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Abstract

We address the problem of selecting sensors so as to minimize the error in estimating the position of a target. We consider
a generic sensor model where the measurements can be interpreted as polygonal, convex subsets of the plane. In our model,
the measurements are merged by intersecting corresponding subsets and the measurement uncertainty corresponds to the area of
the intersection. This model applies to a large class of sensors including cameras. We present an approximation algorithm which
guarantees that the resulting error in estimation is within factor 2 of the least possible error. In establishing this result, we formally
prove that a constant number of sensors suffice for a good estimate – an observation made by many researchers. We demonstrate
the utility of this result in an experiment where 19 cameras are used to estimate the position of a target on a known plane. In the
second part of the paper, we study relaxations of the problem formulation. We consider (i) a scenario where we are given a set
of possible locations of the target (instead of a single estimate); and (ii) relaxations of the sensing model.

Note to Practitioners

This paper addresses a problem which arises in applications where many sensors are used to estimate the position of a target. For most

sensing models, the estimates get better as the number of sensors increases. On the other hand, energy and communication constraints

may render it impossible to use the measurements from all sensors. In this case, we face the sensor selection problem: how to select a

“good” subset of sensors so as to obtain “good” estimates. We show that under a fairly restricted sensing model, a constant number of

sensors are always competitive with respect to all sensors and present an algorithm for selecting such sensors. In obtaining this result, we

assume that the sensor locations are known. In future research, we will investigate methods that are robust with respect to errors in sensor

localization/calibration.
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The Sensor Selection Problem for Bounded

Uncertainty Sensing Models

I. INTRODUCTION

This paper addresses the problem of estimating the posi-

tion of a target using measurements from multiple sensors.

This problem, which we broadly refer to as the localiza-

tion problem, is a fundamental problem in distributed and

mobile sensing research. In robotics and automation, it is a

prerequisite for many applications such as navigation, mapping

and surveillance. In sensor network deployment, when a new

sensor is added to the network, it must localize itself with

respect to already deployed nodes. The problem also arises

when tracking a moving target with a sensor network, where

the network obtains measurements in order to estimate the

target’s location.

The localization problem can be formulated as follows: Let

x(t) be the state (typically position) of the target at time t.
Suppose we have a motion model, x(t+1) = F (x(t)) for the

target’s state in the next time step1. In practice, x(t + 1) is

only an approximation to the true state at t + 1. However, if

we have sensors which can estimate the target’s state, we can

improve our estimation by incorporating measurements from

these sensors and obtain a better localization for x(t + 1).
The state of the art in localization is the probabilistic

approach where the state x(t) is represented by a probability

distribution p(x, t). The localization problem is solved using

Bayesian filtering techniques where p(x, t + 1) is estimated

using the motion model and a sensing model. Usually the

sensing model is also given by a probability distribution p(z|x)
for the probability of obtaining the measurement value z given

the state x of the target. This approach turned out to be

very effective in solving the localization problem and has

found widespread applications in robotics [2]–[5] and sensor

networks [6]–[9].

The quality of localization improves with an increasing

number of measurements from different sensors. Therefore,

from a localization perspective, it is desirable to have many

sensors involved in localization. On the other hand, sensor-

networks have energy limitations. Taking measurements from

many sensors and transmitting these measurements reduce the

lifetime of the network. Even for sensing systems with no

energy constraints, the network bandwidth may force us to use

a limited number of measurements. In an application where

many devices use the same sensor-network for localization,

addressing the tradeoff between localization quality and the

number of measurements becomes very important. Conse-

quently, many researchers in the sensor-network community

focused on this issue.

The reader is referred to [5] for information theoretic

principles in sensor management. In [7], an information driven

1For notation simplicity, let us assume that time is discrete.

sensor query approach was proposed. In this approach, at

any given time, only a single sensor (leader) is active. After

obtaining a measurement, the leader selects the most infor-

mative node in the network and passes its measurement to

this node which becomes the new leader. In subsequent work,

researchers addressed leader election, state representation, and

aggregation issues [6], [10]. A sensor selection method based

on the mutual information principle is presented in [9]. Re-

cently, an entropy based heuristic approach was proposed [8]

which greedily selects the next sensor to reduce overall un-

certainty. In these approaches, the performance of the sensor

selection algorithm is verified experimentally. The present

work distinguishes itself from previous work by presenting

analytical bounds on the performance of the proposed sensor

selection algorithm. We focus on a restricted class of sensors

(where the measurement uncertainty can be represented as

a convex and polygonal subset of the plane). For this class

of sensors, we present a polynomial-time algorithm whose

performance is guaranteed to be within factor two of the

optimal performance.

