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Abstract— In this paper, we study the problem of designing
motion strategies for a team of mobile agents, required to fulfill
request for on-site service in a given planar region. In our
model, each service request is generated by a spatio-temporal
stochastic process; once a service request has been generated,
it remains active for a certain deterministic amount of time,
and then expires. An active service request is fulfilled when one
of the mobile agents visits the location of the request. Specific
problems we investigate are the following: what is the minimum
number of mobile agents needed to ensure that a certain fraction
of service requests is fulfilled before expiration? What strategy
should they use to ensure that this objective is attained? This
problem can be viewed as the stochastic and dynamic version of
the well-known Vehicle Routing Problem with Time Windows.
We also extend our analysis to the case in which the time service
requests remain active is itself a random variable, describing
customer impatience. The customers’ impatience is only known
to the mobile agents via prior statistics. In this case, it is desired
to minimize the fraction of service requests missed because of
impatience. Finally, we show how the routing strategies presented
in the paper can be executed in a distributed fashion.

Index Terms— Mobile Robotic Networks, Sensor Networks,
Traveling Salesman Problem, Vehicle Routing Problem with Time
Windows, Customer Impatience.

I. INTRODUCTION

The Vehicle Routing Problem with Time Windows
(VRPTW) is an extension of the classic Vehicle Routing
Problem (VRP) and is defined as follows: given a set of depots,
a homogeneous fleet of vehicles and a set of known demand
locations, find a set of closed routes, originating and ending at
the depots, that service all demands and minimize the travel
cost; in addition, the service at each demand must start within
an associated time window. All problem parameters, such as
demand locations and time windows, are assumed to be known
with certainty. Time windows constraints are indeed common
in many applications, including bank deliveries, postal deliv-
eries, grocery distribution, dial-a-ride service, bus routing, and
repairmen scheduling. The VRPTW has generated significant
research interest over the years (see, for example, [1]–[5]),
resulting in major contributions in the area of combinatorial
optimization. However, paralleling the observations in [6]
about the VRP, the VRPTW, as a model for routing problems,
is static and deterministic, whereas many routing problems
in practice are inherently dynamic and stochastic. In fact,
requests for service often arrive sequentially in time, and these
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arrival epochs may be stochastic; moreover, locations of future
demands may be unknown or known only probabilistically.

Optimization problems with these characteristics arise fre-
quently in sensor network settings. As an example, imagine
a sensor network composed of a large number of nodes
is deployed over a vast field, for example to study the
behaviors of elusive animals, or to detect suspicious activ-
ity in a protected region as, for example, home burglaries,
or insurgents placing Improvised Explosive Devices (IEDs).
Typically, network nodes contain inexpensive sensors, such
as motion detectors, which are susceptible to false alarms. In
addition to the sensor network, suppose a team of Unmanned
Aerial Vehicles (UAVs) is also available, which are equipped
with more sophisticated on-board sensors. Each time a sensor
detects an event, a UAV is sent to the location to investigate the
cause of the alarm, i.e., to verify the presence of the animal or
the intruders. Then, the UAV mission control is a continuous
process of collecting alarms, planning routes and sending
UAVs; moreover, timeliness is paramount: should the UAV
take too long to reach the location of the event, its cause may
have already left the premises, and be hard to track. Another
possible scenario is a sensor network in which sensors are
triggered by external events, and then remain active to upload
data to a UAV for a certain known amount of time. After this
time expires, sensors return to a power-saving “sleep” mode.

A. The dynamic and stochastic VRPTW

In this paper, we introduce and study the following dynamic
and stochastic version of the VRPTW. We assume that de-
mands for service arrive according to a Poisson process with
rate λ to a bounded Euclidean service region Q with area |Q|.
Upon arrival, demands assume an independent and uniformly
distributed location in Q. Each demand has an associated
deterministic time window [ri, di], where di ≥ ri, ri, di ∈ R;
the release time ri is the demand’s arrival time, while the
deadline is ri + T , where T ∈ R+ is a constant independent
of the demand. Notice the assumption of equal width for the
time windows (although release times and deadlines clearly
differ from demand to demand). Demands are serviced by a
fleet of vehicles that travel at constant velocity v. We assume
that the on-site service times are equal to zero (i.e., we assume
that the on-site service times are negligible compared to the
travel times). Given ε ∈ (0, 1], the objective is to find routing
policies that, with the minimum possible number of agents,
ensure that each demand has a probability of being visited
before expiring greater than 1− ε.

This problem can be viewed as an extension of our com-
plementary previous works [7] and [8].
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B. Related work

The static and deterministic VRPTW has been the subject
of intensive research efforts for both heuristic and exact
optimization approaches (see, for example, [1]–[5]). Indeed,
the VRPTW is NP-hard; even finding a feasible solution to
the VRPTW when the number of vehicles is fixed is itself
an NP-complete problem [9]. Chapter 7 in [3] provides a
comprehensive survey on exact (exponential-time) solution
techniques. Because of the difficulty of the VRPTW and its
wide applicability to real-life situations, many heuristic solu-
tion techniques capable of producing high-quality solutions in
limited time have been proposed; a recent thorough survey on
heuristics for the VRPTW can be found in [4], [5].

To the best of our knowledge, this is the first time that a
dynamic and stochastic version of the VRPTW is introduced.
The dynamic and stochastic VRPTW is closely related to the
Dynamic Traveling Repairman Problem (DTRP) [6], [7], [10]–
[12], in which m identical vehicles must service demands
whose time of arrival, location and on-site service time are
stochastic, and the objective is to find service policies that
minimize the expected waiting time of the demands. In [8]
the authors studied a similar vehicle routing problem where
demands expire. They presented approximation algorithms for
the case where vehicles’ motion is restricted to a planar curve.

