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Abstract—In the rendezvous search problem, two robots at ~ Suppose that two robots start at locationsand y in an
unknown locations must successfully meet somewhere in theenvironment(. Let d(x,y) be the distance between these
environment. We study the symmetric version of the problem points. For a rendezvous stratedy let S;(z,y) denote the

in which they must use the same strategy. We provide a new . .
algorithm for the symmetric rendezvous problem on the line. (expected) distance traveled by robobefore rendezvous,

Our symmetric strategy has a competitive ratio of 17.686 for ¢ = 1,2. The efficiency of a rendezvous strate§yis often
total distance traveled and a competitive ratio of 24.843 for measured by its competitive ratio

total time. Both are improvements over the previously best

known algorithm, which has (time and distance) competitive max L (,y) + a2(z,y) 1)
ratio of 26.650. Our algorithm can be adapted for bounded z,Y€Q d(z,y)

linear environments and simple closed curves with the same . . . . .
performance guarantees. It is also robust with respect to eors Here the denominator is the minimum possible distance trav

in motion and differences in robots’ starting times. We confim  €led before rendeZVOUS- The competitive ratio?cif? the worst
our theoretical results through simulations, and show thatour ~case deviation of the performance 6f from this optimal

algorithms are practical by reporting the results of real robot  behavior. A strategy is said to lmempetitivef its competitive

deployments in indoor environments. ratio is a constant. We note that fixing a rendezvous location
Index Terms—rendezvous search, symmetric rendezvous, lin- in advance is not an efficient strategy: the robot deployment
ear search problem, lost cow problem locations could be quite close to each other other while
being very far from the predetermined rendezvous location.
|. INTRODUCTION equation (1), the competitive ratio is given with respecthi®

The goal of rendezvous search is to design strategies ],al distance traveled. Other measures such as the maximum
tance traveled can also be used.

robots whose locations are unknown to each other to m hen th bot strategies d ¢ involve idle i h
as quickly as possible. In this paper, we study the rendezvo en the Tobot strategies do mot Involve idie times, the
search problem with two robots in a one-dimensional enviroF‘L‘=Stance travel_ed 1S prop(_)rtlonal to th_e amount O.f the tlm_e
ment. For example, robots dropped off from a plane may [ psed. Herein we c0n5|der.random|z_ed s_trateg|es that in-
trying to find each other after deployment in linear enviroriérsperse robot movements with robot idle times. Therefore

ment, such as a road, a corridor or a river. This environmelt consider tWO. Competitive. ratios: .the d_istance compet!ti
could be infinite, circular or bounded. However, no obsmcléat'o and the t|_me competltlve_ rat|q. Since rqbot motion
that disconnect the environment can reside between thegobly MO €Xpensive than robot_l_dle time, we V.V'” focus on
otherwise rendezvous will never occur. The rendezvouskeaf'"'™M!#INg thg d|stancg competlt.lve ratio of our f!>§ed sﬂggt
problem has attracted significant attention from the re$earF or symmetric strategies, the distance competitive rago a
community and studied in various environments such as |ineequals
. . . . . 251(x7y) _ Sl(x’y)

graph, circle (ring) and plane. A comprehensive introdurcti max ————— = max —————.
can be found in the survey [1], and the monograph [2]. wveQ d(w,y) e d(z,y)/2

There are two primary versions of the rendezvous searéf¢ use this formulation in our analysis below.
pr0b|em_ In asymmetric rendezvous searche p|ayer5 can Rendezvous on the line has been well studied for both
choose separate roles in advance and execute distina-straymmetric [1], [3]-[7] and asymmetric [8]-[12] versions.
gies. For example, one can remain stationary while the otHgraddition to its theoretical importance, rendezvous o th
actively searches. In the second version, calgehmetric line is important for robotics applications: the line can be
rendezvous searckhe players must execute the same strategised to model environments such as railroads, cables or long
In the literature, both of these versions have been studied &orridors. In the original symmetric formulation, the piay
various environments such as line, circle, graph and p|aﬁéart knOWing the initial distancé&d. For this formulation,
The symmetric version is appealing for robotics appliaaio Alpern [1] introduced the following strategy: at the begimm

because it eliminates the need for implementing a differedt €ach period, each player independently chooses a random
version of the strategy on each robot. direction to call forward (F) and goes units forward and
_ o ) ~ then2d units in the opposite backwards (B) direction. This
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In [9], Baston and Gal considered a symmetric rendezvousThe parallel navigation lawis one of the most widely used
formulation in which the initial distance is drawn from somelosed loop controls for the rendezvous of the robot with the
distribution with expected valué’[2d] = p. They provide target. This approach combines the kinematics equatioteof
a symmetric algorithm with expected meeting tim&3254, robot and the target with geometric rules. The robot moves in
corresponding to competitive ratip6.650. For a distance lines that are parallel to the initial line of sight (LOS), i¢h is
distribution with maximum distanc®, Baston [4] developed the relative position vector connecting the robot to thgear
an algorithm with competitive ratia.71 + p/2D. The parallel navigation rule states that the angle of the LOS

Herein, we consider rendezvous problems on the line witli the robot to the target remains constant at all times [14].
no information about the initial distance. The players dé ndherefore, the interception is considered only in the dioec
share a global frame. The unknown initial distance case hafsLOS. The robot may or may not know the environment
been investigated for asymmetric rendezvous [7], [12],ibutand the target maneuvers in advance. Usually, the robot has
has not been well studied for the symmetric case. Baston andensory system to detect obstacles and obtain the necessar
Gal's algorithm from [9] is agnostic of the distance distition  information on the target such as its position, linear vigjoc
and is therefore &6.650-competitive algorithm (for both and orientation. The information gained on the target (&ed t
distance and time) for this formulation. obstacles) is used in the rendezvous guidance algorithm.

The contributions of this paper are as follows. We provide a In this paper, we focus on the rendezvaesrchproblem.
new algorithm for linear symmetric rendezvous at an unknov@imilar to the rendezvous tracking and navigation problem
(and arbitrary) distance. This algorithm is an improvemeabove, this deployment can be thought as establishing LOS
over the Baston and Gal algorithm: it1§.686-distance com- between robot-1 to robot-2 in a given environment. However,
petitive and24.843-time competitive. We provide simulationthe remaining formulation is quite different. The heart of
results and experimental results from a robot deployment. Ahe problem is the lack of state information. The robots
interesting aspect of our algorithms is the randomizaticth® cannot communicate, and do not have a (long range) sensory
distance traveled (in addition to the motion pattern) atheagystem that allows them to determine the position of therothe
round. Our simulations show that this randomization makesbot (though they can detect rendezvous). The robots do not
the algorithm robust with respect to uncertainty in motiom e necessarily know their current location and they do not (and
due to errors in odometry. cannot) know the initial distance or direction to the othwrat.