Recently, other aspects of tracking in sensor networks have

received significant attention as well. In [11], the problem

of estimating target’s location and velocity using minimal

information has been addressed. The problem of assigning

n disjoint pairs of sensors to n targets so as to minimize

the overall error in the estimation has been studied in [12].

A related line of research is cooperative localization, where

a group of robots or network-nodes localize themselves by

collecting information over the network [13]–[17].

In our present work, we address the sensor selection prob-

lem for the bounded uncertainty sensing model. In this model,

the exact probability distribution p(z|x) is unknown but for

a given x, the set of possible values for the measurement z
is bounded. Such models are useful for modeling complex

sensing devices such as cameras (where the observations

are accurate up to the pixel resolution) as well as networks

of heterogeneous sensors where it is difficult to obtain an

exact sensing model for each sensor. To address the trade-

off between sensing cost and utility, we start by formulating

the sensor selection problem (SSP) as a bicriteria optimization

problem. After observing that the general version of SSP is

computationally hard, we focus on a geometric version where

the sensor measurements correspond to convex, polygonal

(possibly unbounded) subsets of the plane and the cost is

measured by the number of sensors. The convexity assumption

is valid for many different types of sensors as discussed in

Section II-A. For this version, we present an approximation

algorithm which selects a given number of sensors and guar-

antees that the quality of the localization is within a factor

two of the optimal choice. We also establish that a constant
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number of sensors can guarantee performance with respect to

all sensors – formally proving the observation: a small number

of sensors is sufficient to obtain good estimates. In Section III,

we present an application of this theorem where the objective

is to estimate the location of a target on a known plane using

cameras.

In the SSP formulation, we assume that an initial estimate

of the target’s location is given and that each measurement

corresponds to a convex, polygonal subset of the plane. In the

second part of the paper, we relax these assumptions. First,

we study the online SSP problem where only a set of possible

locations of the target is known (Section IV-A). In Section IV-

B, we discuss relaxations to other sensing models.

After a brief overview of the notation used in the paper, we

start with a formalization of the sensor selection problem.

Notation

Throughout the paper, 2S denotes the set of all subsets of

S. We call a set S′ ⊆ S as a k-subset of S if |S′| = k, i.e.

the cardinality of S′ is k.

The Euclidean distance between points x and y is denoted

by d(x, y). For a set S and a point x we define d+(x, S) =
maxy∈S d(x, y) and d−(x, S) = miny∈S d(x, y)

II. THE SENSOR SELECTION PROBLEM

The general problem we study is as follows: We are given

a set S = {s1, . . . , sn} of sensors and their locations which

can estimate the position of the target. We are also given an

estimate x of the target’s location. Such an estimate is typically

obtained by running a filter on the target’s position. Our goal

is to choose the “best” set of sensors to obtain a better estimate

of the true location. Ideally, we would merge measurements

from all sensors but this would be too costly. In order to model

this trade-off, we need:

(i) A utility function, Utility : 2S → IR, which returns the

utility of measurements obtained by each S′ ⊆ S when the

robot is at x. This utility is typically related to the uncertainty

of the measurements as a function of target/sensor geometry.

(ii) A cost function, Cost : 2S → IR, which returns the cost

of taking measurements from each S′ ⊆ S. This cost may

incorporate, for example, the number of sensors used, the cost

of transmitting the measurements, etc.

The Sensor Selection Problem (SSP) is to choose a subset

S′ ⊆ S which maximizes utility and minimizes cost. To solve

this bicriteria optimization problem we define a family of

optimization problems

SSP (K) : arg max
S′⊆S,Cost(S′)≤K

Utility(S′) (1)

whose solution returns the best set of sensors for a given cost

budget K .

In a typical sensor-network setting, the number of sensors

is expected to be very large. Therefore, it is desirable for

any algorithm for SSP to run in polynomial time in the

number of sensors. For arbitrary cost and utility functions,

it is not too difficult to see that SSP is a hard problem. As

an example, consider perhaps the simplest scenario one can

imagine: Suppose we are given a utility value u(si) and a

cost value c(si) for each sensor si ∈ S. Let Cost(S′) =
∑

si∈S′ c(si) and Utility(S′) =
∑

si∈S′ u(si). Even for these

simple functions, SSP is NP-hard as it is equivalent to the well

known NP-complete KNAPSACK problem [18].