The dynamic and stochastic VRPTW is also related to
coverage problems of sensor networks. Considerable research
effort has been invested in studying coverage properties of
static sensor networks [13]–[17]. More recently, there has been
growing interest in understanding how the coverage proper-
ties of a sensor network may be improved by introducing
mobility to the sensor devices. The problem of relocating
sensors to improve coverage has been studied in [18]. In this
formulation, the sensors can individually estimate the positions
of the targets. However, the quality of coverage decreases
with increasing distance. The average area covered by mobile
sensors over a period of time has been characterized in [19].
It is shown that for a mobile sensor network with spatial
density λ, with each sensor moving according to a mobility
model similar to a random walk with expected velocity E[Vs],
the expected area covered in time interval (0, t) is given
by 1 − exp (−λ(πr2 + 2rE[Vs]t)). Finally, another related
problem is the orienteering problem (see, for example, [20]):
the input is an edge-weighted graph G = (V,E) (directed or
undirected), two nodes s, t ∈ V and a non-negative budget B.
The goal is to find an s − t walk of total length at most B
so as to maximize the number of distinct nodes visited by the
walk.

C. Statement of Contributions and Paper Organization

Since we use a variety of results from several areas, we
present a brief overview in Section II. In Section III we for-
mally define the dynamic and stochastic VRPTW. In Section
IV we study the special case when ε → 0+ and λ is large;
setting ε → 0+ implies that almost all demands are required
to be serviced before expiring. First, we compute a lower
bound on the minimum number of vehicles needed to ensure
that almost all demands are serviced before expiring; second,

we propose and analyze a service policy whose performance
provably approximates that of optimal policies. Then, in
Section V, we study a provably correct service policy for the
general case with ε and λ arbitrary. In Section VI we extend
our analysis to the case in which the time service requests
remain active is itself a random variable, describing customer
impatience; the customers’ impatience is only known to the
mobile agents via prior statistics. In Section VII we present
simulation results. In Section VIII we present a distributed
strategy for assigning demands to the vehicles, and to route
them in an efficient way; finally, in Section IX, we draw some
conclusions and discuss some directions for future work.

II. PRELIMINARIES

In this section, we briefly describe some known concepts
from probability, geometry and combinatorial optimization, on
which we will rely extensively later in the paper.

A. Notation

Let N0 be the set of nonnegative integers and R+ be the
set of positive real numbers. Let ‖ · ‖ denote the Euclidean
norm. Let Q be a compact, convex subset of Rd. We de-
note the Lebesgue measure of Q as |Q|. We define Jm

.=
{1, 2, · · · ,m}. Let G = (g1, · · · , gm) ∈ Qm ⊂ (Rd)m denote
the location of m points in Q. A partition (or tessellation) of
Q is a collection of m closed subsets Q = {Q1, · · · , Qm}
with disjoint interiors whose union is Q. The partition of Q
is convex, if each Qj , j ∈ Jm, is convex.

B. Convergence of Random Variables

We refer the reader to [21], [22] for comprehensive treat-
ment of convergence of random variables. A sequence of
random variables Xr, r ∈ N0, converges almost surely to
X (limr→∞Xr

a.s.= X) if limr→∞Xr(ω) = X(ω) for all
sample functions ω ∈ Ω where P [Ω] = 1. (In other words,
P [limr→∞Xr = X]=1.) The sequence of random variables
Xr converges almost surely to X if and only if, for each
ε > 0,

lim
r→∞

P
[
sups≥r {|Xs −X|} > ε

]
= 0. (1)

C. Inequalities for Random Variables

If X and Y are defined on the same probability space, then
X is almost surely larger that Y , written X

a.s.
≥ Y , if and only

if X(ω) ≥ Y (ω) for all ω ∈ Ω where P [Ω] = 1.
Moreover, we define the following notions for asymptotic

almost sure inequalities. We say that a sequence of random
variables Xr, r ∈ N0, is asymptotically almost surely upper
bounded by the random variable X (which we write as
limr→∞Xr

a.s.
≤ X) if, for any ε > 0,

lim
r→∞

P
[
sups≥r {Xs −X} > ε

]
= 0. (2)

Similarly, we say that Xr is asymptotically almost surely lower
bounded by X (that is, limr→∞Xr

a.s.
≥ X) if, for any ε > 0,

lim
r→∞

P
[
sups≥r {X −Xs} > ε

]
= 0. (3)
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Notice that neither (2) nor (3) implies any form of conver-
gence for the sequence Xr. On the other hand, if both hold at
the same time, it is clear that (1) is recovered.

D. Asymptotic and Worst-Case Properties of the Traveling
Salesperson Problem in the Euclidean Plane

The Euclidean Traveling Salesperson Problem (TSP) is
formulated as follows: given a set D of n points in Rd, find the
minimum-length tour (i.e., closed path that visits all points)
of D. Let TSP(D) denote the minimum length of a tour
through all the points in D; by convention, TSP(∅) = 0.
Suppose the set D is composed of n points whose locations
are independently chosen at random from a distribution f ,
supported on a compact set Q. In [23] it is shown that there
exists a constant βTSP,d such that, almost surely,

lim
n→+∞

TSP(D)
n1−1/d

a.s.= βTSP,d

∫
Q

f̄(q)1−1/d dq, (4)

where f̄ is the density of the absolutely continuous part of
the point distribution f . In other words, the optimal cost of
stochastic TSP tours approaches a deterministic limit. In the
planar case, the cost of stochastic TSP tours grows as the
square root of the number of points in D. Moreover, the current
best estimate of the constant in the case d = 2 is βTSP,2 '
0.7120 (see, e.g., [24]). For short, we let β .= βTSP,2.

Notice that the bound (4) holds for all compact sets: the
shape of the set only affects the convergence rate to the limit.
According to [25], if Q is a “fairly compact and fairly convex”
set in the plane, then Eq. (4) provides an adequate estimate of
the optimal TSP tour length for values of n as low as 15.

Remarkably, the asymptotic cost of the stochastic TSP
for uniform point distributions is an upper bound on the
asymptotic cost for general point distributions, i.e.,

lim
n→+∞

TSP(D)
n1−1/d

≤ βTSP,d|Q|1/d,

where |Q| is the area of Q. This follows directly from an
application of Jensen’s inequality for concave functions to the
right hand side of (4)∫

Q

f̄(q)1−
1
d dq ≤ |Q|1/d

(∫
Q

f̄(q) dq
)1− 1

d

≤ |Q|1/d.

Finally, if the support of the point distribution f is a compact
set Q ⊆ Rd, the following (deterministic) bound holds on the
length of the TSP tour [26]:

TSP(D) ≤ βQn1−1/d|Q|1/d. (5)

The price of determinism is that the constant βQ depends
on the set Q, and is generally much larger than βTSP,d. For
example, if Q is a unit square, βQ = 2.