Our algorithm (and its theoretical analysis) assumes tieatt Another difference is thaboth robots actively work to
robots start at the same time. We investigate the signifeeafic achieve rendezvous, compared to having an active robot and
this assumption in simulations which suggest that the cémpgan agnostic target. A third difference is that the robotsehav
itive ratio does not increase significantly even when thet®b jdentical properties; for example, they have the same size
start at different times. Finally, we adapt the algorithmtieo  and velocity. Our final, key limitation is that in symmetric
real world rendezvous tasks: when the linear environmeott isrendezvous search, the robots must execute the same gtrateg
bounded length, and when the linear environment is a simple
closed curve (such as a circular loop).

The paper is organized as follows. In Section Il, we present
an overview of related work. Next, we review a related online The rendezvous problem generalizeslthear search prob-
problem in Section Ill-A, then study the linear symmetritem also known as thést cow problemin this formulation,
rendezvous problem in Sections IlI-B and IlI-C. We present single robot tries to find an unknown stationary object.
the simulations results where the robots start executieg tfihis linear search problem was originally solved in [15] and
algorithm at the same time in Section IV-A and at differerthat solution was rediscovered in [16]. This result was @thc
times in Section IV-B. In Section V, we present extension tinto the framework of online algorithms in [17] (where it
circular and bounded environment and report results fraah revas also generalized td/ infinite rays radiating from a

Ill. SYMMETRIC RENDEZVOUSON THE LINE

experiments in Section VI. common starting point). Our symmetric rendezvous algorith
generalizes and draws inspiration from the lost cow problem
Il. RENDEZVOUS VERSUSRENDEZVOUS SEARCH Therefore, we review that linear search problem and then

In the robotics literature, there are two types of rendegvodescribe of our algorithm and analyze its performance.
problems. The first version concerns robot tracking and nav-
igation towards a moving object (target) where the agents
can observe each other’s state. Therefore, the emphasis iéA‘o
control-theoretic aspects such as combining the kinematic Suppose that a near-sighted cow tries to find the only
equations of the robot and the target. The target can fate in a long, straight fence. This gate is located at an
another mobile robot, a satellite, a moving convoy or anknown initial distanced, either to the left or the right
human. Sometimes, the desire to rendezvous is one-sided @fbthe cow. Any deterministic online algorithm for locating
example, an agent who wants to meet up with a movirige gate is equivalent to alternately searching to the left a
convoy). Moreover, the robot and the target can have diftereahen to the right of the cow’s initial locatiom = 0. Such
features such as size, velocity, orientation, etc. One pl@ma spiraling algorithm can be defined by a sequence of non-
of this type of rendezvous is the optimal control problem faregative numberg,, fo, ..., wheref; is the distance explored
minimum control energy needed to reach a moving target [13). left (right) of the cow’s initial position in odd (even)uad

The Lost Cow Problem



i. For convenience, we s¢t = 0. In theith round, the cow D ' <-‘----.

travels a total distance of,_1 + f;. .
The deterministi(SpiraI LostCow algorithnuses a doubling . o ) ) i Sdrf; 2d-fai_p 24 2d+f'2i+1

strategy f; = 2!, Spiral LostCow is &-competitive algo-

rithm, and this is the best possible performance for a determ

istic online algorithm. This competitive ratio can be imped ) 1L ) 1,

by introducin% some randomnepss. TBenartCow algmm - wait(T} — D;") ‘ wait(T} —D")

follows the same zig-zag strategy, except the distancelgedv } } } } } } } } }

in roundi is r**<, wheree € [0, 1) is chosen uniformly at the =~ —/2i 0 Jr-1 fripn 2d-f2i 2dfzion 2 2defaiq

start of the algorithm. This dash of randomness smooths out

the worst case analysis. Beck and Newman [15] proved that

. ) DL DR
the valuer ~ 3.591 guarantees competitive ratio df591, - ..................... > - ...................... -
which is best possible. This result was rediscovered by Kao ™ . . . . . . . .
et al. [18] . [IJ fgli,l f2;+1 dl 2d"f2i 2d-}2171 2Id 2d+;”2i+1

We now compare the rendezvous problem with the lost cow .
problem. Instead of one mobile cow and a stationary gate, we
now have two mobile cows, initially separated by a distance . , , 2,L P 2L
of 2d. The goal of the cows is to mget upp anywheyre along the wait(Te = D7) . wait(T = D) .
fence. The symmetric version of this problem requires that— } } }
both cows perform the same search algorithm. This forbids —f2: ~ ©  J2i-1 J2ign @ 2f2i 2dfai-y2d 2dtfyiq
deterministic strategies, since their synchronized margm

would prevent the cows from ever meeting.

B. The Symmetric Rendezvous Algorithm Fig. 1. Behavior in round. The robots start in configuratiofyz; 1,2d —

We present our algorithm for symmetri rendezvous for gt e turen an fs e b obot o o it
unknown initial distance. Our algorithm uses randomizat g, — ,2i+c1 4 p2i-1+c1, Robot-2 moves leftly = r2i+ez — p2i—ldez,
break the symmetry between the robots. We also use a motﬁgﬁ:oggfirst phase idle tigw]i- To ensure s%mchronor]s rounds, rﬁbmitsd
pattern which combines rounds and 2i + 1 of the Spiral 7 £ 1 e s beore st e e pragRD: Secon
LostCow algorithm into a single round. This will guarante@avels rightds — 2i+<2 4 r2i+1+e2. FOURTH: Second phase idle time.
that, once the robot’s displacement is at ledstinits, the Robot;j waits 2+t 4 7242 —d;.
probability of meeting in every subsequent round j2.