In the next section, we study a geometric version of SSP,

called k-SSP. For a given budget k, the cost Cost(S′) will

be zero if |S′| ≤ k and infinite otherwise. This is motivated

by the typical scenario where many robots/devices operate in

the same workspace and localize themselves using the same

sensor network. In this case, the network manager can put an

upper bound on the number of sensors queried by each robot.

The utility model is formalized next.

A. Utility model

We consider the planar setting where the state of the target

is given by its coordinates.

Our sensing model is as follows. The set of sensors is

given by S = {s1, ..., sn}. Each sensor si returns an estimate

µi(x) ⊆ IR2
for the position of x. We make two assumptions

about µi:

(i) µi(x) is a convex, polygonal subset of the plane for all

x. That is, µi(x) can be written as an intersection of a finite

number of half-planes. Note that our model allows µi(x) to

be unbounded, e.g. a half-plane.

(ii) x ∈ µi(x). The true location of the target is contained

in the measurements.

Given a set S′ ⊆ S of sensors, the measurement obtained

by all sensor in S′ is given by µ(S′, x) = ∩si∈S′µi(x). We

will take Utility(S′) as inversely proportional to the error in

estimating the position given by Area(µ(S′, x)) for a given

x. Note that µ(S′, x) is obtained by intersecting convex sets

and hence convex.

As discussed below, Assumption (i) readily holds for many

sensors. We will also revisit this assumption in Section IV-B

and show how it can be relaxed for other types of sensors. The

second assumption is merely for the area measure to make

sense: consider three measurements (polygons) M1, M2, M3

where M1 and M2 have a large intersection, M2 and M3

have a small intersection and M1 and M3 do not intersect. If

such measurements can be obtained from the sensors, sensor

selection becomes an ill-posed problem. Finally, it is worth

noting that we make no assumptions about the uniformity of

sensors. As long as the two assumptions are satisfied, each

sensor may have a different model.

These two assumptions for the sensing model hold for

a large class of sensors. A typical example is a spherical

perspective camera commonly used in robotics applications.

The error model for such cameras is illustrated in Figure 1

where the cameras are represented by their projection centers

c1, c2 and their imaging circles C1, C2. For a given world

point x, its projection onto camera i is the intersection of

the ray cix with the imaging circle Ci. We can think of

each camera as measuring the angle αi corresponding to the

projection of xi. In the error-free case, we can compute the

position of x by measuring α1 and α2 from two cameras2 and

2Excluding the degenerate case where the cameras and x are collinear.
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Fig. 1. An error model for spherical perspective cameras.

intersecting the two rays. However, due to device limitations

such as finite resolution, we can measure the angle αi up to an

additive error ±α and each measurement can be interpreted as

a cone (instead of a ray) which contains the target’s location

x. Using two cameras we can estimate the target’s position by

intersecting the two cones (shaded area in Figure 1).

For a spherical camera si on the plane, clearly µi(x) is a

convex, polygonal subset of the plane. Further, if we assume

that either the cameras have infinite range or we can detect

cameras that do not see x and remove them from the set of

available cameras, we also have x ∈ µi(x) for all si ∈ S.

Throughout the paper, we will use this scenario to demonstrate

our results: The workspace is the entire plane and we have

n spherical perspective cameras with infinite range placed

arbitrarily in the workspace.

We conclude this section with a summary of the assump-

tions in our model.

• We assume that the locations of the sensors are known

precisely. In addition, an estimate of the target’s location

is available.

• Each sensor measurement corresponds to a convex,

polygonal subset of the plane which contains the target’s

true location.

• For a given k, we assume that the cost of querying up

to k sensors is zero. The cost of querying more than k
sensors is assumed to be infinite.

B. Importance of good sensor selection algorithms

Before setting out to design a sensor selection algorithm,

one must ask whether the choice of sensors is a crucial factor

in obtaining a good estimate. As an example, consider the

scenario in Figure 2 where 25 spherical cameras with α = 2
degrees estimation error are placed uniformly on a planar area.

Now suppose, we would like to select two cameras to obtain

the position of the target, shown as a blue dot. In the figure, the

estimates obtained by the best and worst pairs of cameras are

shown. The area of the worst estimate is more than a thousand

times larger than the area of the best estimate!

As illustrated in the above example, choosing the right set

of sensors is clearly a crucial factor for the quality of the

estimate. On the other hand, it has been observed many times

that a small number of sensors suffices for a good estimate.

