo) 3) of generality, that the evader wants to maximize the time to
Y(t) = Ye + pSiN(Umaxt + 6o) collision and the pursuer wants to minimize it.

t¢eeee-

I I
I

#? YV YYYY Ow

=% vV Y PP Y VY

Fig. 4. An instance of GAME 1Left: When the initial configuration of the pursuer is given by theegr arrow, it can cause a collision with all the red
evader configurations. The evader configurations marked yhélé collisions with the wallsRight: A sample collision (green: evader, red: pursuer).

[Algorithm Collision-Detection |

For each pair(p,e) € Is
(p,€).timestamp—

pursuer can cause a collision for &le N(e). For all other
configuration pairgp,e), there must be a next configuration

For t = 1to |lg, _ _ € for which the timestamp rule applies. Hence, the evader can
For each pair(p.€) € Is with (p,e).timestamp= move there and postpone collision to the next time step.
If V¢ € N(e),3p’ € N(p) with N id s f tradicti
timestamp rule : oW consi er_(pp,go). uppose, for contradiction,
(0, €).timestamp< t or (po, en).timestampis infinite but the evader can not avoid
collision rule : collision. This means that the current configuration pair
capture(p,p'), (e €)) (ti b i
then i, &).timestamp must become one at some time
(p,e).timestamp—t However, since(po,€p).timestampis infinite, there must
TABLE | be a configuratione € N(e) such that for every possible
SOLUTION OF GAME 1 P’ € N(po), the transitione — €, p — p’ is collision free

and the resulting pair(p,€¢) has timestamp infinite —
otherwise the timestamp dfpo, &) would be updated. This
argument shows that the evader can guarantee that at all
Lemma 1:Let pp and ey be the initial configurations of times (p,&).timestampremains infinite. This contradicts
the players. If at the end of Algorithm Collision-Detectiorwith an eventual collision because the timestamp would meve
(Po,&0).timestampis finite, then for every evader trajectorybecome 1. i
there exists a pursuer trajectory that results in a cotlisio Game 1 is illustrated in Figure 4.

Proof: By induction on the timestamp @po, &). For the Ne.xt, we present a variant Qf GAME _1, where the evad_er’s
basis, consider initial configurations wito, &) timestamp= goal is to arrive at a configuratia® and simultaneously avoid
1. When (po,&).timestampis updated, only the collision & collision. _ o _ _
rule is applicable. Therefore, for every possible actiothef ~ GAME 2 Given initial configurationspy and €y, and a
evader, the pursuer can cause a collision. For the inductfgStinationer for Z, can collide with Z before it arrives at
step, assume all initial conditions with timestamp lessitka er?

Igad to collision. Suppos@y, &).timestamp=k. Then, by the Algorithm Navigation |
timestamp rule, no matter where the evader moves, the pursue———- SAND.6 C &
can either reach a state whose time-stamp is less Kremd (p,€) timestamp— oo
cause a collision from then on (by the inductive hypothesis) | For each pair(p.€) € I with e € N(€)
or directly cause a collision during the transition. [| 'f(zpe)etiw](epgtgﬁ]‘z;“rg(p’p)’(e’ef)) = falsethen

Lemma 2:Let pp and ey be the initial configurations of | Fort=1to |i,
the players. If at the end of Algorithm Collision-Detection For each pair(p,€) € Is with (p,e).timestamp= oo

. L . If 3¢ € N(e) such thatvp’ € N(p), (p/,€).timestamp<t then

(Po, &0) timestamps infinite, then for every pursuer trajectory, (p,€) timestamp— t
there exists an evader trajectory that avoids a collision.

