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INTRODUCTION

This chapter surveys some recent work on the application of techniques from compu-
tational geometry to geometric problems arising in manufacturing processes such as
layered manufacturing, mold design, and numerically controlled machining. Within
each topic, we discuss problems that have benefited from the application of geomet-
ric techniques, and mention several other problems where such techniques could be
used to advantage.

55.1

LAYERED MANUFACTURING

Layered Manufacturing (LM) is a relatively new technology which allows physi-
cal prototypes of 3D models to be built directly from their digital representations,
using a “3D printer” attached to a computer [Jac92]. LM provides the designer
with an additional level of physical verification and facilitates the early detection
and correction of design flaws that may have gone unnoticed otherwise. The use
of LM has proliferated into a wide variety of areas, including, among others, en-
gineering (e.g., automotive and aerospace design), ergonomic product design (e.g.,
hand-held devices such as cell phones), medicine (e.g., prosthetics design and tissue
engineering), and art (e.g., sculpture) [Cad02, Har01, KF97, Lev02, NLG02].

The basic principle underlying LM is simple: The digital model is oriented
suitably and sliced into horizontal layers by a plane. The layers are transmitted
over a network to a fabrication device, which “prints” them successively in the
vertical direction, each layer on top of the previous one; thus the physical prototype
is realized as a vertical stack of two-dimensional layers. The efficiency and accuracy
of LM depends, in part, on the efficient solution of a number of geometric problems.
For instance, the choice of the model’s orientation determines the number of layers,
the surface finish, and the quantity and location of temporary support structures.
The problem of printing the layers efficiently reduces to covering the interior of
a polygon with a collection of thin rectangles. Other problems include slicing the
model efficiently and generating a compact representation of the support structures.

GLOSSARY

STL format: The model is assumed to be given as a surface triangulation.
The format specifies the triangles by listing the coordinates of their vertices and
the direction cosines of their unit outer normals. This is the de facto industry
standard for LM; the name is derived from STereoLithography, one of the first
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LM processes to be developed.

Model orientation: The rotation of the model from its default orientation in
the STL file, prior to being sliced into horizontal layers and built in the vertical
direction.

Stairstep error: Stairstep-shaped artifacts introduced on the model’s facets due
to discretization into layers (similar to antialiasing in computer graphics), which
affect surface finish and accuracy. The stairstep error on a facet is the height of
the stairstep perpendicular to the facet. It is a function of the (smaller) angle
between the vertical direction and the facet’s outer normal, hence of the model’s
orientation.

Supports: Temporary structures that are built simultaneously with the model
to prop up layers that overhang previously-built layers; these are removed in a
postprocessing step. Formally, for a model P, a point p € R? \ P is part of the
supports if the upward-directed ray from p intersects P; thus the membership of
p in supports depends on the model’s orientation. The supports form a collection
of disjoint polyhedra. (Figure 55.1.1.)

Support requirements: Measured in two ways: The support volume is the total
volume of the support polyhedra. The support contact-area is the area of that
portion of the model’s boundary that is in contact with supports. These should
be minimized to reduce material costs, build time, and postprocessing time.

Hatching: The process of printing each layer (a polygon) by covering its interior
with parallel rectangles of some small width; the width is a process parameter.

FIGURE 55.1.1
Support structures (shown shaded) for a nonconvex polygon (left) and a convex polygon (right).
Lllustration is in two dimensions for convenience.

RESULTS

Figure 55.1.2 illustrates schematically a widely-used LM process called Stereolithog-
raphy, where the printing of layers is achieved by having a laser trace out and hatch
each layer on the surface of a liquid resin which hardens when exposed to light. Af-
ter a layer is built, the platform is lowered by an amount equal to the layer thickness
(on the order of a few thousandths of an inch) and the next layer is then built atop
the previous one. The need for supports is ascertained beforehand, by analyzing
the orientation and geometry of the model, and then generating and merging a
description of the layers into the STL file for the model. Representative examples
of other LM processes include Fused Deposition Modeling (where layers are printed
by extruding and laying down molten plastic via a nozzle), Laminated Object Man-
ufacturing (where the layers are cut out from sheets of adhesive-backed paper), and
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3D Printing (where the layers are realized by outlining their shape via a binder
fluid and then depositing a special powder onto it).

