
Placement and Distributed Deployment of Sensor
Teams for Triangulation Based Localization

Volkan Isler
Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180

Email: isler@cs.rpi.edu

Abstract— We address the problem of placing a sensor network
so as to minimize the uncertainty in estimating the position of
targets. The novelty of our formulation is in the sensing model:
we focus on stereo sensors where the measurements from two
sensors must be combined for an estimation.

We study two versions of this problem. In the first version,
which we call the placement problem, we are given a workspace
and an error threshold. The objective is to place a minimum
number of cameras so that no matter where the target is located
in the workspace, the uncertainty in localizing it is less than
the threshold. For this problem, we present an approximation
algorithm and prove that the deviation of its performence from
the optimal value is bounded by a constant. In the second version,
called the deployment problem, we study the problem of relocat-
ing a mobile sensor team to minimize the uncertainty in localizing
possibly moving targets. We present a distributed, discrete-time
algorithm which explicity addresses communication and motion
constraints and show how to compute the optimal move within the
time-step for a given target/sensor-pair assignment. The utility
of the algorithm is demonstrated with simulations.

I. INTRODUCTION

Concurrent advances in robotics, embedded sensing, com-
putation and communication technologies opened the way
for distributed and mobile sensing networks. Such networks
are becoming increasingly popular in automation applications
such as surveillance, inventory control and traffic management.

Sensor network technology has important implications for
mobile robotics. As an example, consider the localization
problem whose solution is a prerequisite for many robotics
applications. Sensor network technology offers a scalable
solution for localization of heterogeneous, independent robot
teams operating in a large and complex environment: We can
deploy a calibrated camera-network in such an environment
and the robots can query these sensors for localization instead
of relying on on-board sensors and customized applications.

In this paper, we address the sensor placement problem
which is a fundamental issue affecting the quality of lo-
calization. In the first part of the paper, we address the
placement problem for camera networks. As is well known, a
robot cannot localize itself with a single measurement from a
single camera. At least two different camera measurements
are required for triangulation. However, the quality of the
localization is a function of the target-camera geometry. We
consider a scenario where the location of the cameras are
known apriori to the robot. To localize itself, the robot queries
two cameras and merges their measurements. The problem we
address is: given the workspace and an error threshold, what

is the minimum number, and placement of cameras so that the
error in localization is less than the threshold at every point in
the workspace? For this problem, we present an approximation
algorithm that deviates from the optimal solution only by a
constant factor both in the number of cameras used and the
error in localization. To the best of our knowledge, this is the
first approximation algorithm with provable performance for
this problem.

In the second part of the paper, we study the placement
problem for mobile, ad-hoc sensor networks. We consider
a tracking scenario where a number of targets are moving
independently in the workspace and the goal is to relocate the
sensor-network nodes to improve the localization of targets.
For ease of reference, we will refer to the second problem
as the deployment problem whereas the first problem will
be called the placement problem. Deployment differs from
placement in two aspects: communication constraints and
motion constraints.

As in most ad-hoc networks, the underlying communication
structure of the network may change as the network nodes
move. Therefore, not every pair of nodes may be able to
communicate with each other. To address this issue, we include
a communication graph (which may change over time) in our
formulation and restrict pairwise measurements to the edges
of this graph. The idea here is that, merging information from
other pairs require multi-hop communication which is very
costly in terms of energy – especially for cameras.

The second challenge is to address motion constraints. For
mobile sensors, the set of locations reachable from a given
location in a single time step is relatively constrained. This
constraint must be incorporated (and exploited) in the problem
formulation.

In order to address these challenges, we propose a discrete-
time solution to the deployment problem. We focus on the case
where the underlying communication structure is a tree. We
present a distributed algorithm that computes the optimal next-
location for each robot for given sensor-target assignments.
Note that, due to the fact that the estimations involve pairs
of sensors, the sensors can not compute their next move
independently and some collaboration is needed. We present
a protocol that addresses this issue explicitly.

A. Related work

The placement problem can be viewed as a clustering
problem. For example, in the NP-complete k-center problem,

we are given a set of locations for centers and a set of targets.
The objective is to minimize the maximum distance between
any target and the center closest to it [1]. In our problem,
there are two centers associated with each target and the
cost is much more involved than the Euclidean distance. We
were unable to find any literature that addresses this type
of clustering problem. Therefore, the placement algorithm
presented in the next section may also be of independent
interest.