Proof:: Let p and e be the current configurations of
the pursuer and the evader respectively. We observe that
the evader can always postpone collision until the players
reach configurationps and e; with (ps,er).timestamp= 1. The following lemmas are analogous to Lemmata 1 and
This is because, these are the only configurations where thand show the correctness of the algorithm. The proofs are

TABLE Il
SOLUTION OF GAME 2

similar and hence omitted. IV. A PROBABILISTIC APPROACH FOR COLLISION

Lemma 3:Let pp and g be the initial configurations AVOIDANCE
of the players. If at the end of Algorithm Navigation,

(Po, &) timestamps k < eo, then the evader can reaehin k In the previous section we modeled the collision-avoidance
) * 1

: L - problem as a pursuit-evasion game where one of the robots
steps while avoiding a collision. . L . .
_ L)) tries to cause collision whereas the other tries to pretehhe
Lemma 4:Let po and & be the initial configurations o\ antage of this formulation is that it requires no cocation
of the players. If at the end of Algorithm Navigationyeyeen the robots and if a solution exists, we obtain a worst
(po, €0) .timestamps infinite, then the pursuer can collide Withegqe guarantee for avoiding collisions.

the evader before it reaches. _ ~ However, for most applications such an adversarial formu-
Finally, we present the solution of a dog-fight game. Firgtion may be too strict. On the other hand of the spectrum,
we define the capture conditiocapture(p, '), (e,€)) is true e can have truly cooperative robots, which broadcast their
if and only if: destinations to a central location where a multi-robotisialh-
(i) during the transition fronp to p/, the angle between thefree plan is computed. Even though this approach has the
heading of the pursuer and the ray from the pursuer to thelvantage of producing optimal, cooperative motion pléns,

evader becomes less than a threshold has two main drawbacks. First, it is centralized and reguire
(ii) the distance between the players is less than a thréshtiiat the destinations of all robots are known apriori whiciym
(iii) there are no obstacles between the players not be feasible for some applications. Second, computation
We are now ready to define the dog-fight game: of multi-robot motion plans is provably computationallyrtia

(c.f. [23] for detalils).
capture? before® capturest? In this section, we propose an intermediate solution. We
) start with the case of two robots, operating independently i

Note that during a dog-fight, the roles of the pursuer and t same workspace. Given the configuration spacave
evader are not uniquely defined. The players must both avg_%process it by running the Collision-Detection Algorith

GAME 3: Given initial configurationgpp and ey, can‘E

a capture and capture simultaneously. However, Algorith en in Table I. Recall that the output of the algorithm is a

Collision-Detection can be_ modifigd to solve .C_;AME 3 a mestamp for each pair of configurations which is equal to
follows. We run the algorithm with the modified capturey o maximum length of the path leading to a collision.

function. Next, for each configuratiom € C, we definea reaction

zone R (c) with the interpretation that a robot in configuration
c reacts to another robot in configuratichonly if ¢’ € R(c).

[Algorithm DogFight |

F‘E[,ﬁiﬁf&‘;@{ﬁﬁﬁff Typically R (c) is given by configurations that are visible from
For t=1to |ls, ' _ ¢ whose distances are within a certain threshold.
For 5;?,5&'5(5’;) eer\f?[;’)v'witﬁp"e)'“mesmmp: ® We say a configuration’ € R(c) is adangerous configura-
timestamp rule : tion for c if (¢/,c).timestampis finite. This is analogous to a
(p',€) timestamp< (¢, p').timestam por pursuit-evasion game that starts only if the pursuer ertkers
C%'g;'t‘;r;qrt‘ée&) @e)) reaction zone of the evader. As the robots have no informatio
then R about their trajectories, configurations which may lead to a
(P, €).timestamp—t possible collision are marked as dangerous. For illustnati
TABLE IlI purposes, in Figure 6 we present a 2D configuration space
SOLUTION OF GAME 3 where two configurations, their reaction zones and correaspo

ing dangerous states are marked.

A. Configuration space post-processing for collision avoid

Lemma 5:Let pg andey be the initial configurations of ance

and E respectively.
@i If at the end of Algorithm Collision-Detection The notion of a dangerous configuration allows us to
(po,&p)-timestamp< (ep, po).timestampthen? wins the dog- post-process the configuration space to obtain a collision-

fight game. probability map. Letp: C — [0,1] be our prior belief that
(ii) If, (po,en).timestamp> (ey, po).timestampthenZ wins the pursuer is present at a given configuration. If we have no
the dog-fight game. information, p will be uniform. When our robot (evader) visits