We now describe the randomized itinerary of the robots.
Let 2d be the initial distance between two robots, as shovand26.888 time competitive. The addition of the randomized
in Figure 1. Without loss of generality, robot-1 is locatdd gparametek results in better performance.
x = 0 and robot-2 is located & (though they are unaware |f we were to choose: = 2 (as in Spiral LostCow), our
of their relative positions). We represent the configuratd symmetric rendezvous algorithm would yield an unbounded
the robots as a point iR?, so that the initial configuration is competitive ratio. Intuitively, the growth of the distantrav-
(0,2d). The robots do not know their initial distance or thesled overwhelms the probability of the rendezvous of the
direction leading to the other robot. For omniscient robthts  robots. Instead of doubling our algorithm increases the reach
best offline algorithm would be for them to move towards each) of the robots by a factor ~ 1.195 (the derivation of this

other and meet at configuratidd, d). Hence, our competitive optimized value is presented in the proof of Theorem 1). Give

ratio will be calculated in comparison with distanée the initial distance2d, seté € (0,1] andk € Z* to be the
To each robot, we associate a non-negative sequengfque numbers achieving= r*+9,
f=1, fo, f1, f2, ..., where f_; = 0 (for convenience) and The algorithm proceeds in rounds, indexed by integers)
it . (starting at = 0 gives a more natural indexing). In each round,
fi=rTcfori>0

the robot will alternate between moving and waiting. A round
wherer > 0 is the expansion radius (to be optimized lateris successfulf the robots achieve rendezvous in that round;
ande € (0,1] is a uniformly distributed random variable.otherwise it isunsuccessfulWe describe the movement of
The robots use the same expansion radiulsut they choose robot-1, who starts at = 0. At each round;, the robot flips
their values fore independently at the start of the algorithma coin to determine its itinerary (right-then-left or Iefften-
The robot uses this randomvalue throughout the algorithm right) for this round. We divide each round into two phases,
(choosing a new value in each round does not improve thaccording to the direction of movement. In tith round, the
performance). As in the SmartCow algorithm, this randonobot starts at one of = + f»,_1, each with probabilityl /2.
variable mitigates the worst case competitive ratio, gjvinlf the robot tosses heads, then in phase 1, it moves right to
an improved performance guarantee. Indeed, in [19], vilee pointx = fo; and in phase 2, it moves left to the point
presented a variant of th&R algorithm without the random = = — f5; 1. If the robot tosses tails, it moves leftto= — fo;
That algorithm was shown to be 19.166 distance competitirephase 1 and then right to= f5;11 in phase 2. At the end



Algorithm 1 SR: Symmetric rendezvous strategy on the Iinq% + T}, independent of both the robotisvalue and the

for unknown initial distance. coin flip. The algorithm terminates the first time that theabb
L7« 1.195 configuration is of the form(z,z). The pseudocode of the
2: € « random from(0, 1] strategy is presented in Algorithm 1. Our main result is the
{NOt(()? thatf(j) = r’*< below} following theorem.
31—

Theorem 1:The optimal expansion radius for the symmet-
ric rendezvous algorithm igs ~ 1.195. This choice ofr gives
6 while checkRendezvous() I= truto an algorlthml t_hat isl7.686-distance competitive an2il.843-
I time competitive.
7. if ¢ = 0 then , , )
s Diy « f(2i) We prove this theorem in the next subsection.

4: coinFlip + random from{—1,1}
5. previousCoinFlip < coinF'lip

9: else ifcoinFlip '= previousCoinFlip then

11: else _
12: Diy + f(2i— 1)+ f(2) C. The Analysis
13:  end if

, , Performance analysis of Algorithr§R for d = rk+°

W Wiy« f(20) + f(2i +1) = Dis depends upon the parity & The even case is slightly more

15 moveTogoinFlip * f(2i)) difficult to analyze, so we work through that analysis for the

16:  wait(iv;,.) . . distance competitive ratio. The remaining analyses (evee, t

172 Dip < f(zz,) +f(2i+ 1,) odd distance and odd time) proceed similarly. These analyze

18 Wiz ? f(122*+ 1.) ?{,(21+ 2),_ Di2 can be found in the accompanying technical report [19].

;z; vrcgi\t/g/vj)g coinFlip * f(2i+1)) Hen(_:eforth, we _assume_that is even. We divide the

ol i +’1 _e>§e_CL_Jt|0r1 of AlgorithmSR into four stagesStage-lis an

22:  previousCoinFlip « coinFlip !n!t!allzz.;\tlon stage whose Ier?gth depends on the (unknown)

23 coinFlip + random from{—1,1} initial distance2d = 2r’“+‘5._ Thls_stage encompasses the early

24: end while ' rounds0 < ¢ < k/2 — 1 in which the robots do not move
far enough to meet. The first round in which the robots might
meet is thek/2-th round.Stage-2consists of only this critical

, ) ) .__round. We define a separaftage-3for round k/2 + 1 as

of an unsuccessful round > 0, the possible configurations,, o), - The initial locations of the robots exhibit a transien

of the robots are fai11,2d + f2i+1)- This is also the initial o yior in this roundStage-4contains all rounds after Stage-

configuration for round + 1. 3. In these later rounds, the initial configurations and the

Let Diy1 (Di2) denot’e the distance traveled in the firsfojezvous behavior are consistent, so we can compute the
(second) phase of round and letD; = D;, + D;» denote expected distance traveled using an infinite sum.

the total distance traveled in the round. The valuelif . —
oh In our analysis, we track the direction of movement (left-

depends upon _whether the_com flip in_this rognd dncrert%en—right or right-then-left) of each robot. In Stage-2 also
from the coin flip in the previous round. If they differ, thencons'der the relative size of compared to In Stage-3
D1 = foi — f2i—1. If they match, thenD; ; = fo; + foi—1. ! Ve siz P 1, €2- 9 ;

(Note that these statements are also trueifer 0 because we must pay close atte_zntion to the po_ss_ible initial configu-
-1 = 0.) Regardless of the coin flif); » — fai 11+ foi. The rations. Note that, starting at Stage-2, it is also necgsgar

. o . _calculate the distance traveled at each round based on erheth
distance traveled (the length of an itinerary) by a robotnin a}he robots meet at this round or not

unsuccessful roundis eitherD; = fo;11 + 2f2; — fo;-1 OF ) ) . )
Dy = fois1 +2f2i + fai_1, €ach with equal probability. We now introduce the variables used in our analysis. Let