E. Voronoi Diagrams

We refer the reader to [27] for a comprehensive
treatment of Voronoi diagrams. The Voronoi Diagram
V(G) = (V1(G), · · · , Vm(G)) of Q generated by points
G = (g1, · · · , gm) is defined by

Vi(G) = {x ∈ Q | ‖x−gi‖ ≤ ‖x−gj‖, ∀j 6= i, j ∈ Jm} (6)

We refer to G as the set of generators of V(G), and to
Vi(G) as the Voronoi cell or region of dominance of the i-th
generator. Each Voronoi cell is a convex set. Indeed, a Voronoi
Diagram is a convex partition of Q. For simplicity, we will
refer to Vi(G) as Vi. When the two Voronoi cells Vi and Vj
are adjacent (i.e., they share an edge), gi is called a Voronoi
neighbor of gj (and vice-versa).

Finally, we define an equitable Voronoi diagram as a
Voronoi diagram where all Voronoi cells have the same
Lebesgue measure, with respect to the distribution f .

F. The VRPTW

The classic VRPTW is defined on a complete graph G =
(V,A), where V = {v0, v1, . . . , vn} is the vertex set and
A = {(vi, vj) : vi, vj ∈ V, i 6= j} is the arc set. The
first p vertices in V represent depot locations at which one
or more of the m ≥ p available vehicles are based, while
the remaining vertices of V represent demand locations to be
serviced. With each vertex vi ∈ V is associated a nonnegative
on-site service time si, and a time window [ri, di], where
di ≥ ri, ri, di ∈ N0. We refer to ri as a release time, to di as a
deadline, and to di−ri as the width of the time window. Each
arc (vi, vj) has an associated nonnegative cost cij (usually
the travel time between vi and vj). The VRPTW consists of
designing m vehicle routes on G such that: (i) every route
starts and ends at the same depot; (ii) every demand belongs
to exactly one route; (iii) the service at demand i begins in
the interval [ri, di], and each vehicle j leaves its depot and
returns to its depot in the interval [rj , dj ], (iv) the total travel
cost of all vehicles is minimized. There are variants of this
problem where other constraints are added, for example the
total load and duration of route j are required not to exceed
certain thresholds. Moreover, the fleet size m can be a variable
and a usual additional objective is to minimize m.

All problem parameters are assumed to be known with
certainty. Note that finding a feasible solution to the VRPTW
is itself an NP-complete problem [9].

III. PROBLEM DEFINITION

We focus on the case where the environment Q is a compact,
convex subset of R2.1 Without loss of generality we will
assume that the measure of Q (denoted as |Q|) is 1.

Demands are serviced by a team of m holonomic vehicles,
modeled as point masses. The vehicles are free to move, with
bounded velocity v, within the environment Q; without loss
of generality, we will assume that the velocity magnitude is
unitary. The vehicles are identical, and have unlimited fuel
and demand servicing capacity. For simplicity, vehicles are
not required to stop or to loiter in proximity of demands (i.e.,
we assume zero on-site service time).

Service operations start at time 0; the initial number of
demands is a positive integer random variable. Demands arrive
at Q according to a Poisson process with intensity λ, and their
locations are independent and uniformly distributed over Q.

1Extensions to higher dimensions are in principle straightforward, but the
constants appearing, e.g., in (4), are less well known.
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In other words, the number of demands generated over time
within a region S ⊆ Q can be described as a homogeneous
Poisson process with rate

λS = λ · |S|.

When the number of vehicles is a function of λ, we denote
such number as m(λ). It is assumed that the initial number
of demands is independent of λ. The term heavy load is used
to denote the condition λ → ∞. We will label demands in
increasing order with respect to time of arrival, by using the
index i ∈ N0. Each demand has an associated deterministic
time window: the release time ri is the demand’s arrival time,
while the deadline is ri + T , where T ∈ R+ is a constant
independent of the demand. Notice the simplifying assumption
of equal width for the time windows (although release times
and deadlines clearly differ from demand to demand).

If one of the vehicles visits the location of the i-th demand
at a time ti such that ri ≤ ti < di, then the i-th demand is
considered serviced; otherwise the i-th demand is considered
expired. Let Wi be a random variable expressing the sojourn
time in the system for the i-th demand. If the i-th demand is
serviced, then Wi = ti−ri, otherwise Wi = T . Notice that, by
definition, all random variables Wi are surely bounded below
and above; in particular, we have 0 ≤Wi ≤ T .

Let D(t) be the set of locations of demands generated up
to time t. Information on outstanding demands (i.e., arrived
demands that have neither been serviced nor expired) at time
t is summarized as a finite set of demand positions Do(t) ⊆
D(t). Demands are inserted in both D and Do as soon as
they are generated; they are removed from Do either upon
servicing—as a vehicle visits the demand’s location— or upon
expiration. We assume that information contained in D(t) and
Do(t) is available to all vehicles.

Given ε ∈ (0, 1], the objective is to find routing policies
that ensure

lim
i→∞

P

[
Wi < T

]
≥ 1− ε, (7)

with the minimum possible number of agents. (Notice that
Wi = T if and only if the i-th demand expired.) We will
refer to ε as the “reliability” of the system (notice that ε small
implies high reliability).

Define Wλ
i as the sojourn time of the i-th demand when

the arrival rate is λ. Given ε ∈ (0, 1], the objective, in heavy
load, is to find routing policies that ensure

lim
i→∞

P

[
lim
λ→∞

Wλ
i < T

]
≥ 1− ε. (8)

The heavy load assumption will allow us to find some inter-
esting asymptotic results.

IV. THE DYNAMIC AND STOCHASTIC VRPTW
IN HEAVY LOAD

In this section we study the special case when ε→ 0+ and
λ → ∞. Setting ε → 0+ implies that, in steady state, almost
all demands are required to be serviced before expiring. Our
strategy is the following: First, we establish a heavy-load lower

bound on the minimum number of agents required to ensure
Eq. (8) when ε→ 0+. Second, we analyze a heavy-load policy
with a provable performance guarantee.