The proof of Lemma 5 is similar to the proof of Lemma 1@ configurationc, we define the probability of collision at

Note that, it is possible to havépo,ep).timestamp=
(eo, po).timestamp < o and both players win the p(c)
game simultaneously as well ag$po,ep).timestamp= {¢':¢is dangerous fork
(ep, po) timestamp= c with no winner. These cases are Plc] = 8

> p(@)

illustrated in Figure 5. {c:cdeR (c)}

Fig. 5. An instance of GAME 3Left: For the green pursuer initial configuration: If the evadartstwith initial configurations in red, it will lose the ddight

game; in this casgp,e).timestamp< (e, p).timestamp. If the evader starts with initial configurations in yellobagth players win the game simultaneously;
in this case(p, e).timestamp= (e, p).timestamp< c. If the evader starts with initial configurations in bluewitll lose the game due to a collision with a
wall. For all other evader initial configurations, both pay chase each other forever and can not win the g&ight: A sample collision (green: evader,

red: pursuer).

60| 4 eof

L L L L L L L L L A A
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Fig. 6. Reaction zones (yellow) and dangerous configurat{oed) for two configurations.

10 .
14
16
18
25 30 35

5 10 15 20

Workspace Collision Probability

40 45 50

Fig. 7. A sample workspace and collision probabilities. Btég colors indicate higher collision probability.

The collision map for a 2D configuration space is presentédpolicy 1t is a function that takes a state-action pgsra)

in Figure 7. and returns a real number in [0,1], indicating the probapbili
B. Traiectorv plannin of taking actiona when in states. An optimal policy is a
' ! yp 9 policy which maximizes expected return at each state. Given

Once we obtain the collision probabilities, we can obtaif finite MDP it is possible to find an optimal policy using
optimal collision avoiding paths using a Markov Decisiolgynamic programming or its variants such as Policy Iteratio
Process (MDP) formulation. A finite state Markov Decision\ comprehensive introduction to MDPs can be found in [33],
Process is given by a finite set of stat€s a finite set [34).
of actionsA, transition probabilitiesP(r|s,a) of arriving at
stater when actiona is taken from states, and rewards To compute trajectories from all initial configurations to a
R(r|s,a) from arriving at stater from states via actiona. given final configuratiorcs € C, we build an MDP as follows:

The state space of the MDP is given B~ CU{COL} In the first part of the paper, by using time aware controllers
whereCOL is a special state to denote collision. The set @b build the roadmaps, we show how to obtain solutions to
actions is equal to the set of contréls= U. For eaclc, ¢’ e C various pursuit-evasion games. The algorithms are based on
with ¢ —, ¢/, we have the dynamic programming (DP) principle and inherit both

advantages and disadvantages of DP based approaches. The
P(cleu) = 1-2[c] primary advantage is in the soundness and completeness of
P(COLc,u) = 2[c] the algorithms. However, their running times increase wWith
dimension of the configuration space; making them practical

and the corresponding rewards: . : ! :
for only low-dimensional configuration spaces. In our fetur

R(dlc,u) = -1 work, we plan to investigate this issue further.
RCOUc,u) = —o In the second part of the paper, we presented a probabilistic
framework for collision avoidance. We study a scenario wher
We add the special cases the robots react to each other only when they enter a certain

reaction-zone. We assume that the robots are independent,
P(erler,u) = 1 however once they are within the reaction zone, they become

P(COLUCOLu) = 1 unpredictable. To capture this unpredictability, we matiem

as adversarial pursuers and utilize the results from thé firs

for all u with . e .
part to obtain worst-case guarantees for collision avaidan
R(cflcs,u) = 0 This formulation allows us to process the workspace and
R(COLCOLU) = - build a collision-probability map. Afterwards, optimal ko

sion avoiding trajectories are computed using standard MDP
All other rewards and probabilities are zero. Once we buillgorithms. Preliminary simulations demonstrate theitutil
the MDP, we compute the optimal policy. In Figure 8, thef our approach. In our future work, we plan to investigate
optimal collision avoiding policy for an arbitrary final $¢ais the effect of the diameter of the collision reaction zone and
displayed in contrast to the shortest-path policy. implement the algorithm on real robots to further study rthei
) i feasibility.
C. Multi-robot settings
To explore the utility of the collision probabilities we
performed a simulation where our robot tries to reach aThis work has been supported in part by NSF grants IIS-
final configuration amidsk = {1,...,10} robots performing 0438125 and EIA-0122599. We gratefully acknowledge the
a random walk. For eack, we performed 1000 experimentsindustrial support through CITRIS organization.
and compared the success rate of the MDP optimal policy