Perhaps, the most well-known placement problem that
involves cameras is the Art Gallery Problem [2] where a
minimum number of omnidirectional cameras is sought to
guard every point in a gallery represented by a polygon.
Art gallery problems emphasize visibility/occlusion issues and
there is no explicit representation of the quality of guarding –
which is the focus of this paper.

Coverage and placement problems received a lot of attention
recently. The problem of relocating sensors to improve cov-
erage has been studied in [3]. In this formulation, the sensors
can individually estimate the positions of the targets. However,
the quality of coverage decreases with increasing distance. The
deployment algorithm presented in the present paper studies
a similar problem but for sensors which can not estimate the
targets’ positions by themselves.

The problem of controlling the configuration of a sensor
team which employs triangulation for estimation has been
studied in [4] where the authors present a numerical, particle-
filter based framework. In their approach, the optimal move
at each time step is estimated by computing an n dimensional
gradient numerically where n is the size of the joint configu-
ration space of the team. Further, the issue of multiple targets
is not explicitly addressed. In this paper, we present a dynamic
programming based approach to compute the best move in a
distributed and optimal fashion.

The problem of choosing the best subset of cameras for
a given placement has been studied recently in [5]. In this
work, the focus is on selecting a small subset of cameras to
minimize a joint uncertainty measure. In the present work, we
restrict ourselves to stereo-pairs but focus on placement issues
while addressing communication and motion constraints. A
recent related result was presented in [6] where the problem
of relocating a sensor team whose members are restricted to
lie on a circle and charged with jointly estimating the location
of the targets was studied.

II. AN APPROXIMATION ALGORITHM FOR THE PLACEMENT

PROBLEM

In this section, we study the placement problem and present
an approximation algorithm. Before we formalize the place-
ment problem, let us present the error model we use for
triangulation.

A. Error model

The term triangulation refers to inferring the state �x of a
target by solving a system of simultaneous equations �z =
h(�x) where �z denotes the observation vector. In this section,

s1 = (x1, y1) s2 = (x2, y2)

�x = (x, y)

θ

θ1 θ2

Fig. 1. The uncertainty in estimating the position of the target at x is given
by: U(s1, s2, x) =

d(s1,x)×d(s2,x)
sin θ

we will study the process of estimating the position �x =
[x y] of a target (or a robot) from measurements by two
cameras. We assume calibrated cameras, hence their location
are known with respect to a common reference frame and their
measurements can be interpreted as angles with respect to the
horizontal axis (see Figure 1).

In this case, we have observables θ1 and θ2 and solve for
the unknowns x and y in:

tan θ1 =
y1 − y

x1 − x
tan θ2 =

y2 − y

x2 − x

One way of establishing the accuracy of the estimation is
to study the effect of small variations in the observables on
the estimate. One way of formally establishing this effect is
to study the determinant of the Jacobian H = δh

δ�x which is
commonly referred to as the Geometric Dilution of Precision
(GDOP). In case of cameras GDOP is given by

U(s1, s2, x) =
d(s1, x)× d(s2, x)
| sin � s1xs2| (1)

where d(x, y) denotes the Euclidean distance between x
and y and θ = � s1xs2 is the angle between the sensors
and the target (Figure 1). The details of this derivation can
be found in [7]. In general, Equation 1 suggests that better
measurements are obtained when the sensors are closer to the
target and the angle is as close to 90 degrees as possible.

B. Problem formulation

Let W be the workspace which consists of all possible
locations of the robot. Let U(si, sj , w) denote the uncertainty
in localization when the robot is at location w ∈ W and
queries sensors si and sj as defined in Equation 1. Let
S = {s1, . . . , sn} be a set of sensors. When there is no
danger of confusion, we will use si to denote the location
of sensor i as well. For a given placement S and a location
w ∈ W , let assign(w, S) = argminsi,sj∈S U(si, sj , w) be
the assignment function which chooses the best pair of sensors
for location w.

The uncertainty of a placement is defined as U(S,W) =
maxw∈W U(w, assign(w, S)).

We can now define the sensor placement problem:
Given a workspace W and an uncertainty threshold U∗,

��

s1

s2

s3

Fig. 2. The shaded areas show the set of points that see s1s2 and s2s3 with
an angle greater than 135 degrees.

find a placement S with minimum cardinality such that
U(S,W) ≤ U∗.