This is illustrated in the simulation shown in Figure 2. In this

simulation, we used the sensors shown on the left in Figure 2.

For 100 random target locations, we selected k = {2, 3, 4} best

sensors. Next, for each target location, we computed the area

of the estimate from all 25 sensors and normalized the estimate

from k sensors by dividing to this area. Each histogram in the

figure corresponds to a different k.

As shown in the last histogram, for these uniformly dis-

tributed samples, the estimates obtained by four best sensors

are as good as the estimates obtained from all sensors! Hence,

the lifetime of the network can be significantly increased by

restricting the number of active sensors to a small number

without losing too much from the quality of the estimates. In

the next section, we formally prove that this intuition is always

correct.

C. A 2-approximation for k-SSP

In this section, we present a 2-approximation algorithm

for the k-SSP problem. We will use the following standard

definitions for approximation algorithms.

Definition 1: An α-approximation algorithm for the k-SSP

problem is an algorithm whose running time is polynomial in

the number of sensors and which chooses k sensors such that

the error in estimating the position of the target is within a

factor α of the error resulting from the optimal choice of k
sensors.

Definition 2: An (α, β)-approximation algorithm for the k-

SSP problem is an algorithm whose running time is polyno-

mial in the number of sensors and which chooses βk sensors

such that the error in estimating the position of the target is

within a factor α of the error resulting from the optimal choice

of k sensors.

Recall that in the k-SSP problem, we are given a set S
of n sensors, and we would like to select k of them. Let

R = {R : R ⊆ S, |R| ≤ k} be the set of all possible

choices. Note that |R| is exponential in k and as k grows large,

enumerating R to pick the best set becomes infeasible. Let S∗

be the optimal choice given by arg minR∈R Area(µ(R)). We

will show how to pick a set S′ from R in polynomial time

such that Area(µ(S′))/Area(µ(S∗)) ≤ 2.

To obtain the approximation algorithm, we will utilize the

notion of a Minimum Enclosing Parallelogram (MEP ). Given

a polygon X , MEP of X is a parallelogram which has

the smallest area among all parallelograms that contain X .

Let C be a convex polygon and let MEP be the minimum

enclosing parallelogram of C whose vertices are v1, . . . , v4 in

counterclockwise order. Let ei = (vi, vi+1), i = 1, . . . , 4 be

the sides of MEP (see Figure 3)3. The following properties

of MEP are adapted from [19] (see also [20]).

Property 1 ( [19]): Either e1 or e3 contains a side of C.

Similarly, either e2 or e4 contains a side of C.

Property 2 ( [19]): Let fi = C ∩ ei, i = 1, . . . , 4. There

exists a line l parallel to e1 and e3 such that f2 ∩ l 6= ∅ and

f4 ∩ l 6= ∅. Similarly, there exists a line m parallel to e2 and

e4 such that f1 ∩ m 6= ∅ and f3 ∩ m 6= ∅.

3Throughout the paper we will use an acyclic ordering of vertices and let
vn+1 = v1
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Fig. 2. Left two figures: The best (left) and the worst (right) sensor choices and the corresponding estimate for an arbitrary target location. The sensor
locations were selected uniformly at random. Right: Histograms of the estimates obtained by best k = {2, 3, 4} sensors. The numbers in the horizontal axis
are obtained by dividing the area of the estimation from best k sensors by the area of the estimation from all sensors. The cut-off values correspond to the
x-values where the cumulative density reaches 90%.
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Fig. 3. The minimum enclosing parallelogram (MEP ) of a convex polygon.
One can always find a MEP such that each parallel side of MEP contains
at least one side of the polygon. For example, the parallel sides v1v4 and
v2v3 each contain a side of the polygon. However it is possible to have one
side (v1v2) contain a side and the other one (v3v4) contain only a vertex.

Using these two properties we can bound the area of MEP .

Lemma 3: Area(MEP ) ≤ 2 · Area(C).

Proof: Let x1 = f1 ∩ m, x2 = f2 ∩ l, x3 = f3 ∩ m,

x4 = f4 ∩ l. By Property 2, all xi exist and they belong

to both C and MEP . Let o = l ∩ m, which by convexity

of C also belongs to C. The lines l and m partition MEP
into four parallelograms P1, . . . , P4. They also partition C
into four convex polygons C1, . . . , C4 such that Ci ⊆ Pi. In

Figure 3, P1 = v1x1ox4, P2 = v2x2ox1, and so on. Consider

C1 and P1. Since all of x1, o, x4 belong to C1 we have

∆1 ⊆ C1 where ∆1 is the triangle whose vertices are x1, o
and x4. Hence we have

Area(P1)
2 = Area(∆1) ≤ Area(C1).