FIGURE 55.1.2
The Stereolithography process.
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Geometric problems in LM can be grouped loosely into three categories:

Choice of model orientation. Here the goal is to choose an orientation for
the model that optimizes some design criterion (or to simply decide if the crite-
rion can be satisfied). In [ABB197], O(n)-time algorithms are given for deciding
whether an n-vertex polyhedron can be built without supports using two models
of Stereolithography—one in which no layer can overhang the previous one, and
another where some overhang, controlled by an angle parameter, is allowed. The
classes of objects that can be built by these processes are also related to those
buildable via NC-machining and casting. In [MJSG99|, an algorithm is given to
minimize the maximum stairstep error ([BB95]) over all facets of a polyhedron in
O(nlogn) time and to minimize the sum of the stairstep errors on all facets in
O(n?) time; the first algorithm even allows facets to be weighted to indicate their
relative importance with respect to surface finish. Also given are O(n?)-time algo-
rithms to minimize the volume and (independently) the contact-area of supports
for a convex polyhedron. In [MJSS01], the preceding results are combined to recon-
cile simultaneously multiple design criteria, including support volume, contact-area,
stairstep error, and number of layers. (Minimizing the number of layers is equiv-
alent to finding the width of a polyhedron, and efficient solutions are known for
this [HT88, SSMJ99].) Three formulations for reconciling the criteria are consid-
ered: optimizing the criteria sequentially, optimizing a weighted combination of
the criteria, and allowing the criteria to meet designer-specified thresholds. The
methods in [MJSG99, MJSS01] use well-known techniques from computational ge-
ometry, such as spherical arrangements, convex hulls, and Voronoi Diagrams, in
conjunction with constrained optimization methods such as Lagrangian Multipli-
ers. In [ADOO], an approximation algorithm is given for minimizing the contact-area
for a convex polyhedron. This method, based on computing approximate levels in
a weighted arrangement of lines, runs in O((n/€?)log® n) expected time and has an
approximation ratio of 1 + €, for any € > 0.

Optimization of supports for a nonconvex polyhedron is much harder due to the
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complicated structure of the supports. As Figure 55.1.1 illustrates, supports need
not extend all the way to the platform, but may instead terminate on the model
itself. Furthermore, only a fraction of a facet need be in contact with supports,
unlike the convex case where either a facet is entirely in contact with supports or
not in contact at all. In [MJST99], algorithms are given for the two-dimensional
case, i.e., minimizing support area and contact-length. The approach is based on
partitioning the unit-circle of directions into intervals and generating for each in-
terval a formula for the support requirement of interest. The intervals are then
scanned in order and the formula for each interval is updated incrementally from
that of the previous interval and then optimized within the interval. The run-
ning time is O(nlogn) plus the time to perform O(n) minimizations of a certain
polynomial of degree ©(n). Heuristics for contact-area optimization are described
in [AD95], where a subset of the facet normals of the convex hull of the model is
used for choosing the orientation. For each orientation, the needed supports and
their contact-area are computed approximately, and the best orientation is then
output. No analysis of the quality of the approximation is provided. In earlier
work, the problem of support optimization is addressed in [FF94], and heuristics
are given in the context of an expert system.

Another design consideration in LM is to choose model orientations so that
certain functionally-critical surfaces of the prototype (e.g., facets on gear teeth)
are not in contact with supports, since the presence and subsequent removal of
supports can affect surface finish and accuracy. In [SSJT00, SSJJ], an O(n?)-time
algorithm is are given to compute a description of all model orientations for which a
prescribed facet is not in contact with supports. The related optimization problem
of computing a description of all orientations for which the total area of facets
not in contact with supports is maximized is solved in O(n*) time. These results
are based on convex hulls, arrangements, and overlays of subdivision—all on the
unit-sphere.