A. Heavy-Load Lower Bound

We have the following
Theorem 4.1: The minimum number m∗(λ) of vehicles

required to ensure (8) when ε→ 0+ satisfies:

lim
λ→∞

m∗(λ)√
λ
≥ γ√

T
, (9)

where γ ≥ 2/(3
√

2π) ≈ 0.266.
Proof: When ε → 0+, we require that, in the limit

i→∞, all demands (except possibly a negligible set) receive
service before expiration. Thus, in the limit i → ∞, our
problem resembles the Dynamic Vehicle Routing Problem [6].
In [6] it is shown that, for any policy, the limiting expected
sojourn time satisfies (assuming zero on-site service time):

lim
i→∞

E
[
Wλ
i,DTRP

]
m2(λ)

λ
≥ γ2,

where Wλ
i,DTRP is the sojourn time of the i-th demand in the

DTRP when the arrival rate is λ, and γ ≥ 2/(3
√

2π) ≈ 0.266.
Therefore, in heavy load

lim
λ→∞

lim
i→∞

E
[
Wλ
i,DTRP

]
m2(λ)

λ
≥ γ2.

Since all demands, except possibly a negligible set, receive
service within a time T , we have eventually E

[
Wλ
i,DTRP

]
≤ T .

It follows that

lim
λ→∞

lim
i→∞

Tm2(λ)
λ

≥ γ2. (10)

Therefore, to satisfy Eq. (10), we need

lim
λ→∞

m(λ)√
λ
≥ γ√

T
.

Thus, the required number of vehicles in heavy load and
when ε→ 0+ can not be less then m∗(λ) .=

⌈
γ
√
λ/T

⌉
.

B. A Provably Good Heavy Load Policy

In this section, we propose a policy (which we call TSP
Policy) that satisfies Eq. (8) and requires a number of vehicles
that is within a constant factor from the optimum. A pseudo-
code description of the TSP Policy is provided in Algorithm
1. The requirement that the location of each demand is visited
even if the demand expired is introduced to simplify the
analysis.

We assume that each vehicle spends a fixed time c > 0,
c � T , to compute a new TSP tour; the computation time c
does not depend on the number of outstanding demands2.

The behavior of the TSP policy is summarized in the
following theorem.

2The assumption of a small and constant computation time is indeed
common in the DTRP literature; e.g., in [6], the computation time is assumed
to be zero.
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Algorithm 1 TSP Policy
Require: m, the number of vehicles.
Ensure: Routing policy to service demands.

At start-up, the environment Q is partitioned into m service
regions Qj , j ∈ Jm, of equal area 1/m (recall that |Q| = 1),
and each agent is assigned to a distinct service region. Then,
each agent executes in its own service region:
while TRUE do

if there are no unvisited demands then
Move at unit velocity toward the median of the service
region.

else
Compute the TSP tour through all demands.
Service demands by following the TSP tour (start from
the closest demand and randomly select one of the two
possible orientations of the tour).
Do not skip demands that expired.

end if
end while

Theorem 4.2: Assume that the TSP policy is used with a
number of vehicles m(λ) (i.e., m depends on λ) that satisfies

β

√
2
T
< lim
λ→∞

m(λ)√
λ

< +∞. (11)

Then

lim
i→∞

P

[
lim
λ→∞

Wλ
i < T

]
= 1.

In other words, the TSP policy, with a number of vehicles that
satisfies Eq. (11), solves, in heavy load and when ε→ 0+, the
dynamic and stochastic VRPTW. Moreover, if we define, with
δ > 0 an arbitrarily small constant,

mTSP(λ) .=

⌈
√
λ
(
β

√
2
T

+ δ
)⌉

(12)

(mTSP(λ) clearly satisfies Eq. (11)) we obtain

lim
λ→∞

mTSP(λ)
m∗(λ)

≤ 3.78. (13)

Equation (13) shows that the number of vehicles required by
the TSP policy is within a constant factor from the optimal
value.

Before proving Theorem (4.2), we need some notation and
two lemmas.

To simplify the analysis, we write λ = kl where k ∈ N0

and l > 0 is an arbitrary constant: thus, heavy load is obtained
for k → ∞. With a slight abuse of notation, let Wλ

i,j be the
sojourn time of the i-th demand arriving in service region j.
By definition of the policy, what happens in a service region
j ∈ Jm is independent of what happens in any other service
region h 6= j. Thus, under the TSP policy, ensuring Eq. (8)
when ε→ 0+ calls for ensuring that

lim
i→∞

P

[
lim
λ→∞

Wλ
i,j < T

]
= 1, ∀j ∈ Jm.

Our analysis will thus concentrate on the (independent)
sequences of random variables Wλ

i,j . In the following, to avoid
cumbersome notation, we will drop the index j, with the
understanding that all the following analysis refers to a service
region j (and not to the whole environment Q).

The arrival rate in a service region of area 1/m(λ), is λ̄ =
λ/m(λ). We refer to the time instant tr, r ∈ N0, at which
the vehicle computes a new TSP tour (recall that each service
region is serviced by exactly one vehicle) as the epoch r of
the policy; we refer to the time interval between epoch r and
epoch r + 1 as the r-th iteration. Finally, we define
• nkr , r ≥ 1: number of demands arrived in between epochs
r−1 and r, when the overall arrival process has intensity
λ = kl;

• Ckr , r ≥ 0: time interval between epochs r and r + 1,
when the overall arrival process has intensity λ = kl.
This time interval is the sum of (i) the computation time
(equal, deterministically, to c time units), and of (ii) the
time required to service all demands arrived in between
epochs r − 1 and r following a TSP tour;

• W k
i , i ≥ 0: sojourn time of the i-th demand, when the

overall arrival process has intensity λ = kl;
• m(k): number of vehicles used when λ = kl.

Notice that Ckr − c is also the length of the TSP tour through
the demands arrived in between epochs r − 1 and r; indeed,
velocity is unitary, and in heavy load we can safely neglect the
travel component between the agent’s current position and the
closest demand in the TSP tour (see also part (i) in Lemma
4.3 below).

In the next Lemma, we provide some almost sure conver-
gence results concerning random variables Ckr and nkr .