A symmetric argument holds for each Ci, Pi pair. Therefore

Area(MEP )/2 =
∑

i Area(∆i) ≤ Area(C).

The following result will be central to our sensor selection

algorithm.

Lemma 4: Let x be a given target position and S =
{s1, . . . , sn} be the set of sensors. Let C = µ(S) be the

measurement obtained by all sensors. If C is bounded, then

there exists a set S′ ⊆ S with |S′| ≤ 6 such that µ(S′) ≤
2 · µ(S).

Proof: We prove the lemma constructively.

vl

ei
ej

g1

g2

h1

h2

f1(ei)

f2(vl)

Fig. 4. Notation for Lemma 4.

First, we compute C by intersecting µ(si) in an arbitrary

order. Let V = {vi} be the set of vertices and E = {ei} be the

set of edges of C. Each edge ei is contained in a unique line

denoted l(ei). Let f1 : E → S be a function that associates

each edge ei of C to the sensor that constrains x to be on

one side of l(ei) (see Figure 4). Using f1 we can also obtain

a function f2 : V → S × S which maps each vertex vi =
(ei, ei+1) to (f(ei), f(ei+1)) such that l(ei) ∩ l(ei+1) = vi.

Next, we construct the minimum enclosing parallelogram

MEP of C using the algorithm in [19]. By Property 1, two

sides of C, say ei and ej are contained in the two sides of

MEP , say g1 and g2 respectively. We will start with S′ = ∅
and add f1(ei) and f1(ej) to S′. Let h1 (resp. h2) be the side

of MEP parallel to g1 (resp. g2). The intersection of h1 with

C is either an edge or a vertex of C. If it is an edge, say ek

we add f1(ek) to S′. Otherwise, if it is a vertex, say vl we

add f2(vl). Similarly, we find one or two sensors for h2 and

add them to S′. At the end of this process, at most 6 edges

will be added to S′. Note that at least two sides of the MEP
contain an edge of C by Property 1.

If |S′| = 4, then µ(S′) = Area(MEP ). In all other cases,

µ(S′) < Area(MEP ), which, together with Lemma 3 proves

the lemma.

We are now ready to present the sensor selection algorithm.

Theorem 5: There exists a polynomial time 2-
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approximation algorithm for k-SSP.

Proof: Let Area(X) denote Area(µ(X)) for each subset

X of S. First we observe that the error has a monotonicity

property: for two sets S1 ⊆ S2, µ(S2) ⊆ µ(S1). This

is because the uncertainty region is computed by taking

intersections of convex uncertainty regions of sensors. Hence

Area(S2) ⊆ Area(S1) and therefore, for a budget of k, there

is an optimal solution which chooses exactly k sensors.

Let l = min{k, 6}. We enumerate all l-subsets of S and

pick the best among them. Clearly, the number of subsets

considered is O(n6). Next, we show that this will yield a

2-approximation.

Let S∗ be the optimal solution for choosing k sensors. If

k ≤ 6, since we exhaust all possible selections, the algorithm

is optimal. If not, let S′ be the 6-subset chosen by the

algorithm. We have Area(S∗) ≥ Area(S) by monotonicity

and Area(S) ≥ Area(S′)/2 by Lemma 4.

Running Time: Intersection of m hyperplanes can be found

in O(m log m) time [21] and the area of intersection can be

found in O(m) time – by triangulating the (convex) polygon

and computing the area of each triangle. Therefore the running

time of the algorithm is O(nl × ml log(ml)) = O(nl) where

m is the maximum number of hyperplanes to define the

sensor’s estimate (e.g. m = 2 for cameras). Note that l is

a constant. In fact, if k ≥ 6 we can solve the problem in

O(mn log(mn)) time, by incorporating information from all

n sensors, computing the MEP in linear time and choosing

6 sensors from MEP in constant time.

Corollary 6: For any given set S of sensors, only 6 sensors

are sufficient to approximate the utility of S within a factor

of 2.