Fixed-orientation problems. Once an orientation has been chosen, several tasks
remain. These include computing a description of any needed supports, slicing the
model and supports, and deciding on how best to hatch the layers. In commercial
software packages for LM, slicing and support generation are usually done in tan-
dem. Specifically, as the model is sliced, the volume subtended under each layer is
subtracted from that subtended by the layer above it; the result is the support be-
tween the two layers. Thus the supports are generated as a sequence of thin layers.
In [Joh99], an alternative approach is pursued, where the goal is to generate a com-
binatorial description of the supports, as a collection of disjoint polyhedra. The
algorithm is based on cylindrical decomposition [Mul93] and runs in O(n?logn)
time.

Slicing algorithms used in LM are inefficient in that they compute from scratch
the intersection of each slicing plane with the polyhedron, instead of taking advan-
tage of the coherence that exists from layer to layer. This is due, in part, to the lack
of any topological information in the STL format. In [MS99], an efficient and robust
slicing algorithm is proposed. The algorithm builds a data structure based on a
generalization of the well-known winged-edge structure [Bau75] and then uses the
plane sweep paradigm to compute and update the layers incrementally, by taking
advantage of the topological similarity between closely-spaced layers. A different
perspective on slicing is taken in [DM94, KD96], where the focus is on slicing a
model adaptively, with slices of variable thickness, so as to improve surface accu-
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racy and to speed up the build time.

The hatching problem may be viewed as the two-dimensional analog of the
model orientation problem. Here the goal is to find a common orientation of all the
layer polygons (or, equivalently, a rotation of the model about the vertical axis) so
that the total number of times the hatching tool (e.g., the laser in Stereolithography)
meets the boundaries of all the polygons is minimized. This, in turn, minimizes the
number of starts, stops, and direction changes of the tool and increases tool life.
In [HJSS03], the problem is approximated as one of finding a direction in the plane
that minimizes the sum of the lengths of the projections of all polygon edges in
this direction. The latter problem is reduced to computing the width of a suitably
defined convex polygon (see also [Sar99]). The overall running time is O(n’logn’),
where n’ is the total number of number of polygon edges in all layers. On real-world
STL models, the algorithm runs very fast and delivers solutions that are very close
to the solution produced by an optimal, but much slower, algorithm [SSHJ02].

Decomposition problems. LM processes generally view the model as a single,
monolithic unit. An alternative approach is to decompose the model into a small
number of pieces, build the individual pieces, and then glue them back together.
This allows large models to be built in parallel on multiple machines (or even
simultaneously on the same machine) and also reduces the build time. Moreover,
the support requirements of the decomposed parts is usually lower than that of the
original. This decomposition-based approach is pursued in [[JM*02], where it is
shown how to decompose, with a plane, a convex or nonconvex polyhedron in a
given orientation into a user-specified number of pieces so that the support volume
or contact-area is minimized. The algorithms run in O(nlogn) and O(n?logn)
time for convex and nonconvex models, respectively, and are based on cylindrical
decomposition and space sweep. In related work [FMO1], it has been shown that
the problem of deciding whether a polyhedron of genus zero or a polygon with holes
can be decomposed into k terrains (hence built with zero supports) is NP-complete;
here k is part of the input. In [IJS02], it is shown how to decompose, with a line,
a polygon into two smaller polygons such that each is a terrain in the direction
normal to the line; the algorithm runs in O(nlogn) or O(n?logn) time, depending
on whether or not both terrains have their “base” edge on the dividing line (see
also [ABB197, RR94] for related work).