In the next section, we present an approximation algorithm
for the placement problem.

C. Placement algorithm

Let OPT be an optimal solution for the placement prob-
lem. In this section, we present an algorithm to compute
a placement S with |S| < 3 × |OPT | and U(S,W) ≤
c × U(OPT,W) ≤ c × U∗ where U∗ is the uncertainty
threshold and c is a constant. Let us call such a placement
as a competitive placement. We assume that W ⊆ IR2 and
cameras can be placed on the entire plane. However, as we
will see shortly, no competitive placement can afford to place
cameras too far from the workspace.

Let R =
√

U∗. The proposed placement algorithm consists
of two phases. In the first phase, we choose a set of centers
which will be used to determine the location of the sensors. In
the second phase, we place sensors on circles whose centers
coincide with the chosen centers and whose radii are at most
2R. We will show that this placement is a competitive one.

The centers are chosen by the following algorithm:

Algorithm selectCenters(workspace W):

• C = ∅
• while W �= ∅

– w ← an arbitrary point in W
– C ← C ∪ {w}
– W ← W \ {x : d(x, w) < 2R}

The following lemma shows that the number of centers is
small with respect to |OPT |.

Lemma 1: Let C be the set of centers chosen by selectCen-
ters and OPT be an optimal placement. |OPT | ≥ |C|.

Proof: For each center c ∈ C, let us define Dc to be a
disk centered at c with radius R. Since the distance between
the centers is at least 2R, the disks are pairwise disjoint. We
claim that each disk Dc contains at least one sensor in OPT,
which proves the lemma.

Suppose the claim is not true and let c be a center such that
OPT has no sensors in Dc. But then, for any si, sj ∈ OPT ,
the error in observing the center of Dc will be:

U(si, sj , c) =
d(si, c)d(sj , c)
| sin � sicsj | ≥ d(si, c)d(sj , c) ≥ R2 = U∗

However, this means that OPT exceeds the error threshold on
c. A contradiction!

In the second phase, we use the set of centers to determine
the placement of sensors.

Algorithm placeSensors(centers C):
• for each ci ∈ C

– Wi ← {w : d(ci, w) < 2R, w ∈ W}
– ri = maxw∈Wi d(ci, w)
– Place three sensors on circle(ci, ri) at angles 0, π

2
and π.

Here circle(c, r) denotes the circle centered at c with radius
r.

Clearly, Algorithm placeSensors places at most 3 · |OPT |
sensors (Lemma 1). All we need to show is that for any point
w in the workspace, we can find two sensors si and sj such
that U(w, si, sj) is not too far from U∗.

Lemma 2: For each center ci ∈ C, let Wi be the set of
points defined in algorithm placeSensors. Let s1, s2, s3 be the
three sensors placed on circle(ci, ri) at angles 0, π

2 and π
respectively. For any point w ∈ Wi, either π

4 ≤ � s1ws2 ≤ 3π
4

or π
4 ≤ � s2ws3 ≤ 3π

4 .
Proof: Since the angle � s1cs2 is π

2 , any point inside
the circle sees s1s2 with angle at least π

4 . (Similarly for
s2s3). Let S1 be the set of points x inside circle(ci, ri) with
� s1xs2 > 3π

4 and S2 be the set of points x inside circle(ci, ri)
with � s2xs3 > 3π

4 . These two sets are disjoint as shown in
Figure 2.

Finally, we show that the uncertainty on any point of the
workspace is a constant factor away from U∗.

Lemma 3: For any point w ∈ W , U(w, S) ≤ 23U∗.
Proof: First we observe that the sets Wi defined in

placeSensors cover W . Let w ∈W be a point that lies in Wi.
As shown in the previous lemma, there are two sensors on
circle(ci, ri) that see this point with an angle between π

4 and
π
2 . Further, the distance between w and these two sensors is at
most 4R = 4

√
U∗. Hence, the error is at most 16U∗

| sin 45| ≤ 23U∗.

We conclude the section with a remark on the trade-off
between the number of sensors and the uncertainty guarantee.
Suppose instead of using 3|OPT |, we were allowed to use
3× k× |OPT | sensors. One possible approach is to decrease
the threshold U∗. However, in this case, the increase in the
number of sensors is a function of the workspace and a more
direct estimate would be desirable. Alternatively, one can cover
the disks of radius 2R (used by placeSensors) by k disks with
smaller radius and guarantee a smaller deviation from U∗. This
brings up the following disk-covering problem:

Given a disk of radius 2R, find the smallest radius r(k) < 1
required for k equal disks to completely cover the original

disk. Clearly, this would guarantee a reduction of r(k)2 in the
performance guarantee of our algorithm. The interested reader
can find different values of r(k) in [8].