D. A distributed implementation

In a network of n sensors, by Corollary 6 we can restrict

our attention to a small (polynomial in n) number of subsets

of sensors and obtain reasonably good estimates. For station-

ary sensor-networks (such as a typical camera-network), this

allows us to preprocess the workspace and generate a look-

up table that can be used for a distributed implementation, as

follows:

Followed by network deployment and localization, we build

a table which stores the best choice of sensors for every

position in the workspace. Such a table is shown in Figure 5

where the choice of pairs of sensors is color-coded. If possible,

this computation can be performed off-site and the table can

be uploaded to the nodes. During target tracking, the choice

of sensors is obtained through lookup queries.

E. Comparison with a greedy algorithm

The running time of the 2-approximation algorithm is not

monotone in k. For choosing k sensors from a set of n, the

running time is in the order of nk for k < 6. For greater values

of k though, the running time drops to n log n as discussed in

the proof of Theorem 5.

In an application where less than six sensors must be allo-

cated per target, the O(n5) running time may be prohibitive for

a real time implementation. One possible solution is to prepare
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Fig. 5. A partition of the workspace. The color of each region indicates the
best pair of cameras for that region as shown by the legend on the right.

a look-up table offline as described in the previous section.

However, this may not always be possible. For such cases,

we have investigated the performance of a greedy algorithm

via simulations. At each iteration, the greedy algorithm selects

the sensor which yields the greatest decrease in the estimation

area. The results are shown in Figure 6 where the histograms

of the ratio of the area of the estimation from the greedy

algorithm to the best choice required by the 2-approximation

algorithm are plotted. In this simulation, we used 25 randomly

placed sensors and selected k = {2, 3, 4} of them to estimate

the position of 100 uniformly placed points.

Even though there are instances where the greedy algorithm

performs poorly, on the average its performance is comparable

to the best choice. Hence, in real-time applications where

a small number of sensors need to be allocated, a greedy

algorithm may also be used.

III. AN APPLICATION: ESTIMATING THE LOCATION OF A

TARGET ON A KNOWN PLANE

In this section, we present an experiment which demon-

strates our main result (Theorem 5). The goal of the exper-

iment is to localize a point in 3D space from images. In

general, the uncertainty that corresponds to a measurement

from an image corresponds to a 3D cone and our result

does not apply directly. However, there are many computer

vision applications, such as tracking objects from satellites,

where it is desirable to estimate the location of a target on

a known plane (e.g. ground). If such additional information

is available, the measurements become 2D polygons given by

the intersection of 3D cones and the known plane. In this

case, our result applies readily. To simulate such a scenario,

we used a 19-camera setup located in our lab. The cameras

are calibrated [22]. Hence, we know their locations and

projection matrices with respect to a common world frame

(Figure 7). For this experiment, we put a planar calibration

pattern approximately 2-3 meters away from the cameras and

took images with a resolution of 640 × 480 (Figure 9).
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Fig. 6. Left two figures: An instance where the greedy choice (left) differs from the optimal choice (right). The area of the workspace is normalized to 100
units. Right: Comparison of the greedy choice of k = {2, 3, 4} sensors with the best choice of k sensors. The horizontal axes indicate the ratio of the areas
obtained by the greedy choice and the best choice. Even though the greedy algorithm occasionally performs poorly, in this simulation it has a good overall
expected performance.

Our experiment started with obtaining the parameters of the

plane. For this purpose, we computed corresponding pixels

in different images by extracting corners from the images

of calibration pattern. Afterwards, we computed 3D locations

of these corners (which lie on the calibration plane) using

stereo triangulation. To achieve robustness, we computed 3D

points using a number of pairs of cameras and fitted a plane

to these points using a robust, RANSAC based plane fitting

method [23]. See Figure 7 for the estimated parameters and

Figure 9 for sample images taken from the cameras.

To obtain the position of the target automatically, we used

a corner estimator [22]. However, as it can be seen from

Figure 7 (bottom-right), it is very difficult to estimate the

precise location of the corner. Hence, we used an uncertainty

parameter of α = ±4 pixels4. These uncertainties correspond

to 3D cones whose intersections with the known plane gives

us the polygons shown in Figure 10.

Finally, to estimate the position of the target, we intersected

the uncertainty polygons. The results are shown in Figure 11.

The best choice for a pair of cameras is the pair (4,17)

which gives an uncertainty of approximately 9mm2. The worst

choice, on the other hand, is given by cameras (18, 19) with

an error of 729mm2. See also Figure 9 for corresponding

images. The best choice of three cameras is (4, 11, 17) with

an area of 8mm2 and the worst choice is (17, 18, 19) with an

error of 670mm2. It is worth noting that the intersection of

all polygons is the same as the intersection of the best three

polygons (4, 11, 17) which is in agreement with Corollary 6.