Besides the problems described above, a (necessarily incomplete) list of other
related work on LM includes: automatic repair of STL files [Bgh95, Bar97]; elim-
ination of support structures for a class of models by selectively thickening the
walls of the model [AD98]; the design of a complete software front-end for the LM
pipeline, from digital model import, to model repair, to batch scheduling of multi-
ple models [BK98]; new modeling techniques for LM based on voxels [CMP95] and
on analytic surfaces such as quadrics [FK96]; and investigation of alternatives to
the STL format in LM [KD97, DKPS98].

OPEN PROBLEMS

1. Support optimization for nonconvex polyhedra is a challenging problem and
an optimal solution remains elusive. Specifically, given a nonconvex polyhe-
dron, P, the goal is to compute an orientation which minimizes the support
volume or (independently) the contact-area when P is built in that orienta-
tion. Extending the method in [MJST99] to three dimensions appears difficult
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and expensive, so a new approach may be needed. Also of interest would be
simple and efficient approximation algorithms.

. The decomposition algorithm in [IJM*02] assumes that an orientation is given

for the model and then proceeds to find a decomposition which minimizes
the support requirements. A natural extension of this is to find an optimal
(or near-optimal) decomposition over all possible orientations. Similarly, for
the hatching problem, it would be interesting to design an algorithm which
computes an optimal or near-optimal hatching direction over all possible ori-
entations of the model.

. Although the STL format is the de facto industry standard for model rep-

resentation in LM, it is plagued with many problems. It introduces an ap-
proximation error when used to represent smooth surfaces, it lacks useful
topological information, it is highly redundant and error-prone, and it is very
voluminous for surfaces of high curvature. As mentioned earlier, alternatives
to STL have been investigated [KD97, DKPS98, CMP95, FK96] recently. In
particular, in [FK96] a representation based on quadric surfaces has been
considered. It has been shown empirically that for the tasks of slicing and
filling in the layers using equidistant offset curves, this analytic representation
is superior to STL both in accuracy and in computation time and memory
requirements. A natural extension of this work would be to investigate the ef-
fect of such representations on other LM tasks such as support generation and
minimization, reduction of stairstep error, layer minimization, and hatching.

55.2 MOLD DESIGN

Casting and injection molding processes are used extensively to mass-manufacture
a wide variety of products. A key step here is the design of the mold from a digital
model of the part, since this affects both the speed of the process and the quality of
the finished part. For instance, how the model is decomposed into pieces to make
the mold halves determines the number of undercuts in the mold: the greater the
number of undercuts, the slower the de-molding process. As another example, the
location of venting holes on the mold and the choice of pouring direction determine
the extent of air pockets created during mold filling; this ultimately affects the
strength and finish of the product.

GLOSSARY

Mold: A cavity in the shape of the part to be manufactured into which molten
metal is poured. It consists of two mating parts called mold halves. Once the
metal has hardened, the mold halves are pulled apart in opposite directions (i.e.,
de-molded) and the part is removed.

Undercut: Any point p on a part’s surface such that the outward normal at p
makes an angle greater than 90° with the de-molding direction for the mold half
containing p. Generally, a group of such points forms a recess or projection in
the part that prevents easy de-molding.
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FIGURE 55.2.1
A parting line (e) for the exhaust manifold of an auto-

mobile.

Parting line: A continuous closed curve on the surface of the part that defines
the two halves; thus it also defines the profile of the contact surface between the
two mold halves (Figure 55.2.1).

CH(P): The convex hull of a polyhedron P.

Dent: For a polyhedron P, a connected component of CH(P) \ P.

Fillability: The ability to fill a mold from a given pouring direction without cre-
ating air pockets. This is a function of the mold geometry, the pouring direction,
and the location of air-venting holes.

Part decomposition: The process of dividing a part into smaller pieces and
making mold halves for these that satisfy certain optimization criteria.

RESULTS

Geometric problems in mold design generally fall into two categories.