Recall that the robots use different values for their be the event that the algorithm is still active in round

movements. In order to keep the robot motions in sync, visSuming thatiz; holds, we define the followingy; is the
introduce wait times after each movement (left or right). &vent that the robots successfully meet in rodnd); is the
robot must assume the worst: that the other robot is usiﬁ%ﬁ?m that robot-1 initially moves to the right (towards obb
¢ = 1, and therefore requires tim&, ; = r2 + r2i+1 in 2) in roundi; B; is the ev_ent that robot-2 initially moves to
phase 1 and tim@; , = r2i+1 +¢2+2 in phase 2. After each the left (towards robot-1) in round
movement, the robot will idle long enough to allow the other Due to the symmetric strategies, the expected distance
robot to complete its current motion. Keeping robot motioms traveled is identical for both robots. Therefore, we only
sync guarantees that, once their displacement is largegbnownalyze robot-1. Still assuming th&{ holds, we again define
the probability that the robots meet is 1/2. Di=Di1+D;2andT; =T;1+T;2 andW; = W1 + Wi 2.
We summarize the activity of the robot in roundrhe robot ~ The algorithm is always active in the first round, thus
flips a coin. In phase 1, it moves distanBg; and waits for P[Ry] = 1. The probability that the algorithm is still active
time W, = T;1 — D; ;. In phase 2, it moves distand®; » in round i is the joint probability of the events that the
and waits for timeW; o = T;2 — D, 2. Assuming that the robots do not meet in the rounds up to roundThat is,

round is unsuccessful, the time elapsed in rourid 7; = P[R;] = P[So A --- A S;_1] for i > 0. Restating our




observations from the previous section, we have the first phase of rounél/2 results in rendezvous if and only
if 270 <€t 472, or equivalentlye, > log,.(2r® — ). This

EDi 18 = ]E[Qf.%fl N 2;% | il _ function is concave down fdy < ¢; < 1, so the function lies
= (T 2rERC | S, (2) below the tangent line through the poi® ¢). The formula
E[T; | Si] = 22427 402 (3) for this tangent line is, = 26 —¢;. Therefore, if25 < e; + e
< < - ) €1 €2
EW; |S;] = E[T;]|S:]—E[D;| S (4) then2r® < ré1 4 re2,

_ For simplicity of analysis, we use the tangent liag =
During Stage-1, we havg[r¢ | S;] = E[r¢]. During the later 25 — ¢, to approximate the functios, = log,.(2r’ — ) on
stages, (i.e. when> k/2), the size ofe and the evens; are the unit square. The tangent line lies above the curve in this
dependent variables. region. Therefore, we use the evetas a proxy for success

We are now ready to study the four stages of Algorith®  when A2 A Byo holds. This yields an upper bound on
for evenk. Sections 111-C1, 11I-C2, 11I-C3 and I1I-C4 presentthe expected distance traveled during the algorithm (kszau
the distance analysis of stages 1-4 respectively. Fortelafive mis-categorize some rendezvous successes in rbiid
of exposition, we defer evaluation of certain probabi$itend as failures). In calculations below, we find that the optimal
expectations until Section 11I-C5, where we prove the dis&a expansion radius satisfigs< r < /2. For these- values, the
competitive ratio for evert in our main theorem. error introduced is minor compared to the other factors.

1) Analysis of Stage-1 for even k: Recall thatd = r"*° With this in mind, when the event,, ;, A By, holds, we
whered € (0, 1]. We compute the expected distance travelegkfinesuccess to coincide with evedt. This results in an
during Stage-1. Whefi < i < k/2 — 1, the combined robot ypper bound on the competitive ratio, due to the resulting
displacement is approximation. We note that the evefitwill continue to play

p2ite 4 p2ite < 9,242 < opk < gpkHs _ g a role in our analysis of_s_ubsequent s_tgges. _
Lemma 3: The probability that the critical round is success-
so the robots cannot meet during Stage-1. In other wordsgl is

PR =1=P[S;] for0<i<k/2—1. P[S /2] = (1 + P[C])/4.
Lemma 2: The expected distance traveled during Stage-1
satisfies In addition, the ending configuration = (x1,z2) for an
k/2—1 . unsuccessful critical round satisfies
r . _
; E[D; | RPR;] < (r+2) - E[re]. Blo = (—frens2d— frss) | Sl = 1/4,

Furthermore, the four final configuratiofs f,_1, 2d + f_1) Plo = (for1, 24+ fir) | Ek/g] - 1/5
each occur with probabilityt /4. Plz = (=frs1,2d + fr1) | Skpe] = PIC]/4

Proof. By equation (2), Proof. The robots can rendezvous in two ways. The first way

k/2—1 k/2—1 o is when they both move away from each other in Phase-1 of
Z E[D; | Ri|P[R;] = Z E [D; | Si] P [S;] the round. Call this event

=0 1=0

k/2—1 _ _ B Ey :Ak/Q/\ Bk/2-
= > (P 2?)E [ Si] 1 _
P The second way is when the event
k/2—-1 ko _
= (B[] Y % = (0 +2) LB By =Apa A Bepa AC
2 _
i=0 holds. We hav&®[E V Ey| = P[E4]+P[E,] = 1/4+P[C]/4.

Considering roundt/2 — 1, clearly each of the four final An unsuccessful round corresponds to one of the events
configurationg+ f1—1, 2d + f;—1) are equiprobable. O ApABy, Ap ABy, or Ax A Bi AC'. The ending configurations
and probabilities listed in the lemma correspond to thesseth

2) Analysis of Stage-2 for even k: We bound the expected . .o O

distance traveled by a robot in the critical roud?2. Unlike

Stage-1, the robots meet with nonzero probability. We sepa-Before proceeding further, we make one important remark:
rately calculate the distance traveled in a successful andthe occurrence of eveidt depends upon the (unknown) value
unsuccessfuk/2-th round in Lemmas 4 and 5 respectivelyof the input variables. Specifically, the formulas foP’[C],
Adding these expressions gives the total expected distaij€’], and E[r¢ | C], E[r¢ | C] depend on whethed is

traveled in the critical round. greater or less than/2. Calculations concerning' are found
The robots cannot meet prior to the critical round, sim Appendix A. During the final analysis of Theorem 1,
P[Ry/5] = 1. Furthermore,Sy,; A Ry = Si;2 and the competitive ratio of our algorithm will be computed by

Skra N Ry o = ?k/g. We now capture the success and failurehoosing thej value which gives the maximum ratio. This
conditions for the critical round. Defin€ to be the event that dependence on the input variallés one of the reasons that
26 < e1+¢€2. We claim that the robots successfully rendezvowse defer evaluation of certain probabilities and expeotesti
in the first phase of rounk/2 when A, A B, AC holds. Indeed, until Section 11I-C5



Lemma 4:The expected distance traveled in a successful3) Analysis of Stage-3 for even k: We compute the ex-
k/2-th round is pected distance traveled by a robot in the transitioh&2 ¢ 1)-
th round. Assuming that the robots did not meet in Stage-2,