III. DEPLOYMENT OF A MOBILE SENSOR-NETWORK

Imagine a scenario where a team of n robots is charged
with monitoring m possibly mobile targets. Let X(t) =
[x1(t), . . . , xn(t)] ∈ Cn denote the state of the team at time t
where C denotes the configuration space of a single robot 1.
Let Y (t) = [y1(t), . . . , ym(t)] be the state (typically location)
of the targets. As in the previous section, we consider the
case where individual robots are incapable of estimating the
position of the targets. Instead, a pair of robots are required
to obtain a good estimate of a target’s position. A typical and
common example of this case is robots equipped with cameras
where two cameras are needed to estimate the position of a
target via triangulation. We will use a generic uncertainty func-
tion U(xi, xj , yk) which returns the uncertainty in estimating
the position of target k using robots i and j. If the robots
are equipped with cameras, this is the uncertainty defined in
Section II-A. However, the algorithm presented in this section
is rather general and works with other uncertainty functions
as well.

More precisely, the estimation process is defined as follows:
at any given time t, we are given a communication graph
G(t) = (V (t), E(t)) whose set of vertices correspond to
the robots. There is an edge between two robots if they can
communicate at time t. Throughout the paper, we assume that
only robots that can directly communicate can estimate the
position of a target. We call such pairs of robots admissible.
This is warranted because communication between other pairs
involve multi-hop transfer of possibly large amounts of data
(e.g. images) which is not feasible for mobile sensor-networks
due to energy and communication constraints.

At any given time, we must solve two sets of problems:
Assignment: which robot pairs are assigned to which targets.

As in the previous section, this amounts to computing the
function

assign(yk(t), X(t)) = argminxi,xj∈E(t) U(xi, xj , yk)
Placement: we must find good locations for the robots so

that the overall error in estimating the position of the targets is
minimized. In other words, we must find a mapping xi(t)→
xi(t+) for each robot so that the maximum uncertainty in
tracking any target is minimized.

A main challenge here is to solve these two problems
simultaneously and in a distributed fashion. It is also required
to address the two dynamic aspects of the problem: moving
targets as well as the changes in the communication tree in
an ad-hoc fashion. In the next section, we present the outline
of a discrete-time solution where we treat the communication
graph and the targets as static within a time-step. Afterwards,
in Section III-C, we show how the optimal moves for each time
step can be computed for the case where the communication
graph is acyclic, i.e. a tree.

1For ease of notation, let us assume that the robots are identical.

A. A discrete-time algorithm

To capture the dynamic nature of the problem, we propose
a discrete time algorithm. The discrete time-steps are chosen
small enough so that each target can be treated as static and
the communication tree is fixed within the time-step.

At the beginning of each time-step the robots compute the
following in a distributed fashion:

• Step 1: Assign each target to the best possible admissible
pair of robots

• Step 2: Given target-sensor assignments, compute an
optimal destination for each robot to minimize the overall
error.

Once the computation is performed, each robot moves to its
new location.

Since we treat the targets as static within a time-step, for the
rest of the paper we drop the dependency on time and denote
their state by Y = [y1, . . . , ym]. We assume that the robots
have a fixed communication graph within a time-step and the
graph is a tree. Further, we assume that one of the robots is
arbitrarily selected as a leader. This assumption is required
to have a well-defined child/parent relationship between the
nodes. We root the communication tree at the leader who
becomes the parent of its immediate neighbors. These children
in turn recursively compute their own children. We can now
use the following convention for edges: whenever we refer to
edge (u, v) ∈ E, the node v will be the parent of u. Further,
for the acyclic graph G = (V, E) and each vertex u ∈ V , the
graph G(u) = (V (u), E(u)) denotes the subtree rooted at u.

B. Computing the optimal assignment

At the beginning of each time-step, the robots compute an
optimal target-robot pair assignment as follows:

Each node computes two tables whose size is equal to the
number of targets. At node v, the table Uv[ti] is equal to the
best uncertainty that can be achieved by tracking target ti using
the edges in G(u). The table Av[ti] holds the index of the best
edge (sensor pair) for target ti.