Fillability problems. These are concerned with questions such as whether a mold
can be filled from a given pouring direction without creating air pockets, and find-
ing a pouring direction that eliminates air pockets using the smallest number of
venting holes. In [BvKT98], several results are presented including: (a) deciding in
O(n) time whether an n-vertex polyhedron can be filled from a given pouring gate
in a given direction without creating air pockets; (b) enumerating in O(n?) time all
pouring directions that permit such a fill; (c) computing in O(n?) time a pouring di-
rection which minimizes the number of air pockets; and (d) characterizing classes of
polyhedra according to their fillability. The two-dimensional counterparts of these
problems are solved in [BT95], with running time O(n) for the decision problem
and O(nlogn) for the enumeration and optimization problems. Similar questions
are also addressed in [FM93] for different mold-filling strategies and different types
of filling material (ranging from gas to liquid to solid).

Part decomposition. This refers to the problem of “cutting” the digital model
into smaller pieces and making mold halves for these that meet certain optimization
criteria. For instance, how can a 3D part P be divided into two such that the parting
line is as “flat” as possible? As noted in the mold-design literature, the flatter the
parting line, the more cost-effective and accurate the mold. While the notion of
flatness has not been quantified in the literature, it is generally taken to mean that
the parting line should lie as nearly in a plane as possible. Although a parting line
that lies completely in a plane can always be produced by intersecting P with a
plane, this can create undercuts, even if P is a convex polyhedron (Figure 55.2.2).

The problem of computing a flattest undercut-free parting line for an n-vertex
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FIGURE 55.2.2

An octahedron that cannot be divided by a plane into two halves without

creating undercuts. For example, the plane containing vertices 1, 2, and 3

creates a projection under the chain 1-4-3. Undercuts can be avoided by

choosing the parting line to be 1-2-3-4-1 (or 2-5-4-6-2), but this is no

longer in a plane. (From [MGJ99], with permission.) 6

convex polyhedron P is considered in [MGJ99]. That such a line always exists is

clear—simply take the boundary, L(d), of P, as viewed along lines of sight parallel
to any direction d. The flatness, p(d), of L(d) is defined in [MGJ99] as the sum of

—

the squares of the projected lengths of the segments of L(d), where the projection
is onto a plane normal to cz divided by the sum of the squares of the lengths
of the segments of L((f) Thus, p(cf) < 1, with equality holding if and only if
L(d) lies in a plane. An O(n?)-time algorithm is given to compute a direction d
that maximizes p(d_j The algorithm blends together geometric techniques such
as visibility cones, arrangements, and shortest paths in a simple polygon, with
methods from continuous optimization. Algorithms are also given for optimizing
other measures of flatness. These include (a) finding a direction which maximizes
the flatness criterion defined above, but uses segment lengths rather than squared
lengths; and (b) finding a direction which minimizes the width of the parting line,
where, for any direction cf, the width of the parting line L((f) is defined to be the
smallest separation between two parallel planes normal to d that enclose L(cf)

In [BBvK97] the problem of deciding if a given n-vertex polyhedron can be
parted by a single plane without creating undercuts is addressed. For an n-vertex
nonconvex (resp. convex) polyhedron, where the cast parts are to be removed by
translation in mutually-opposing directions, the bounds are O(n3/ 2+€) time and
O(n3/?%¢) space (resp. O(nlog®n) time and O(n) space), where € > 0 is an arbi-
trarily small constant. A related result is presented in [AdBT02], where it is shown
that, for an n-vertex polyhedron, all directions that admit an undercut-free parting
line (for cast removal in mutually opposing directions) can be computed in O(n*)
time. This is shown to be optimal in the worst case by demonstrating a polyhedron
which admits Q(n?) such directions. Finally, in [CCW93a], an O(ndlog d)-time
algorithm is given to compute a pair of opposing directions maximizing the number
of visible dents in an n-vertex polyhedron with d dents. This minimizes the number
of undercuts; however, the method does not yield a parting line.