E[Dy /2 | Sk/2)P[Sk 2] = %rk]E[ré] +d <1+TP[O]) ) the robots meet in Stage-3 if and only if
E5 = (Agja41 A Bijag1) V (Agja41 A Bijas)
Proof. We use the same notatiali,, E» found in the proof holds. Therefore we hav@[S, o1 | Rijaq1] = 1/2 =
of Lemma 3. The expected distance traveled in a successtib},/>.1 | Rj/241]. We continue to use the event notation
k/2-th round is given by from the previous section. We enter Stage-3 directly aftene
E3 or E4, and we handle these cases separately.
E [Dk/2|5k/2] P [Sk/ﬂ Lemma 6: Suppose that we enter roukd2 + 1 after event
=E [Dk/2|E1} P [El] +E [Dk/2|E2] P [EQ] s (5) E5. We have
whereP[E;] = 1/4 andP[Es] = P[C] /4. E[Dy/211 | Skjo41 A Es] = r*E[r] + d

Next we compute the expected distance traveled for eaghy
of the eventsE; and E,. The four equiprobable initial con- . i
figurations in this round aret(f,_1, 2d + f_1). Calculations E[Dyo11 | Skja+1 A Es) = "2 (2 + r)E[r€].

similar to equation (2), give Furthermore, Wherﬁk/gﬂ occurs, the ending configuration

E[Dk/g | El] _ E[ka +d | El] — okR [7‘61] +d. is eithe_r.(fk+3, 2d + fk+3) or (—fk+3, 2d — fk+3), each with
probability 1/2.
We also have Proof. These values are calculated analogously to equation (2),
using the equivalencsy,,; = Es. For both eventsSy /5,
E[Dy /2 | E2] = h/2 ; . _
Sk/2+41, there are two initial configurations, and two possible
= E 1 (2(d = fr_1) +2(d+ fe1))| = d. itineraries. Averaging over the four equiprobable evemnisgy
4 the lemma. O

Using these values in equation (5) completes the proof]  \when E, has just occurred, the round/2 + 1 starts at

Lemma 5: The expected distance traveled in an unsucce®@Sition (—fk+1,2d + fi11). The proof of the following

ful &/2-th round is lemma is analogous to that of Lemma 6.
Lemma 7:Suppose that we enter roukd2 + 1 after event
E [Dy/2|Sks2] P [Sky2] Ey. We haveE[Dy. /a1 | Ea] = §E[Dyja11 | Skjas1 A Ea] +

$E[Dy /241 | Skj24+1 A E4] Where

1 1 e
= k247 <—IE [re1] + ZE [T€1 |C’] P[C’]) . i _
2 E[Dkj241 | Skja1 A Es] =r"7E[r [ C] +d

Proof. In this round, the robots cannot meet under two condand
g?r:]esr. VI\:/grsctj,St?heeyedvc;:tot meet when they move in tandem. In E[Dy /241 | Sjasr A Ea = rk+2(2 4 1) E[r< | T
_ _ Furthermore, wherﬁk/ﬂl occurs, the ending configuration
B3 = (Akj2 A Biy2) V (Aj2 A Biyz) is either(fiis, 2d + fry3) OF (—fris, 2d — fris), each with
probability 1/2. O
We now combine all our terms into a single expression.
Lemma 8:The expected distance traveled in rount + 1

holds. Secondly, if they move towards each other and-
are not large enough for them to meet. In other words, the

event :
FEy = Ak/2 A Bk/g A C S
holds. The expected distance traveled in an unsuccelssul ]E[ljk/zgl | Ry PR 2]
th round is given by = E[Dy/241 | E3|P[Es] + E[Dy/211 | E]P[EY]
— _ where
E [Dy./2[Sk/2] P [Sk/o] 1
= E [Dya|Es] P[Es] + E [Dy)s|Ea] P[E].  (6) E[Dy/241 | Bs]P[Es] = 4 (d+ r**2(3 + r)E[r])

We haveP[E;] = 1/2 andP|E,] = P[C]/4. Next we compute 2d
the expected distance traveled for each of the evepid’,. E[Dy 241 | E4JP[E4]
Similar to equation (2), these expected distances are

i = P9 gy enE [ T)).
E[Dy2|Es] = "2+ r)E[r], 8
E[Dyo|Es] = 12+ 7)E[r|C]. Proof. The probability of success in rourig/2 + 1 is always

) ) ) 1/2, and we know thaf?[E5;] = 1/2 andP[E,] = P[C]/4.
Using these values in equation (6) proves the lemma. 0 The result follows from Lemmas 6 and 7. 0



4) Analysis of Stage-4 for even k: We compute the Proof. We split our calculation according #8; A E3 and R; A
expected distance traveled for all rounds> (k/2 + 2). FEy. If R; A E5 holds, then by Lemma 9 we have
The eventsks and F, still influence the expected values in 00

these later rounds. In particular, foe> k£/2 + 2, we have Z E[D; | R; A\ E5]P[R; | E5]P[E;3)
i=k/242
E[r® | Ri]P[R;] < . [Nk
— E[° | Ri A ByJPIR, | Eg]P[E3) = 2 G (A+rBHnEN) (5) (5)
+E[r | Ri A EAP[R; | E4JP[Eq] T'ﬁf 2 e
= E[IP[R; | E3]P[F;] = 3 > (d+r¥ G 4 r)ER) (§>
+E[r¢ | C|P[R; | E4]P[E,]. (7) j=0
d= 1\ @B +r) =)
Note that if £4 holds, then so doeS, which in turn influences -3 Z <§) + ] Elr ]Z <7)
the expected value af‘. However, the rendezvous behavior =0 fid =0
of roundi > k/2+ 2 is independent of how we got there: we — _ l (d + G T)E[reo .
always achieve rendezvous with probabilit§2. This behavior 4 2—1r2
is summarized in the following lemma. The calculations foR; A E4 are entirely analogous, and give

Lemma 9:Fori > k/2 + 2, we have 0o
> E[Di | R; A E4JP[R; A E4|P[Ey4]

1\ k2t i=k/2+42
P[R; | Es] =P[R; | E4] = (—) . —
2 P[C] AR G
= -3 (d-i— 52 E[r|C] ).
Furthermore,
O
E[D; | R; AN Es] = L (d+7r* (3+7)E[r]), 5) Computing the competitive ratio of SR Having deter-
2 mined the expected distance traveled in all stages, we o&n no