IV. EXTENSIONS

In this section, we present two extensions to the model used

to establish Theorem 5. The first extension is regarding the

knowledge about the target’s position. In the previous section

we studied the problem of selecting a set of sensors for a given

target location x. In the next section, we address the problem

of selecting the sensors when x is not given. Instead, we are

given an uncertainty region U that contains the true location

of the target.

4The value of α is determined empirically.

In Section IV-B, we address extensions to other sensing

models. In particular, we discuss how to relax the assumption

that the measurements correspond to convex and polygonal

subsets of the plane. We start with the first extension.

A. SSP for Unknown Target Location

In this section, we address the problem of selecting the

sensors when x is unknown. Let W be the workspace and

suppose we are given an uncertainty region U ⊆ W such that

the true location x ∈ U . Such an uncertainty region is typically

obtained by a filter which starts with an estimate (e.g. a ball

of certain radius) of the target’s initial position and propagates

this uncertainty as the target moves (See Figure 12).

In this section, we consider an online version of k-SSP. In

the online version, we are given a domain U where the target’s

true location lies. An online algorithm for SSP chooses the set

of sensors which guarantee performance regardless of the true

location of the target.

Formally, the Online k-SSP problem is defined as follows:

We are given an uncertainty region U and a set of sensors. Let

x̂ ∈ U be the unknown true location of the target. Let S∗(x̂)
be the optimal choice of k sensors for x̂. Let S′ ⊆ S be any

choice of sensors with |S′| = k. We define the competitive-

performance of S′ as

c(S′) = max
x̂∈U

Area(µ(S′, x̂))

Area(µ(S∗(x̂), x̂))
(2)

Establishing the competitive performance (or ratio) can be

formulated as a game between two players. The first player is

the sensor selection algorithm which picks the set of sensors

S′. The second player is the adversary who tries to maximize

the deviation from the optimal performance by choosing the

true location x̂. Our goal is then to establish the existence

of a choice of sensors S′ with small (preferably constant)

competitive ratio. If there is such a choice, we could select

a good set of sensors and obtain a good estimate of the true

location x̂ without an accurate guess of the true location.

A simple example shows that we can not establish a constant

competitive ratio: suppose the uncertainty region U is given

by the equilateral triangle ABC shown in Figure 13. Suppose
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going through the target in 3D space. The units are in millimeters (bottom).

we have 6 sensors S = {a1, a2, b1, b2, c1, c2} such that a1

and a2 are very close to the corner A and the angle a1Aa2

is π
2 ; b1 and b2 are very close to the corner B and so on.

Consider the task of selecting two sensors from the sensor set

S. There are two distinct choices: {a1, a2} and {a1, b1}. All

the remaining choices are symmetric. For each choice, there is

a corner of the triangle, C, that is very far from either sensor.

Hence, the adversary can choose x̂ near C. For this value of

x̂, the optimal choice of sensors would be S∗ = {c1, c2}. Let

Zmin and Zmax be the closest and furthest distance between

U and S. The competitive ratio (Equation 2) would be:

c({a1, a2}) ≈ c({a1, b2}) ≈
(Zmaxα)(Zmaxα)

(Zminα)(Zminα)
=

(Zmax

Zmin

)2

which can be made arbitrarily big by increasing the size of U .

A symmetric argument can be made for any choice of sensors.

Consequently, there exists no choice of sensors with a constant

competitive ratio.

In fact, in the above example we observe that the term

Z2
max is almost as big as the area of the uncertainty region U .

Therefore, for any sensor selection algorithm to be effective,
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Fig. 8. A close-up image showing the location of the target (left). An 8× 8

window showing the pixels around the projection of the target in an image.
The precise location of the corner is difficult to obtain. (right)
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Fig. 9. Images taken from cameras 4, 11, 17, 18, 19 (from top to bottom,
left to right).

we need a fairly good estimate (small U ) of where the target

may be.

It is easy to see that the arguments above can be extended

for the problem of selecting k sensors. We simply replace the

triangle ABC with a uniform (k + 1)-gon. No matter which

sensors are chosen, there will be one corner that is far from all

the chosen sensors: the adversary chooses this corner as the

true location for which the optimal choice includes the two

sensors that are very close to this corner.

B. Extensions to other sensing models

Throughout the paper, we assumed that the sensor measure-

ments are convex and polygonal. In this section, we show how

our techniques can be extended to other sensing models. We

investigate the following alternatives as shown in Figure 14.