Other related work includes decomposition of two-dimensional molds [RR94],
identification of criteria other than parting line shape and number of undercuts [RS90],
and heuristics for computing a de-molding direction without too many under-
cuts [HT92].
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OPEN PROBLEMS

1. Tt is unlikely that the O(n?)-time algorithm in [BvKT98] for minimizing the
number of air-venting holes can be improved (in view of the 3SumM-HARD-
based lower bound). However, can a significantly faster algorithm be devised
that approximates the minimum number of air-venting holes to within a con-
stant factor?

2. The goals of maximizing the flatness of the parting line and minimizing the
number of undercuts are usually at odds. Often, however, meeting specified
thresholds suffices: for instance, given parameters ug and pg, design an effi-
cient algorithm to find a parting line with at most uy undercuts and flatness
at least pg.

3. A polyhedron P is 1-castable if it can be parted by a plane without creat-
ing undercuts. The results in [BBvK97] allow one to decide 1-castability effi-
ciently. However, there exist polyhedra that are not 1-castable (Figure 55.2.3).
To extend the class of polyhedra that can be cast with planes, call a polyhe-
dron P 2-castable if there is a plane h such that the polyhedra P N hT and
PN h™ are both 1-castable. (Here A" and h~ denote the two halfspaces of
h.) Give efficient algorithms to decide 2-castability and characterize the class
of 2-castable polyhedra.

FIGURE 55.2.3

Cross-sectional view of a polyhedron that is not 1-castable.
The cross section tapers along the length of the polyhedron
to a point and then expands again, so that the polyhedron
consists of a “double pyramid.” Any casting plane will create
an undercut at one (or more) of the spikes or at some of
the slanted facets corresponding to the horizontal and vertical
segments in the cross section.

55.3 NUMERICALLY CONTROLLED MACHINING

The dominant machining process today is numerically controlled (NC) machining,
where parts are manufactured under computer control based on information ex-
tracted from a digital model. Examples of NC-machines include milling machines
and lathes. Typical questions of interest concern accessibility of the tool to the part
and generation of toolpaths that satisfy certain optimization criteria.
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GLOSSARY

Degrees of freedom (dof): The types of motion permitted of an NC-machine.
Specified as a combination of translation and (full or partial) rotation with re-
spect to the coordinate axes.

Visibility map (or VMap): The set of points on the unit sphere representing
the directions along which a tool can approach (or “see”; cf. Chapter 28) all
points on the surface in question without being blocked by other portions of
the part. The VMap is a function of the surface geometry and the geometry of
the cutting tool, and is in practice usually representable as a (spherical) polygon
formed by the intersection of a certain set of hemispheres [GWT94]. For instance,
the VMap of a plane is the hemisphere whose pole is the normal to the plane,
the VMap of a half-cylinder is a half-great circle, the VMap of a hemisphere is
a point, and the VMap of a dent in a polyhedron is the intersection of the set of
hemispheres determined by the normals to the dent’s faces.

Pocket: A region bounded by one or more closed curves, which delineates the
area on the part from which material must be removed.

Spherical band of width b: The set of all points on the unit sphere that are
at a distance of at most b on either side of a great circle, where the distance is
measured along a great circle arc.

Part setup: The process of dismounting a part, and re-calibrating and re-mounting
it in a new orientation on the worktable of an NC-machine.

Direction-parallel pocket machining: A machining discipline where the tool
is constrained to stay within a pocket and, moreover, always moves from left to
right with respect to a chosen reference line.

Zigzag pocket machining: Similar to direction-parallel machining, except that
the tool moves from left to right, then right to left, and so on.

Contour-parallel pocket machining: The tool is constrained to move along
a sequence of closed paths that are parallel to the pocket’s contour.