The computation starts at the leaves, who pass empty tables
to their parents. Let v be an internal node with children
u1, . . . , uk. Upon receiving the tables from all children, node
v computes its tables as follows: for each target t and child
ui, it compares U(v, ui, t) with Uuj (t) for all children uj and
picks the best edge to track target t.

Once the process propagates up to the root, the best assign-
ment for the current state has been computed. The root passes
this table back to its children to notify them of the assignment
who then recursively pass it back to their children.

Therefore, at the end of the first phase, all nodes have access
to a function assign(u, v) which returns the set of targets
assigned to the edge (u, v).

C. Computing the optimal move

In the second phase, the nodes compute an optimal move
to relocate for their given target assignments.

Recall that from the previous step, the targets are assigned
to pairs of robots (equivalently to the edges of the tree).

We will use the following notation in this section:
The notation xi denotes the state of the robot i at the begin-

ning of timestep. Let Ci be the set of states (configurations)
accessible from xi within a single time-step. We assume that a
discrete representation of Ci is available. Let Ni be the number
of samples in this representation and let N = maxi Ni.

For a graph G, the set of all possible configurations of
the nodes in G is denoted by C(G) =

∏
v∈V (G) Cv. Given

X(V (G)) = [x1, . . . , x|V (G)|], the states of nodes in G, the
uncertainty of the configuration X is given by

U(G, X) = max(u,v)∈E(G) maxt∈assign(u,v) U(t, xu, xv).
That is, the maximum uncertainty on any target.

The computation starts at the leaf nodes. Starting from the
leaves, the nodes will compute a cost table of size N and pass
it onto their parents. Each non-leaf node waits until it receives
all tables from its children, then updates its own table and
passes onto its parent. The process continues until it reaches
the root who then computes the optimal placement for itself
and its children and informs them about their new location for
this time-step. The children do the same recursively.

For each node v, the table Tv[x] will hold the value of
the best possible uncertainty by relocating the nodes in G(v)
subject to the constraint that v is at the configuration x ∈ Cv.

Let v be an internal node, whose children are u1, . . . , uk.
The entries on the table Tv is computed as follows.

Tv[x] = max
ui

min
x′∈Cui

max
t∈assign(ui,v)

max{Tui [x
′], U(x′, x, t)}

(2)
As in the previous section, this process propagates

up to the root; who then computes the best pos-
sible location for itself. This location is given by
arg minx∈Cr Tr[x] where r is the root node. The root
then notifies each child ui that they should move
to arg minx′∈Cui

maxt∈assign(ui,v) max{Tui [x′], U(x′, x, t)}.
The children ui notify their children recursively.

For a given target-sensor pair assignment, the optimality
of this computation follows from the dynamic-programming
principle. To see this, inductively assume that the computation
is optimal for all trees whose height is at most k. Consider
a tree of height k + 1 rooted at node v. Then the optimality
of the move argminx∈Cv Tv[x] for node v follows from the
definition of Equation 2 and the inductive hypothesis.

We emphasize that this computation is optimal only for
given target assignments. Hence, it may not be the globally
optimal move for the end of the time-step (as the best
assignments may change after relocation).

D. Simulations

We demonstrate the utility of the deployment algorithm in
two simulations.

In the first simulation (Figure 3), the targets (represented by
squares) are stationary. The communication between the robots
(represented by circles) is restricted to the edges (colored,
bold lines). The color of the target matches the color of the
assigned edge and the dashed lines connect the targets to their

assigned sensors. The numbers on the targets are the estimation
uncertainties for the time-step. The title of each subfigure
shows the total error within the time-step. Further, since the
targets are static and the communication structure does not
change, the global computation converges to a local minimum
(i.e. the robots do not move any further after a while).

The second simulation is similar to the first one with the
exception of stationary targets. As shown in Figure 4, in this
simulation the targets move along a line whose direction is
chosen randomly. The targets move at a rate slower than the
robots and therefore the robots eventually catch up with targets
again forming spatially coherent clusters.

IV. CONCLUSION

In this paper, we studied two novel problems for sensor
networks. In the first part of the paper, we studied the problem
of placing a minimum number of (stationary) cameras to
minimize the error in localizing targets in a given workspace.
For this problem, we presented an approximation algorithm
and showed that its performance is within a constant factor of
the optimal performance.