E[D; | Ri NEy] = % (d+7a2i (B+7)E[|C]). prove our main result. We show that the optimal expansion

radius isr ~ 1.195 which guarantees an algorithm that is
17.686-distance competitive an2i.843-distance competitive.
Proof. We prove the lemma givelis occurred in the critical ~ Proof of Theorem 1We sketch the proof for the distance
roundk/2. The proof forE;, is analogous. competitive ratio for ever. Additional calculations are avail-
The probability that round /2 + 1 was unsuccessful is/2.  able in [19]. The total expected distance traveled is olkthin
Likewise, every round > k/2 + 2 is successful half the time, by adding the expressions in Lemmas 2, 4, 5, 8 and 10. This
namely when(A; A B;) V (A; A B;) holds. This proves the first expression is quite long, so we omit its formulation. Rengl|
statement forE;. Considering the expected distance traveldtiat d = r*+9, we first replace each occurrence df with

in roundi, we find that dr—%. Then we divide byl to obtain the competitive ratio.
Next we evaluate the probabilitieB[C], P[C] and the
E[D; | R; A E3] = E[D; | R; A E3 A S;]P[S)] expectation&[r¢], E[r¢ | C|P[C] andE[r¢ | C|P[C], as found
YE[D; | R; A E3 A SiP[S] in Appendix A. We note that the values involvig have a
1 . 1 dependence on the value of the input variabl&pecifically,

= 3 (r*E[r® | B3] +d) + 3 (r**(2+r)E[r | E5]) we must perform two sets of calculations, depending on
1 0 whether0 < § < 1/2 or 1/2 < ¢ < 1. For each, we will

= 3 (d +r¥(3+ T)]E[Te]) . choose the) which maximizes the distance competitive ratio.

For 0 < ¢ < 1/2, this expression is maximized &t =
This concludes the proof foEs. The only difference in the 1/2. In turn, the choice ofr ~ 1.195 gives the minimum
proofs for Ey is the fact thal[r¢ | E;] = E[r | C]. 0 competitive ratio guarantee a@i7.48. Next, the expression for
1/2 < § < 1is maximized for§ = 1. The choice of =~ 1.195
We now compute the expected distance traveled in Stageafso minimizes this function. This value gives a compaitiv
Lemma 10:The expected distance traveled in Stage-4 isratio guarantee of7.686. Therefore, for any input distancg
our algorithm guarantees a competitive ratiol@f686.
The time analysis for evel is analogous to the above

oo

Z E[D; | Ri]P[R;] calculations. It gives a time competitive ratio 0#.85. A
i=k/2+2 sketch of this analysis is given in [19]. The time and distanc
1 d+ PRt (3 + T)E[ 6]) analysis for oddk is also quite similar to the above calcula-
4 2 —r2 tions. The details are sketched in [19], where we show that

P[C] (3 4+ ) _ the odd distance competitive ratio 1¥.686 and the odd time
<d+ 9 _ 2 E[r | C]) : competitive ratio is23.58. O
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Fig. 3. The performance of our algorith®R in simulations when each
robot generates a new value for each roundTOP: Competitive ratio for
the average distance traveled with respect to the changefan various r
|){alues.BOTTOM: The effect of Gaussian noise on the competitive ratio of
our algorithm. The distance competitive ratio is averageer @arious initial
distance values for eachvalue on ther-axis.

Fig. 2. The average performance of algoritl® in 10,000 simulations.
Here, e is randomly chosen only at the beginning of the seaf@P: Average
number of rounds with respect to the change in the initighdise for various
r values.BOTTOM: Competitive ratio for the average distance traveled wit
respect to the change ihfor variousr values.

IV. SIMULATIONS ) )
expected, the simulation results show that the average eumb

In this section, we investigate the performance of thg r4nds increases as the initial distance increases atitbas
Algorithm SR in simulations. So far we assumed that thgae of » decreases. Indeed, the average number of rounds

robots start at the same time. Although this is a standafghich is ~ (k/2 + 1) is highest when = 1.145 and lowest
assumption, it may be violated in practice. Therefore, Wenen, — 1.295.

divide the simulations into two groups with respect to the
time the robots start executing the algorithm: the syncbusn
case (same starting time) and the asynchronous case ¢diffe
starting times). Sections IV-A and IV-B respectively preise
the simulation results for the first and the second group.

The bottom plot in Figure 2 shows the average competitive
ratio as a function of initial distance for the same set ofl-
Lies. The horizontal dotted line shows the theoreticallynogit
distance competitive ratio af7.696 for the optimal value of

r = 1.195. The black solid line shows the performance of
SR in simulations forr = 1.195. In these simulations, we
A. Synchronous Starting Times observe that- = 1.195 has superior performance for most

In this section, we show that the simulation results of tHgitial distance values.
synchronous case &R agree with the optimal choice of Next, we consider a variant of t&R algorithm in which a
and the competitive ratio we obtained in Theorem 1. Morgové&ew value ofe € (0, 1] is generated in each round. The effect
we also show that randomizingat each round is analogousof this randomness can be interpreted as navigationalsgrror
to errors proportional to distance. This yields the obstwa for example due to odometry errors. The performance of this
that our algorithm is robust to navigational errors. variant shows that our algorithm is robust under such errors

First we investigate the performance&R as a function of First, we simulate these errors by selecting (0, 1] uniformly
r and initial distance. The plots in Figure 2 report the ressultandom for each robot at each round. Analysis similar to that
of simulations for various: values and initial distances, eactPf Theorem 1 shows that this variant has the same expected
averaged ovet0, 000 trials. The initial distance between thecompetitive ratio. The results of our simulations, found in
robots is2d. We simulate our strategy for integervalues Figure 3, agree with this claim. The top plot shows the averag
varied between 5 and 50 step sizes and the robot has a spéigtince competitive ratio for various values, plotted as a
of unit step size. The value of is started at 1.145 and function of initial distance. The results are comparabltéhtise
incremented by 0.025 up to 1.295. in Figure 2.

The top plot shows the change in average number ofin the literature, the noise caused by navigational errors
rounds for these values, as a function of initial distance. Ass often modeled as a Gaussian whose standard deviation is



Average distance competitive ratio for various d values with respect to the change in t

proportional to the distance traveled [20]. In the bottorat pl e SR Al i £ L155)
in Figure 3, we execut&R in the presence of such errors
In these simulations, we assume that the errors occur only
the X-axis. We use, = —1.843 ando = 0.372 from Table 1
of [20]. Specifically, rather than taking; = r**t<, we set
fi = ' +n(u, o) wheren is the Gaussian noise. These value
are for a robot moving at 0.2 m/sec.