Lemma 4.3: Assume

β

√
2
T
< lim
k→∞

m(k)√
kl

< +∞.

Then, at each epoch r ≥ 1:

(i) lim
k→∞

nkr
a.s= ∞;

(ii) lim
k→∞

Ckr − c√
nkr

√
m(k) a.s= β;

(iii) lim
k→∞

nkr
Ckr−1

1
kl/m(k)

a.s= 1.

Indeed, limit (i) is intuitive; limit (ii) is an application of the
TSP Theorem (Eq. (4)), and limit (iii) is a consequence of the
strong law for renewal processes. A detailed proof is provided
in the Appendix.

The next Lemma characterizes the length of an iteration.
Lemma 4.4: Assume

β

√
2
T
< lim
k→∞

m(k)√
kl

< +∞.

Then
lim sup
r→∞

lim sup
k→∞

Ckr
a.s.
< T/2.

Proof: Recall that Ckr+1−c is the length of the TSP tour
through the demands arrived in between epochs r and r + 1.
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Then, using Lemma 4.3, we can write

lim sup
k→∞

Ckr+1 =

c+ lim sup
k→∞

(Ckr+1 − c) =

c+ lim sup
k→∞

Ckr+1 − c√
nkr+1

√
m(k)√
m(k)

√
nkr+1

a.s=

c+ lim sup
k→∞

β√
m(k)

√
nkr+1 =

c+ lim sup
k→∞

β√
m(k)

√
nkr+1

Ckr

kl/m(k)
kl/m(k)

Ckr
a.s.=

c+ lim sup
k→∞

β

√
kl

m(k)

√
Ckr <

c+

√
T

2
lim sup
k→∞

√
Ckr .

(14)

Define the random variable Xr
.= lim supk→∞ Ckr ; equation

(14) allows to determine an almost sure upper bound on
lim supr→∞Xr. It is straightforward to verify

lim sup
r→∞

Xr

a.s.
<

1
4

(√
T

2
+

√
T

2
+ 4c

)2

; (15)

since, by assumption, c� T , we get the claim.
Proof: [Theorem 4.2] Notice that, for demands arriving in

between epochs r and r+ 1, the sojourn time W k
i is bounded

above by (Ckr + Ckr+1); therefore, applying Lemma 4.4, we
can write

lim sup
i→∞

lim sup
k→∞

W k
i ≤ lim sup

r→∞
lim sup
k→∞

(
Ckr + Ckr+1

) a.s.
< T.

(16)
For convenience, define T̄ as

T̄
.= lim sup

i→∞
lim sup
k→∞

W k
i .

From the definition, T̄ is a random variable (it might not be a
constant) almost surely smaller than T . Recalling the definition
of almost sure convergence, we have for any δ > 0

lim
i→∞

P

[
sup
p≥i

{∣∣∣∣∣sup
q≥p

(
lim sup
k→∞

W k
q

)
− T̄

∣∣∣∣∣
}
> δ

]
= 0.

Thus, we have a fortiori

lim
i→∞

P

[(
lim sup
k→∞

W k
i − T̄

)
> δ

]
= 0.

The claim follows from the fact that δ is arbitrary and T̄
a.s.
< T .

V. A SERVICE POLICY FOR THE NON-ASYMPTOTIC CASE

The previous results hold only in the limit λ → ∞ and
when ε → 0+. In this section, we study the TSP policy for
arbitrary values of ε ∈ (0, 1] and in general load conditions. In
particular, we study the number of vehicles that are sufficient,
for a given ε, to ensure Eq. (7). Here, we assume that

vehicles are allowed to skip the expired demands. We have
the following

Theorem 5.1: For any given ε ∈ (0, 1] and any λ, a number
of vehicles sufficient for the TSP policy to ensure Eq. (7) is

m =

⌈
βQ

√
2λ
εT

⌉
,

where βQ is a constant that depends on the shape of the service
regions.

Proof: As in Section IV.B, we analyze the sequence of
sojourn times within a given cell j ∈ Jm, and we drop the
index j, with the understanding that all the following analysis
refers to a service region j (and not to the whole environment
Q).

To avoid any confusion, we restate some of the notation.
The arrival rate in a service region, whose area is 1/m, is
λ̄ = λ/m. We refer to the time instant tr, r ∈ N0, in which the
vehicle computes a new TSP tour as the epoch r of the policy;
we refer to the time interval between epoch r and epoch r+1
as the r-th iteration. We define nr as the number of demands
arrived in between epochs r− 1 and r. Finally, we define Cr
as the time interval between epochs r and r+1. For simplicity
we assume the computation time to be zero; extension to the
case c > 0 is straightforward but cumbersome.

First, we study the sequence of expected values E [Cr]. By
the deterministic inequality for the TSP tour through n points,
we have (recall that the area of each service region is 1/m)

Cr+1 ≤ βQ
√
nr+1/m,

where the contribution of the initial travel to the closest de-
mand in the TSP tour is included in βQ. By applying Jensen’s
inequality for concave functions, in the form E

[√
X
]
≤√

E [X], we get

E [Cr+1] ≤ βQ
√

E [nr+1]/m.

During iteration r of the policy, demands arrive according
to a Poisson process. Call nnew

r the number of demands arrived
during iteration r. Thus, we have E [nr+1] = E [nnew

r ] =
λ̄E [Cr]; therefore

E [Cr+1] ≤ βQ
√
λ̄E [Cr]/m.

The above inequality describes a recurrence relation that al-
lows to bound the value to which E [Cr] converges as r →∞.
It is straightforward to verify that

lim sup
r→∞

E [Cr] ≤ β2
Q

λ

m2
.

Since, for demands arriving in between epochs r and r + 1,
the sojourn time Wi is bounded above by (Cr + Cr+1), we
can write

lim sup
i→∞

E [Wi] ≤ 2β2
Q

λ

m2
.

Furthermore, since Wi is a non-negative random variable with
finite mean, we can apply Markov inequality to obtain

P [Wi = T ] = P [Wi ≥ T ] ≤ E [Wi]
T

;
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therefore we have

lim sup
i→∞

P [Wi = T ] ≤ lim sup
i→∞

E [Wi]
T

≤ 2β2
Q

λ

m2T
.