Next, we studied the deployment problem where a mobile
sensor team is charged with tracking possibly mobile targets.
We focused on a version where the communication between
the nodes is restricted to a tree and formulated a discrete-time
version of this problem where the targets and the communi-
cation tree is treated as static within a single time-step. We
showed how the optimal move can be computed for a given
target/sensor-pair assignment and demonstrated the utility of
this algorithm in simulations.

The paper raises interesting questions for future research
directions: for the placement problem, establishing its com-
plexity and extending the algorithm for other types of sensors
are important problems. For the deployment problem, incorpo-
rating visibility issues in the target assignment is a significant
challenge which we will address in our future work.

ACKNOWLEDGMENT

This work is supported in part by a grant from RPI.

REFERENCES

[1] T. F. Gonzales, “Clustering to minimize the maximum intercluster dis-
tance,” Theoretical Comput. Sci., no. 38, pp. 293–306, 1985.

[2] J. O’Rourke, Art Gallery Theorems and Algorithms. Oxford University
Press, 1987.

[3] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control for
mobile sensing networks,” IEEE Transactions on Robotics and Automa-
tion, vol. 20, no. 2, pp. 243–255, 2004.

[4] J. Spletzer and C. Taylor, “Dynamic sensor planning and control for
optimally tracking targets,” International Journal of Robotics Research,
vol. 22, no. 1, pp. 7–20, 2003.

[5] V. Isler and R. Bajcsy, “The sensor selection problem for bounded uncer-
tainty sensing models,” IEEE Tran. Automation Science and Engineering,
2006, to appear.

[6] S. Aranda, S. Martı́nez, and F. Bullo, “On optimal sensor placement and
motion coordination for target tracking,” in International Conference on
Robotics and Automation, Barcelona, Spain, Apr. 2005.

[7] A. Kelly, “Precision dilution in mobile robot position estimation,” in
Intelligent Autonomous Systems, Amsterdam, Holland, 2003.

[8] E. W. Weisstein, “Disk covering problem,” MathWorld–A Wolfram Web
Resource, http://mathworld.wolfram.com/DiskCoveringProblem.html.

−10 −5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Time: 0 Error: 2315.6475

9.54 34.00

144.05

18.68

45.20 346.7455.92

1566.30

95.21

−10 −5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Time: 5 Error: 912.4452

0.76 5.58

84.26

24.65

73.64 191.1824.66

454.62

53.10

−10 −5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Time: 10 Error: 588.311

26.08 30.86

50.05

56.53

48.16 100.572.61

248.93

24.52

−10 −5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Time: 15 Error: 468.5935

52.17 58.77

77.98

25.57

6.50 103.634.03

138.10

1.85

−10 −5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Time: 20 Error: 404.6653

56.37 54.34

95.99

4.15

3.00 124.213.66

60.74

2.20

−10 −5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Time: 25 Error: 358.3811

56.37 54.34

95.99

4.15

3.00 124.213.66

14.45

2.20

Fig. 3. Snapshots from the simulation of an instance of the deployment problem. The communication between the robots (represented by circles) is restricted
to the edges (colored, bold lines). The color of the target matches the color of the assigned edge and the dashed lines connect the targets to their assigned
sensors. The numbers on the targets are the estimation uncertainties for the time-step. The title of each subfigure shows the total error within the time-step.

−10 −5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Time: 0 Error: 2315.6475

9.54 34.00

144.05

18.68

45.20 346.7455.92

1566.30

95.21

−10 −5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Time: 5 Error: 922.2095

2.80
12.74

107.84

17.04

59.94
143.91

25.31

492.31

60.30

−10 −5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Time: 10 Error: 653.8773

3.23

5.42

74.62

44.72

101.27

46.82

42.06

300.82

34.91

−10 −5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Time: 15 Error: 515.4663

34.41

25.31

37.29

4.00

91.66

31.20

7.05

255.93

28.62

−10 −5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Time: 20 Error: 484.84

21.89

24.07

25.37

2.29

133.99

22.03

10.18

212.13

32.88

−10 −5 0 5 10 15 20 25 30

0

5

10

15

20

25

30
Time: 25 Error: 554.2595

8.79

3.92

54.47

89.25

152.78

33.14

11.30

150.32

50.30

Fig. 4. Tracking targets moving at a constant velocity. See the caption of Figure 3 for details.