Convex but non-polygonal measurements. In this case, the

sensor measurements can be efficiently approximated by a

convex polygon and our techniques apply.

Non-convex and non-polygonal measurements. In certain

cases, such as range-and-bearing sensors, the measurement

area can be efficiently approximated with a convex polygon –

see [16] for a discussion. However, as in the case of range-only
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Fig. 11. TOP: Best (left) and worst (right) choices for pairs of cameras.
BOTTOM: Best (left) and worst (right) choices for triples of cameras. The
shaded area corresponds to the intersection of the chosen cameras. See text
for details.

sensors, this may not be always possible. In Figure 14 (lower

left), any convex polygon that contains the error annulus would

fail to approximate the true error. One possible solution is to

group m sensors (in the figure, a group of m = 3 sensors

is shown) and to treat these groups of sensors as a single

sensor whose error regions can be efficiently approximated

by a convex polygon. If this is possible, we can use the 2-

approximation algorithm defined in Section II-C to obtain a

(2,m)-approximation algorithm for k-SSP (see definition 2).

V. CONCLUDING REMARKS

In this paper, we studied the problem of choosing k sensors

so as to minimize the error in estimating the position of a

target. We made two assumptions in our formulation:

(i) network localization has been performed (see e.g. [17])

and the locations of the nodes in the network are available;

and,

(ii) an estimate of the target’s location is available (possibly

through a filter that estimates the position of the target as it

moves).

We focused on a generic sensor model where the mea-

surements can be interpreted as polygonal, convex subsets

??

x
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s7 s8

s9
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W

Fig. 12. SSP for unknown target location: we are given the region U and
we would like to choose sensors to guarantee performance regardless of the
location of the target in U .

a1

a2

b1

b2

c1

c2A

B

C

U

Fig. 13. For both choices of two sensors, {a1, a2} and {a1, b1}, the
adversary can select the true location near corner C. The shaded area
corresponds to the error estimate from {a1, b1}. The optimal choice for this
location is {c1, c2} which results in a high competitive ratio.

of the plane. In our model, the measurements are merged

by intersecting corresponding subsets and the measurement

uncertainty corresponds to the area of the intersection. Under

these assumptions, we presented a 2-approximation algorithm

for choosing optimal sensors. In doing so, we formally proved

an observation made by numerous researchers: a small number

of sensors is sufficient for a good estimate. This is obtained

by first bounding the area of the information from all sensors

by its minimum enclosing parallelogram (MEP). Next, we

showed that there are six sensors such that the intersection

of the measurements from these sensors is contained in the

MEP.

U

U

s s

U

s1 s2

s3

s

Fig. 14. Common sensors where the convexity and/or linearity assumption
fails. Top-left: convex but non-polygonal measurements Top-right: non-convex
measurements which can be efficiently approximated (e.g a range-and-bearing
sensor) Bottom-row: Non-polygonal and non-convex measurements which can
not be approximated. The solution is to group the sensors (bottom-right).



ACCEPTED TO IEEE T-ASE 9

We presented an application of this theorem for the task of

obtaining the position of a target (on a known plane) using

cameras.

In the second part of the paper, we discussed two extensions

of the previous scenario. In the first extension, we considered

the case where we are given a bounded area where the target

may be located – instead of a single estimate of the target’s

location. For this case, we showed that the performance of

any sensor selection algorithm is a function of the area of

the uncertainty region. We also addressed relaxations of the

sensing model and presented arguments for the existence of

similar theorems for other sensing models.

In all of the algorithms above, we assumed that the sensor

locations are known precisely. We plan to investigate the effect

of localization errors over the entire network in our future

work. Another research direction to extend the six-sensor

result (Corollary 6) to higher dimensions. Future work also

includes the problem of assigning disjoint sets of sensors to

track multiple targets. The techniques presented in this paper

may be easily extended to obtain an algorithm for this problem

whose running time is O(nt) where n is the number of sensors

and t is the number of targets – we simply try all possible

ways of assigning up to 6 sensors to each target. Though

applicable for a small number of targets, such a running time

becomes prohibitive as the number of targets grow large and

become comparable to the number of sensors. Unfortunately,

the problem of assigning disjoint sets of sensors to many

targets is NP-hard. Approximation algorithms for constrained

error metrics and geometries can be found in [12]. We are

currently working on extending these results to more general

deployment scenarios.
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