.) . ; REFERENCES
with the shortest path policy. The results are summarized in)))
[1] J. Canny and J. Reif, “New lower bound techniques for tomotion

ACKNOWLEDGEMENTS

Figure 9. planning problems,” il28th Annual IEEE Symposium on Foundations
of Computer Scien¢el987, pp. 49-60.
Stecess Rates [2] S. M. LaValle, Planning Algorithms [Online], 2004, available at
http://msl.cs.uiuc.edu/planning/.
[3] H. Choset and et. alRrinciples of Robot Motion: Theory, Algorithms,
and Implementation MIT Press, 2004.
[4] L. E. Kavraki, J.-C. Latombe, and R. Motwani, “Randomizedery
processing in robot path planningJournal of Computer and System
Sciencesvol. 57, no. 1, pp. 50-60, August 1998.
[5] S. M. LaValle, M. S. Branicky, and S. R. Lindemann, “On the- r
lationship between classical grid search and probalgilisiedmaps,”
International Journal of Robotics Resear@003.
[6] R. IsaacspDifferential Games Dover, 1965.
[7] T. Basar and G. J. OlsdeBynamic Noncooperative Game Theory
SIAM, 1998.
[8] J. Hespanha, H. J. Kim, and S. Sastry, “Multiple-agentbptalistic
pursuit-evasion games,” im Proc. of the 38th Conf. on Decision and
Fig. 9. Success rates in the presenck (iforizontal axis) robots performing Contr, 1999, pp. 2432-2437.) _—
a random walk for the shortest path and optimal MDP policies. [9] R.Vidal, O. Shakernia, J. Kim, D. Shim, and S. Sastry, “ftobstic

pursuit-evasion games: Theory, implementation and experahenal-
uation,” IEEE Transactions on Robotics and Automatienl. 18, pp.
662-669, 2002.
V. CONCLUSION [10] J. P. Hespanha, G. J. Pappas, and M. Prandini, “Greedyratcfor
hybrid pursuit-evasion games,” IPrroceedings of the European Control
In the recent years, roaqmap bas_ed .methOds have. been ConferencePorto, Portugal, September 2001, pp. 2621-2626.
extremely successful for motion-planning in complex camfig [11] R. Nowakawski and P. Winkler, “Vertex-to-vertex puitsin a graph,’

ration spaces. In this paper, we address two importantiasbot__ Discrete Math vol. 43, pp. 235-239, 1983. o
| . . llisi . 12] T. D. Parsons, “Pursuit evasion in a graph,”Tiheory and Application
problems, pursuit-evasion and collision avoidance, aedet of Graphs Y. Alavi and D. R. Lick, Eds. Springer Verlag, 1976, pp.

solutions based on roadmaps. 426-441.

Shortest Path Policy Collision Avoidance Policy

SONNNNNNNNNNNNNE N |
NOUONNNONNONNNNNNN i N Y '
NONNNNNNNNNNNNG ndnd |
|
'

|
'
|
|
|
|
'
|
'
|
|
'
|
|
|
|

SNNNA T
MNNNT N

)
)
)
)
)
)
)
)
)
b
)
)
)
)
)
)
N

5 10 15 20 25 30 35 40 45 50

Fig. 8. \Vector fields for reaching a final configuration in tloevér right. Left figure is the vector field for generating dket paths and the right figure is
the optimal policy corresponding to the MDP.