The horizontal dotted line shows th&R’s distance com-
petitive ratio of 17.696 for the optimal value = 1.195.
The competitive ratio for radius is the average of the
observed competitive ratio over all simulaiégialues. In other
words, we ranl0, 000 simulations for each integer distances
5 < d < 50, and then averaged their observed competitiéy. 4. The average distance competitive performance imlsiions of the
ratios. The black solid line shows the change in the conipetit A/90rithm SR for 7 = 1.195 with respect to the change and.
ratio of SR with respect to the change in The red solid
line shows the change in the competitive ratio when Gauss
noise is added t&R. The simulation results indicate that ou
algorithm is robust to navigational errors. Indeed, for trafs
the r values appear in the-axis, Gaussian noise does no
effect the performance our algorithm. This means that afdi
the random variable in f; is nearly identical to runningR
with noise.

1.195)
P
R

Average distance competitive ratio
[{
Y
=
T

Iﬁﬂ]ction of the initial distance and time delay for this pautar
value ofr. Specifically, in the first phase of our simulations,
e found the average distance competitive ratios for rdbot-
or variousr values with respect to changes in distadcand
ime delayt. Each combination ofr, d, t) was averaged over
5,000 trials. The simulation results (figure omitted) indicated
that ASR gives the best performance whers < r < 1.85.
In the second phase, we chose the value- 1.55 for
B. Asynchronous Starting Times more intensive investigation. We ran additional simulasidor

Our main contribution in this paper is the rendezvous Straﬁgmbinations ofd, t) for this radius. The results are presented

egy SR and its performance analysis under the assumptiB?J Figure 5, which shows t_he average competitive ratio for
that the robots that start executing their strategies samat distances < d <1000 and time delay$ < ¢ < 1000. These
ously. This synchronized start requires a global contrahef ratios are bounded above by 22. In fact, with the exception of

robots which may not be always possible in practice. In thﬂge combination = 500, t = 250, all are less .than 20. i
section, we study the performance of the algoritii when The results suggest that the worst-case time delay is near

this assumption is violated. We consider simulations inaivhi ¢ = 0- Indeed, a long delay brings the robot behavior closer to
robot-2 startst time units later than robot-1. Figure 4 show&" asymmetric rendezvous search problem (as noted above in
the average competitive ratio for distandes’ d < 1000 and the SR 5|mulat.|(_)ns). Agaln,. we see a clear downward trend
time delays0 < ¢ < 1000. These simulation results sugges?n the com.p_etmve. ratio a_\§|ncreases. For_ smallef values,
that our algorithm is robust under synchronization errdesy the competitive ratio stabilizes near 6, which IS roughlyalq
small time delays have little impact on performance. Faydar the competltlv_e ratio for the SmartCow algorithm value for
initial distanced, the distance competitive ratio stays belo/*Pansion radius =1.55.

22. Furthermore, very long delays actually improve perfor- [N Summary, our simulations of th6R and ASR algo-
mance. Indeed, we expect this behavior since our symmetﬁ’F@mS S_hOW robyst pe_rformance with respect to time delays.
rendezvous problem becomes closer to the asymmetric Cagg[nparlng the simulation plots fatR and ASR, we see that
where one robot “waits for mommy.” In other words, for Ver);he SR algorithm performs better for very small time delays

larget (compared tai), we have a lost cow problem. We Seénear-synchronous start), while tbeSR algorithm performs

a clear downward trend on the competitive ratic ascreases. Pelter for very long time delays.
Indeed, for smalled values, the competitive ratio stabilizes at
a value just above 10. V. EXTENSIONS

Continuing along this line, if we anticipate major synchro- In this section, we present the two extensions of our algo-
nization errors, then our algorithm should be adapted tebetrithm in practical scenarios. First, we consider line segisie
fit the scenario. The idle times &R are designed precisely and half lines (see Figure 6) which can be encountered ie larg
to keep our robot motions synchronized. If a near-synchuendndoor environments. In such environments, robot movement
start time is not guaranteed, these idles times are ineféect are restricted by the boundary points. We modify our algamit
Therefore, we considered a second set of simulations intwhias follows to utilize these boundaries. If during the exicut
we eliminate the idle times from th&R algorithm. We call of SR the robot hits a boundary, it moves in the opposite
the resulting algorithmASR, for asynchronous symmetricdirection until it meets with the other robot. Clearly, oree

rendezvous robot encounters the boundary, it knows that the other robot
We studied the performance ofSR in two phases. First, lies in the opposite direction.
we empirically determined a good choice offor the asyn-  Next, we consider simple closed path environments, such as

chronous case. Next, we studied the performancé®R as a the circular corridor as shown in Figure 7. In the linear ¢case
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Average distance competitive ratio for various d values with respect to the change in t
(ASR Algorithm with r = 1.55)
T T T

e B /R -
e B 2N AN % b

= 1.55)
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Average distance competitive ratio

Fig. 5. The average distance competitive performance imlations of the

Algorithm ASTR for 7 = 1.55 with respect to the change iand+. Fig. 8. LEFT: Experiment setup for the first and second groups showing

two iRobot Create robots equipped with Asus EEE PC laptopt glaced
on a straight corridoRIGHT: Experiment setup for the third group showing
two iRobot Create robots equipped with Asus EEE PC laptopt ptaced on

._ 2d ‘ | a rectangular shaped corridor in an indoor environment.

A. Experimental Setup

Fig. 6. The First Extension of SR: The algorithmSR can be extended ) ) )
for bounded environments such as line segments and hadf (lemma 11). We used iRobot Create (see Figure 8) robots as our robotic

platform for the experiments. iRobot Create has external
sensors such as wheel drop sensors, bumper sensors, cliff
there is only one way for robots to meet: the left robot musensors and Omnidirectional IR Receiver. In our experigent
move right and the right robot must move left. In a circulawe only use bumper sensors for the robot to go to opposite
environment, eventually there are two ways for the robots tiirection when it hits a boundary wall.
meet: as long as they are not moving in tandem, they areWe conducted three groups of experiments in indoor envi-
getting closer from one side or the other. In the circulahpatonments. We varied the initial distance between the robots
environment, we simply follow the sam&R algorithm. in each experiment group. The experiment groups are straigh
It is not difficult to see that the above modifications do ndine experiments (SLE), straight line experiments with hdu
increase the competitive ration 6fR. This is summarized in ary (SLEB) and closed curve experiments (CCE). In SLE and
the following lemmas whose proofs are omitted. SLEB, two robots are placed on a straight corridor. In CCE,
Lemma 11:The competitive ratio of the line segment extwo robots are placed on a rectangular shaped corridor. The
tension does not exceed the competitive raticS®s. velocity of each robot was set to 0.2 m/s anis set t01.195
Lemma 12:The competitive ratio oS R is an upper bound meters. Robots synchronously execute iR Algorithm,
for the circular path extension. or its appropriate variant. If they bump into each other,
the experiment ends and we conclude that the rendezvous
occurred. We ignore errors that result in robots movingshg
VI. EXPERIMENTS off the line. In all of the experiments, the robots were able t