If we choose m such that 2β2
Qλ/(m

2T ) < ε, we can guarantee
that lim supi→∞ P [Wi = T ] < ε, and we obtain the claim.

Remark 5.2: Some remarks are in order.
1) The constant βQ depends on the shape of the service re-

gions; for example, if service regions are approximately
square, then βQ ≈ 2 (recall that we are including in
βQ the contribution of the initial travel to the closest
demand in the TSP tour).

2) Markov inequality is often a loose upper bound for the
cumulative distribution function of a random variable;
thus, we believe that the result of Theorem 5.1 is very
conservative.

3) Notice, moreover, that the TSP policy does not rely
on the knowledge of demands’ release times; in other
words, it does not give priority to demands that are about
to expire. It is clear that, to lower the number of needed
vehicles, the knowledge of the releases times should be
exploited.

VI. THE DYNAMIC AND STOCHASTIC VEHICLE ROUTING
PROBLEM WITH CUSTOMER IMPATIENCE

In this section, we extend our analysis to the case in which
the time service requests remain active is itself a random
variable, describing customer impatience. In this case, it is
desired to minimize the fraction of service requests missed
because of impatience. A preliminary version of these results
appeared in [28].

A. Problem Definition

The problem definition is similar to that of Section III. The
new fact is that, now, each demand i has an associated random
impatience time Li; should the i-th demand not be visited
within time Li from its arrival, it will expire. The impatience
times Li are independent and identically distributed according
to a density fL : R+ → R. We assume that demands’
impatience is known to the vehicles only via prior statistics.
This is in sharp contrast to the standard Vehicle Routing
Problem with Time Windows, where the time windows are
known by the vehicles.

Similarly as before, we define Wi as the sojourn time in the
system for the i-th demand. The random variable Wi is the
elapsed time between the arrival of demand i and the time
when either one of the vehicles visits its location or such
demand departs from the system due to impatience - whichever
is smaller. A demand is considered serviced if Wi < Li.

Given ϕ ∈ (0, 1], the objective is to ensure that no more
than a fraction ϕ (where ϕ ∈ (0, 1] is a control parameter) out
of all the arrived demands departs impatiently before service.
Notice that we rule out the case ϕ = 0. We want to answer
the questions: what is a sufficient number of mobile agents
needed to ensure that each service request is fulfilled before
expiring, with probability at least 1−ϕ? What strategy should
they use to ensure this objective is attained?

We will restrict our analysis to the heavy load case.

B. From Customer Impatience to Deterministic Time Windows

Our approach is to transform the problem with customer
impatience into a problem with deterministic time windows,
and then to apply the results of the previous sections. Recalling
that the impatience times are identically distributed, define the
critical time Tcrit as

Tcrit
.= max

{
T ∈ R+ :

∫ ∞
T

fL(t)dt = P [L > T ] > 1− ϕ
}
.

Clearly, if a routing policy is able to ensure that each
demand location (regardless of its impatience) is visited within
time Tcrit from its arrival, then this policy ensures that no
more than a fraction ϕ out of all the arrived demands departs
impatiently before service. Through the concept of critical time
we can, therefore, address the problem of servicing demands
with impatience as the problem of visiting all demands’
locations, regardless of their impatience (i.e., even if they
depart impatiently), within a constant time. In other words,
through the concept of critical time, we cast the problem of
servicing demands with impatience into the previous dynamic
and stochastic VRPTW, in which the time windows have
length Tcrit and we require a system reliability ε→ 0+.

This approach on the one hand introduces some degree of
conservatism, but on the other hand it simplifies considerably
the mathematical analysis.

C. A Provably Correct Heavy Load Policy

From the previous discussion, we argue that, in heavy load,
the TSP policy (see Algorithm 1) solves the dynamic and
stochastic vehicle routing problem with customer impatience
for any ϕ ∈ (0, 1]. An upper bound on the number of vehicles
needed by the TSP policy is

m =

⌈
β

√
2λ
Tcrit

⌉
. (17)

VII. SIMULATION RESULTS FOR THE TSP POLICY

In this section we verify by simulations the correctness
of the previous results. All simulations are performed using
linkern 3 as a solver to generate approximations to the
optimal TSP tour. This powerful solver yields approximations
in the order of 10% of the optimal tour cost very quickly for
many instances. For example, in our numerical experiments
on a 2.4 GHz Pentium machine, approximations of random
TSPs with 1, 000 points typically required about two seconds
of CPU time.

A. TSP Policy in Heavy Load

The analysis of the TSP policy in heavy load culminates
in Eq. (12), which dictates how many vehicles are needed to
ensure that almost no demand is missed.

We consider the scenario λ = 1000 and T = 5. Then,
equation (12) prescribes mTSP = 15 vehicles. We run, starting
from random initial conditions, 100 simulations; each run

3 linkern is written in ANSI C and is freely available for academic
research use at http://www.tsp.gatech.edu//concorde.html.
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TABLE I
FRACTION ρ OF EXPIRED DEMANDS

max ρ E [ρ] σ(ρ)

4.1 · 10−3 3.5 · 10−3 7.5 · 10−4

consists of 200 iterations of the TSP policy. For each run, we
record the fraction ρ of demands that expire before service.
Table I summarizes simulation results; we report the worst
case value of ρ, the mean value of ρ and its standard deviation
(mean value and standard deviation are over 100 realizations).

From Table I, the worst case fraction of missed demands
is ρ = 4.1 · 10−3, that is 4 demands every 1000 demands are
missed in the worst case; recalling that our analysis holds in
the limit λ→∞, and that we are using an approximate TSP
solver, we conclude that simulation results match our previous
analysis.

The central idea in the analysis of the TSP policy in heavy
load is that each iteration should last a time interval less than
T/2. Figure 1 shows the worst case iteration length versus the
number of vehicles employed. We consider the case T = 5 and
λ = 400. Equation (12) prescribes 10 vehicles, and m = 10
is exactly the minimum number of vehicles to obtain a worst
case iteration length smaller than T/2. This shows that our
analysis of the TSP policy is rather tight.

3 4 5 6 7 8 9 10 11 12 130

5

10

15

20

Number of Vehicles

Ite
ra

tio
n 

Le
ng

th

T/2

Fig. 1
ITERATION LENGTH AS A FUNCTION OF m; λ = 400, T = 5, mTSP = 10.