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, andHC. [32] L. Dubins, “On curves of minimum length with a constraimt average

Papadimitriou, “The complexity of searching a graph,’ACM 1988. curvature, and with prescribed initial and terminal posiicand tan-

M. Aigner and M. Fromme, “A game of cops and robbejscrete gents.” American Journal of Mathematicsol. 79, pp. 497-516, 1957.
Applied Math vol. 8, pp. 1-12, 1984. [33] R. S. Sutton and A. G. Bart®einforcement Learning:An Introduction
M. Adler, H. Racke, N. Sivadasan, C. Sohler, and BbcKing, The MIT Press, 1998.

“Randomized pursuit-evasion in graphsProceedings of the [34] D. P. BertsekasDynamic Programming and Optimal Control: 2nd
International Colloquium on Automata, Languages and Papgming Edition. Athena Scientific, 2000.

(ICALP), 2002. [Online]. Available: citeseer.nj.nec.com/51010&l

V. Isler, S. Kannan, and S. Khanna, “Randomized purswgision with
limited visibility,” in Proc. of ACM-SIAM Symposium on Discrete
Algorithms (SODA)2004.

I. Suzuki and M. Yamashita, “Searching for a mobile ingudn a
polygonal region,”SIAM Journal on Computingvol. 21, no. 5, pp.
863-888, 1992.

S.-M. Park, J.-H. Lee, and K.-Y. Chwa, “Visibility-bed pursuit-
evasion in a polygonal region by a searchdPfoceedings of the
International Colloquium on Automata, Languages and Paogming
(ICALP), vol. 2076, pp. 456-468, 2001. [Online]. Available:
citeseer.nj.nec.com/parkO1visibilitybased.html

L. J. Guibas, J.-C. Latombe, S. M. LaValle, D. Lin,
and R. Motwani, “A visibility-based pursuit-evasion prebi,”
International Journal of Computational Geometry and Apations
vol. 9, no. 4/5 pp. 471-, 1999. [Online]. Available:
citeseer.nj.nec.com/guibas96visibilitybased.html

J. Sgall, “Solution of David Gale’s lion and man problenTheoret.
Comput. Scj.vol. 259, no. 1-2, pp. 663-670, 2001.

V. Isler, S. Kannan, and S. Khanna, “Locating and captuan evader
in a polygonal environment,” ifProc. of 6th Workshop on Algorithmic
Problems in Robotics (WAFR’042004, pp. 351-367.

B. Gerkey, S. Thrun, and G. Gordon, “Clear the buildiRgrsuit-evasion
with teams of robots,” ifProceedings of the AAAI National Conference
on Atrtificial Intelligence San Jose, CA: AAAI, 2004.

J. Latombe,Robot Motion Planning Kluwer Academic Publishers,
1991.

D. Fox, W. Burgard, and S. Thrun, “The dynamic window aymh
to collision avoidance,IEEE Robotics and Automatipwol. 4, no. 1,
1997.

S. M. LaValle and S. A. Hutchinson, “Optimal motion plangi for
multiple robots having independent goal$ZEE Trans. on Robotics
and Automationvol. 14, no. 6, pp. 912-925, Dec. 1998.

J. M. Phillips, L. E. Kavraki, and N. Bedrossian, “Sperat rendezvous
and docking with real-time, randomized optimization,” MAA Guid-
ance, Navigation, and ControR003.

C. Clark, S. Rock, and J. Latombe, “Dynamic networks for iomot
planning in multi-robot space systems,” limternational Symposium on
Artificial Intelligence, Robotics and Automation in Spa2e03.

R. Bohlin and L. Kavraki, “Path planning using lazy prnij’ Interna-
tional Conference on Robotics and Automati@f0o.

F. Schwarzer, M. Saha, and J.-C. Latombe, “Exact coliisthecking
ofrobot paths,” inWorkshop on Algorithmic Foundations of Robotics
(WAFR 2002.

C. M. Clark, T. Bretl, and S. M. Rock, “Applying kinodynac ran-
domized motion planning with a dynamic priority system to mrdtbot
space systems,” ifEEE Aerospace Conferenc2002.

L. Jaillet and T. Simeon, “A prm-based motion planner fonamically
changing environments,” iItEEE/RSJ International Conference on In-
telligent Robots and Systen2004.