. . . . meet successfully. The vertical dashed lines in the exparim
In this section, we present experimental results obtalnﬁgﬁures show the starting points of a new round

from a real deployment of two robots. These experiment
validate the symmetric rendezvous strategy and its exdessi ]
(line segment and circular path) and show its practicahilit B- Experimental Results

real world environments. In Figures 9, 10, 11 and 12, we present the robots’ trajecto-
ries. The experiments in Figures 9, 10 and 11 are performed
on the straight corridor and aim to show the practicability
of SR and its first extension. The-axis in these figures
represents the time in seconds and thexis represents the
z-coordinate of the robots on the line in meters. In Figure 12,
we illustrate the results of the experiments performed in a
rectangular shaped corridor to show the practicability hef t
second extension &$R. In this figure, ther-axis andy-axis
represent the-coordinate ang-coordinate of the robots while
z-axis represents the time in seconds. When the trajectories
intersect, the robots are at the same position on the line and
the rendezvous occurs.

Fig. 7. Second Extension ofSR: The algorithmSR can also be extended ~ Figure 9 represents the experiments in SLE where the
for closed path like environments (Lemma 12). robots execute the symmetric rendezvous strategy presente
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in Algorithm 1. The robots are initially placed at a distance
of three and seven meters. In the top plot of this figure, ti
robots are place?ld = 3 meters away from each other. Solving
d = 9 yields k = 2 and§ = 0.2239. The rendezvous
occurred in two rounds which took 10.3 seconds. The outcor
of randomly selected values by each robot is; = 0.22
and e; = 0.33. In the first round Robot-1 tosses heads ar
movesr2*9+¢1 = 1.06 meters to right. Recall that to move syn-
chronously with the other robot, the robot waits long enouc
to allow the robot to complete its current motion. Therefor
in this experiment, the robot waits fef*°+! — 1.06 = 0.14
seconds at the end of the first phase. In the second phasr
movesr2*0ter 4 p2x0+1+er — 1 06 + 1.27 = 2.33 to left and L StEeewmendo7mees
waits for r2*0+1 4 2¢0+1+1 _ 9 33 — (.31 seconds at the N R ‘ :
end of the second phase. Meanwhil®; also tosses heads
and moves-2*0te2 = 1,04 meters to right and then waits for
r2*0+1_1.04 = 0.16 at the end of the first phase. In the secon
phase, it moveg*0te 4 p2:0+1+e — 1 04 41.24 = 2.28 to
left and waits forr2*0+1 4 »2x0+1+1 _ 998 — (.36 seconds
at the end of the second phase.

Figures 10 and 11 represent the experiments in SLEB a
SLEB-2b. For both SLEB and SLEB-2b, we place the robo I N T R Y A
at an initial distance of five and seven meters. In contrast SR ey M0
SLE, in SLEB we consider the case where there is a boundary
wall close to either one robot or both robots. As in SLE, theg. 9. Straight line experiments. Experiments are perémtron a straight
robots execute the bounded segment variant of Algorithm cprridor. The robots execute Algorithm 1. Rendezvous arowhen the

. trajectories of the robots intersect. The initial distarmmween the robots
To detect the boundary wall, the robot uses its bumper S8NS{line top plot is three meters and seven meters in the bottoimop this
which are placed at the front side of the robot. Because thgire.
sensor must always face the direction of movement, we make
the robot turn to face the direction it moves. In SLEB, theare i
a boundary wall in close vicinity of either Robot-1 or Robot-
2. In the top plot of Figure 10, the initial distance betwee SLEB Experment-1: =5 meters
the robots is 5 meters and the boundary wall is located tv ' o '
meters away from Robot-1. In the second plot of Figure 1
the initial distance between the robots is seven meters ¢
the boundary wall is located two meters away from Roba
2. The plots in Figure 11 show the results of the experimer
when there are boundary walls in close vicinity of both Rebo
1 and Robot-2 (approximately two meters away). In the la
plot of Figure 11, Robot-2 tosses tail in the second round a
it starts moving to the left. When its displacement from it , , ,
initial location becomes two meters in the first phase, i$ hi ¥ ot o)
the boundary wall and starts moving to the right. It keef SLEB Experiment-2:d= 7 meters
moving to the right until it hits Robot-1 at position 6.766. | T
took 18.2 seconds for the robots to meet.

Figure 12 illustrates CCE. In contrast to the experimen
performed on the line, in CCE, bothandy coordinates of the
robots change. The robots are placed in a rectangular sha
corridor. The length of the rectangle 45 27.5 and its width
is ~ 18.5 meters. Bottom plot in Figure 8 shows an exampl
to the setup of these experiments. In the top plot of Figure 1
both Robot-1 and Robot-2 start five meters away from tt N\ A
corner. In the bottom plot, Robot-1 starts three meters aw ° : ‘ ¢ Gwimeen 0¥
from the corner while Robot-2 starts seven meters away from
the corner. Each robot executes Algorithm 1, aware that wheig. 10. Straight line experiments with boundary. Experitsare performed
it reaches the corner of the rectangle, it must turn into & t[" a straight corridoiSLEB: There is a boundary wall close to either Robot-1

. . . or Robot-2.
other corridor and continue its movement. In both plots, the
robots met inside one of the corridors.

SLE Experiment-1: d = 3 meters
T

N © IS
T T

position (meters)
-
T

6
total time (sec)

X-position (meters)

X-position (meters)
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VIl. CONCLUSION

SLES 20 Experiment 1 4= 5 meters In our study of the symmetric rendezvous problem on the
line, we generalized the Spiral LostCow algorithm for two
symmetric robots. We identified the theoretically optimaline
r = 1.195. With this expansion radius, our symmetric strategy
has a competitive ratio df7.686 for total distance traveled and
a competitive ratio 0R24.843 for total time. We showed that
our algorithm can be adapted for bounded linear environsnent
and simple closed environments with the same performance
guarantees. In simulations, we compat&R’'s performance
with variousr values and various initial distances. We also
showed that the algorithm is robust to navigational errons.
SLEB-2b Experiment-2:d =7 meters results were consistent with the theoretical analysisaliin
we report the results from an experiment in which two robots
try to meet in a corridor.

In future work, we will study symmetric rendezvous on the
line for three or more robots. A further extension is to cdaesi
the symmetric rendezvous problem in the plane, both with and
without obstacles. Our recent work [21] reports progreshim
direction.

X-position (meters)

8
total time (sec)

X-position (meters)
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