B. TSP Policy in Normal Load

We now test the TSP policy in moderate load, with the
number of vehicles prescribed by Theorem 5.1. We compute
the maximum fraction ρ of missed demands as a function of
ε and λ. The maximum is over 100 sample paths, with 200
iterations each. We consider T = 5, ε ∈ {0.1, 0.4, 0.6, 0.9}
and λ = {1, 5, 10, 20, 30, 40, 50, 60, 70, 80}. The number of
vehicles is dictated by Theorem 5.1.

For all pairs (ε, λ), we obtained max ρ = 0. This result is
somewhat expected, since, as discussed before, Theorem 5.1
provides a very loose upper bound on the number of vehicles
needed to guarantee ε-reliability.

It is interesting to verify if the results obtained for the heavy
load case, in particular Eq. (12), remain valid for moderate
values of λ. Figure 2 shows the worst case fraction of missed

demands for various values of λ (the worst case is with respect
to 100 sample paths). The number of vehicles is prescribed by
Eq (12). It can be seen that for λ > 350 ρ ≈ 0, and that for
λ ≤ 350 ρ is never larger than 0.1.

0 50 100 150 200 250 300 350 400 450 500 550 6000
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0.8

0.9

1

!

"

Fig. 2
FRACTION ρ OF MISSED DEMANDS AS A FUNCTION OF λ. THE NUMBER OF

VEHICLES IS PRESCRIBED BY EQ. (12).

C. TSP Policy with Customer Impatience

First, we consider the scenario where demands have an
impatience uniformly distributed in [0, 90], i.e.

fL(t) =
{

1/90 if t ∈ [0, 90];
0 otherwise.

We set ϕ = 0.05; therefore Tcrit = 4.5 seconds. We consider
λ = {10, 20, 40, 50, 75, 100}. For each value of λ, we run,
starting from random initial conditions, 100 simulations. For
each λ, we record the fraction ρ of demands that are missed
in the worst case run. For every value of λ, the number of
vehicles is dictated by Eq. (17).

Figure 3 shows the results. The TSP policy always satisfies
the requirement that no more than ϕ = 5% of demands depart
impatiently. The requirement is satisfied with a considerable
safety margin, and this is a consequence of the conservatism
that characterizes our approach. Recall that Eq. (17) was
derived under the heavy load assumption. These simulations
show that Eq. (17) seems to be applicable for every value of
λ.

Then, we consider an impatience that follows an exponential
distribution with the same mean of the previous uniform
distribution, i.e.:

fL(t) =
{
δe−δt if t ≥ 0;
0 otherwise.

where δ = 1/45 seconds. We repeat the previous simulations
with this new customer impatience model. The TSP policy,
also in this case, always satisfies the requirement, with a
considerable safety margin (see Fig. (4)).

VIII. DECENTRALIZED EQUITABLE PARTITIONING

The TSP policy is centralized, since it requires a centralized
assignment of the service regions. As introduced in [7],
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Fig. 3
FRACTION OF DEMANDS THAT DEPART IMPATIENTLY AS A FUNCTION OF

λ; THE NUMBER OF AGENTS IS RESPECTIVELY

m = {1, 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 9, 10}. THE IMPATIENCE TIME FOLLOWS

A UNIFORM DISTRIBUTION.
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FRACTION OF DEMANDS THAT DEPART IMPATIENTLY AS A FUNCTION OF

λ; THE NUMBER OF AGENTS IS RESPECTIVELY

m = {1, 1, 2, 3, 3, 5, 5, 6, 7, 9, 10, 12, 14}. THE IMPATIENCE TIME

FOLLOWS AN EXPONENTIAL DISTRIBUTION.

[29], assuming that Q is convex, m agents can achieve a
configuration with equitable (i.e. with the same area) service
regions in a decentralized way. The first step is to associate
to each vehicle i a virtual generator gi. We define the region
of dominance for vehicle i as the Voronoi cell Vi = Vi(G),
where G .= (g1, · · · , gm). We refer to the partition into regions
of dominance induced by the set of virtual generators G as
V (G). A virtual generator gi is simply an artificial variable
locally controlled by the i-th agent; in particular, gi is a virtual
point (see Fig. 5) .

We shall assume that each vehicle has sufficient infor-
mation available to determine: (1) its Voronoi cell, and (2)
the locations of all outstanding events in its Voronoi cell.
A control policy that relies on information (1) and (2) is
Voronoi-distributed in the sense that the behavior of each
vehicle depends only on the location of the other agents with
contiguous Voronoi cells (the number of Voronoi neighbors
of each generator is on average less than or equal to 6
[27]). Accordingly, Voronoi-distributed policies are spatially
distributed and scalable in the number of agents. A spatially

Agent

Generator's 
Location

Dominance
Region

Fig. 5
AGENTS, VIRTUAL GENERATORS AND REGIONS OF DOMINANCE.

distributed algorithm for the local computation and mainte-
nance of Voronoi cells is provided in [30].

The key idea, then, is to enable virtual generators to follow
a (Voronoi-distributed) gradient descent law such that an
equitable partition is reached (see [7] for the details). Figure
6 shows a typical partition that arises with such algorithm.

Generator's 
Location

TSP tour

Agent
Demand

Fig. 6
EACH VEHICLE SERVICES OUTSTANDING DEMANDS INSIDE ITS OWN

REGION OF DOMINANCE BY FOLLOWING A TSP TOUR.

IX. CONCLUSION

In this paper, we introduced and studied a dynamic and
stochastic version of the well-known Vehicle Routing Problem
with Time Windows. In our model, each service request is
generated by a spatio-temporal stochastic process; once a
service request has been generated, it remains active for a
certain deterministic amount of time, and then expires. Given
ε ∈ (0, 1], the objective is to find routing policies that, with the
minimum possible number of agents, ensure that each demand
has a probability of being visited before expiring greater than
1− ε.