RESULTS

Two important parameters of an NC-machine are the dof of the machine and the
type of cutting tool. The dof include translation along the principal coordinate
directions (3-axis machine), plus rotation of the worktable about one axis (4-axis
machine), plus partial swivel of the tool about a second axis (5-axis machine).
The dof determines global motion of the tool. For example, in a 4-axis machine,
the directions in which the tool can move can be represented on the unit sphere
as a great circle whose normal is the rotational axis of the worktable. In a 5-axis
machine, if the tool can swivel by +b/2 radians, then the tool motion directions
are given by a spherical band of width b, where the great circle associated with the
band is as in the 4-axis case. Cutters are classified, according to the maximum angle
6 that they can tilt from the local surface normal, as: flat-end (0 = 0 radians),
fillet-end (6 < w/2 radians), and ball-end (0 = 7/2 radians). Thus the cutter
geometry determines local motion of the tool: a flat-end cutter can approach a
point p on a surface only along the surface normal at p, while a ball-end cutter can
approach p along any direction lying within the hemisphere with pole p.
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Part orientation. In order to machine a surface on a part, the tool must be
able to approach (or see) every point on the surface without being blocked by
other portions of the part. For a given orientation of the part on the machine’s
worktable, only a subset of the surfaces that need to be machined might be so visible
to the tool. Therefore, after each such set of visible surfaces has been machined,
a part setup is performed to bring a new set of surfaces into view. However, part
setup can be quite time-consuming in relation to the actual machining time (hours
versus minutes, sometimes). This motivates the following problem. Given the part
geometry and the machine parameters, compute a sequence of part orientations
that minimizes the number of setups. Unfortunately, this problem is NP-hard, and
so attention has focused on obtaining efficient algorithms that approximate closely
the minimum number of setups.

A natural approach is a greedy heuristic which finds repeatedly a part orien-
tation that allows access to the maximum number of as-yet-unmachined surfaces
[CCW93b, GIM™96]. Suppose, for example, that a 4-axis machine equipped with a
ball-end cutter is used. Assume further that the VMaps for the part’s surfaces are
available; for a ball-end cutter, the VMaps are intersections of certain hemispheres
and can be computed as described in [GWT94]. Recall that each VMap represents
the directions along which every point on the corresponding surface can be seen
by the tool. Therefore, to find an orientation in which the maximum number of
surfaces can be seen is equivalent to finding a great circle, C, that intersects the
maximum number of VMaps. (Here, C represents the directions in which the tool
can move in a 4-axis machine.) Similarly, for a 5-axis (resp. 3-axis) machine, the
problem is to find a spherical band B of width b (resp. a point P) that intersects
the maximum number of VMaps (Figure 55.3.1).

Given m VMaps with a total of n vertices, this problem is solved in [CCW93b]
in O(nmlogm) time and O(nm) space for a 3- and 4-axis machine equipped with
a ball-end cutter. In [GJMT96], the time bound is improved to O(n?) in the worst
case—when m = ©(n)—and, moreover, an O(nm log m)-time and O(nm)-space al-
gorithm is given for 5-axis machines. These results are based on geometric duality,
topological sweep (Section 24.4), and properties concerning intersections and cov-
ering of polygons on the unit sphere. In [GIMT96], an O(n? + nm logm)-time and
O(nm)-space algorithm is also given for fillet-end tools on 4- and 5-axis machines.
All of these results imply an O(logm)-approximation to the minimum number of
setups, via the well-known approximation result for the set-cover problem.