We first presented a lower-bound on the minimum number
of vehicles for the case when ε → 0+ and the arrival rate
of events is large (heavy load). Next, we presented a heavy-
load routing strategy for servicing almost all demands before
they expire and showed that the number of vehicles is within
a small constant from the optimal value. We then studied
the case where the arrival rate is arbitrary and an arbitrary
fraction of the events must be serviced; also for this case we
provided a provably correct algorithm. Finally, we extended
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these results to the case where the expiration time of an event
is itself a random variable. In addition, we showed how the
routing strategies presented in the paper can be executed in
a distributed fashion. Our theoretical results are confirmed by
simulations.

Several important research directions will be the objective
of future work. First of all, the results in this paper assume
that the time windows are either deterministic and uniform for
all demands, or stochastic and unknown to the agents; it is of
interest to extend our work to a more general setup. Second,
we will investigate the extension of the work presented in
this paper to the case in which the demands are generated
according to non-uniform spatial distributions. Finally, some
of the bounds in this paper are conservative, thus we plan to
search for tighter bounds.
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APPENDIX

In this appendix, we restate and prove Lemma 4.3.
Lemma 4.3: Assume

β

√
2
T
< lim
k→∞

m(k)√
kl

< +∞.

Then, at each epoch r ≥ 1:

(i) lim
k→∞

nkr
a.s= ∞;

(ii) lim
k→∞

Ckr − c√
nkr

√
m(k) a.s= β;

(iii) lim
k→∞

nkr
Ckr−1

1
kl/m(k)

a.s= 1.

Proof: The arrival rate in a service region is kl/m(k).
Consider an arbitrary deterministic time interval c > 0 and let
nk(c) be the number of Poisson arrivals, with rate kl/m(k), in
such time interval; we start by proving that limk→∞ nk(c) a.s.=
∞. From Section II, we have

lim
k→∞

nk(c) a.s.= ∞⇔ ∀N > 0 lim
k→∞

P
[⋃∞

p=k[np(c) < N ]
]

= 0.

Therefore, we want to show that

∀ ε > 0 ∃ k̄ : ∀k > k̄ P
[⋃∞

p=k[np(c) < N ]
]
< ε. (18)

By assumption

L < lim
k→∞

m(k)√
kl

< U,

where L and U are two positive constants (their values are of
no concern here). Thus, there exists k1 > 0 such that for all
k ≥ k1

L <
m(k)√
kl

< U.

Let k2 be the smallest integer k such that
√
klc/L > 1. Now,

by using the union bound and assuming k > max(k1, k2), we
have

P
[⋃∞

p=k[np(c) < N ]
]

6
∞∑
p=k

P [np(c) < N ] =

∞∑
p=k

N−1∑
n=0

e−
plc

m(p)

(
plc/m(p)

)n
n!

≤

∞∑
p=k

N−1∑
n=0

e−
√

plc
U

(√
plc/L

)n
n!

≤

N

∞∑
p=k

e−
√

plc
U (
√
plc/L)N−1.

The series
∑∞
p=0 e

−
√

plc
U (
√
plc/L)N−1 is convergent (as it

can be easily verified with the comparison test); there-
fore, limk→∞

∑∞
p=k e

−
√

plc
U (
√
plc/L)N−1 = 0. Let k3

be the smallest integer such that, for all k > k3,∑∞
p=k e

−
√

plc
U (
√
plc/L)N−1 < ε/N . Then, by letting k̄

.=
max(k1, k2, k3), we prove (18).

Now, the time interval between epochs r − 1 and r (call
it τr−1) is at least as large as the computation time c >
0. Thus, if Ω is the set of sample functions ω for which
limk→∞ nk(c) =∞, we have limk→∞ nk(τr−1) =∞ for all
ω in Ω. Since P [Ω] = 1 (and nk(τr−1) = nkr by definition),
part (i) is proven.

We now prove part (ii). By Eq. (4), we know that,
given a set Dn of n points that are independent and
uniformly distributed in a region of unit area, we have
limn→∞ TSP(Dn)/

√
n
a.s.= β. From part (i) of this Lemma,

we also have that limk→∞ nkr
a.s= ∞. Assume, now, that

we scale by a factor
√
m(k) the coordinates of the de-

mands that arrive in between epochs r − 1 and r, when
the overall arrival rate is kl. Let F kr be the length of the
tour through such scaled demands (the scaled demands are
uniformly distributed in a region with unit area). Thus, for
any sample function (except possibly for a set of probability
zero), F kr /

√
nkr runs through the same sequence of values with

increasing k as TSP(Dn)/
√
n runs through with increasing

n. Thus if Ω is the set of sample functions ω for which both
limn→∞TSP(Dn)/

√
n = β and limk→∞ nkr

a.s.= ∞, we have
limk→∞ F kr /

√
nkr = β for all sample functions in Ω. By Eq.

(4) and part (i) of the Lemma we have P [Ω] = 1. Thus

lim
k→∞

F kr√
nkr

a.s.= β.

By scaling, we have F kr = (Ckr − c)
√
m(k), and thus we get

the limit in part (ii).
Finally, we prove part (iii). The number of arrivals in

between epochs r − 1 and r is N
kl

m(k) (Ckr−1), where
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{N
kl

m(k) (t); t > 0} is a Poisson process with intensity
kl/m(k). By the strong law of large numbers for renewal
processes (see, for example, [31]) we have

lim
t→∞

N1(t)/t a.s.= 1.

For every k, consider the time scaling:

τ
.=

kl

m(k)
t.

Notice that in the new time scale the arrival rate is λ = 1
for every k. Let C̃kr−1 be the length of the time interval
between epochs r − 1 and r in the new time scale, i.e.
C̃kr−1 = kl

m(k)C
k
r−1. Since, by definition, Ckr−1 ≥ c > 0, and

since by assumption limk→∞ kl/m(k) =∞, we have

lim
k→∞

C̃kr−1
a.s.= ∞.

Therefore, with similar arguments as before, we obtain

lim
k→∞

N1(C̃kr−1)

C̃kr−1

a.s.= 1. (19)

By scaling, we have N1(C̃kr−1) ≡ N
kl

m(k) (Ckr−1), therefore
Eq. (19) is equivalent to

lim
k→∞

N
kl

m(k) (Ckr−1)
Ckr−1

1
kl/m(k)

a.s.= 1.

Since, by definition, nkr = N
kl

m(k) (Ckr−1) , we obtain the claim.
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