Tool paths. A related problem is that of generating tool paths that meet certain
optimization criteria, given the pocket geometry, the tool size and geometry, and
a machining discipline such as direction-parallel machining, zigzag machining, or
contour-parallel machining. The optimization criteria include minimizing the total
length traveled by the tool, minimizing the number of tool retractions (i.e., the
number of times the tool is lifted off the workpiece), and minimizing the number
of times any point is machined by the tool. (This problem bears similarities to
the hatching problem discussed earlier.) In [AHS00], a zigzag pocket machining
algorithm is given and it is proved that the number of retractions is at most 5r 4 6h
for a pocket with A > 0 holes, where 7 is the minimum number of retractions.
Moreover, no point is machined more than once. (Experiments in [AHS00] indicate
a better approximation factor of 1.5.) The approach is based on constructing and
processing a so-called machining graph. The algorithm runs in O(n) time, where
n is the number of vertices in the machining graph. (Here n is a function of the
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FIGURE 55.3.1
A great circle for a 4-azis machine (a) and a spherical band for a 5-azis machine (b) intersecting
a set of VMaps. (From [GIM™96], with permission.)

@ (b)

pocket geometry and the tool size.)

In [AFMOO], the following related optimization problem is shown to be NP-
hard: Given a polygonal pocket of size n and a tool represented by a unit disk or a
square, find a closed path of minimum length that visits every point of the pocket
at least once. It is shown, however, that one can compute a path that is at most a
constant times longer than a shortest path in time O(nlogn).

Heuristics have also been investigated for other tool-path generation problems—
see, for instance, the references cited in [AHS00]. However, no approximation
bounds have been proved.

OPEN PROBLEMS

1. The type of visibility considered in the part setup problem is between two
points (one being the tool and the other being a point on the part’s surface)
along a straight line. Characterizations of such VMaps and efficient algo-
rithms are given in [GWT94]. Give characterizations and efficient algorithms
for VMaps under point-point visibility along circular trajectories (e.g., as pro-
duced by the rotary joints of a robot arm) or along parabolic trajectories (e.g.,
as executed by droplets under gravity in vapor deposition processes). Also
of interest are segment-segment and plane-plane visibility along straight line
trajectories.

2. Consider an augmented 4-axis (resp. 5-axis) machine, where the worktable
can rotate fully (resp. tilt by 7/2 radians) about a second axis. In the greedy
framework described earlier, this reduces to finding a pair of orthogonal great
circles (resp. spherical bands) that intersect the maximum number of VMaps.
No algorithms are known for this problem.
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3. Prove that the zigzag pocket machining problem that calls for the minimum
number of retractions and requires that no pocket point is machined more
than once ([AHS00]) is NP-hard, or provide a polynomial-time algorithm.

4. Investigate tool-path generation problems for contour-parallel machining and
provide provably good approximation algorithms.

55.4 OTHER TOPICS

Besides the three representative topics that we have addressed, there are other
areas for fruitful interaction between computational geometry and manufacturing.
These include: design of mechanisms and linkages (Section 48.1); geometric con-
straint systems (Section 56.3); tolerancing of machined parts; interpretation and
reconstruction of engineering drawings, assembly and disassembly of components
(Section 48.3); geometric software for manufacturing applications, process planning
and simulation, mesh generation (Section 25.4); VLSI design and layout, and vision,
robotics (Chapter 48); geometric modeling issues relevant to manufacturing (Chap-
ter 53 and 56); and geometric problems arising in other manufacturing processes
such as bending, forming, welding, forging, etc.

55.5 SOURCES AND RELATED MATERIAL

FURTHER READING

The following contain additional discussion and references related to the topics in
this chapter.

[Bos95, Maj98]: Provide good expositions of the application of computational ge-
ometry techniques to problems in molding, casting, and layered manufacturing.

[Wo094]: Discusses various kinds of visibility in the context of different manufac-
turing processes.

[Hel91]: Contains a detailed discussion of the application of geometric techniques
to problems in pocket machining.

[Bra86]: A good general reference on a variety of design and manufacturing pro-
cesses, including casting, molding, forging, stamping, machining, etc.

RELATED CHAPTERS

Chapter 24: Arrangements

Chapter 28: Visibility

Chapter 29: Geometric reconstruction problems
Chapter 48: Robotics

Chapter 53: Splines and geometric modeling
Chapter 56: Solid modeling
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