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Abstract—Distributed computing applications are increasingly utilizing distributed data sources. However, the unpredictable cost of
data access in large-scale computing infrastructures can lead to severe performance bottlenecks. Providing predictability in data
access is, thus, essential to accommodate the large set of newly emerging large-scale, data-intensive computing applications. In this
regard, accurate estimation of network performance is crucial to meeting the performance goals of such applications. Passive
estimation based on past measurements is attractive for its relatively small overhead compared to relying on explicit probing. In this
paper, we take a passive approach for network performance estimation. Our approach is different from existing passive techniques
that rely either on past direct measurements of pairs of nodes or on topological similarities. Instead, we exploit secondhand
measurements collected by other nodes without any topological restrictions. In this paper, we present Overlay Passive Estimation of
Network performance (OPEN), a scalable framework providing end-to-end network performance estimation based on secondhand
measurements, and discuss how OPEN achieves cost-effective estimation in a large-scale infrastructure. Our extensive experimental
results show that OPEN estimation can be applicable for replica and resource selections commonly used in distributed computing.
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1 INTRODUCTION

N the distributed computing domain, demands on data

have significantly increased over the past few years, and
importantly, such applications are increasingly utilizing
distributed data sources. For example, projects such as LHC
[1] in high energy physics and SkyServer [2] in astronomy
produce petabytes of new data every year, and researchers
over the world access the data, often distributed, for their
own experiments. An example of such applications is data-
intensive scientific workflows [3], [4]. For such data-
intensive tasks, data access cost is a significant factor in
their execution performance in addition to the computation
cost. Hence, it is essential to consider data access cost
in launching data-intensive computing applications.

Large-scale computing infrastructures such as grids [5],
[6] and desktop grids [7], [8], [9] are attractive due to their
scalability and cost effectiveness. However, the loosely
coupled nature of many of these platforms often makes
them unpredictable in their resource availability and
performance, particularly in terms of data access. Despite
their rich set of computational resources, the unpredictable
nature of large-scale computing platforms makes it hard to
deploy such data-intensive applications or limits the size of
data access making them inefficient to deploy. Thus,
providing predictability in data access is a vital requirement
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for enabling such data-intensive tasks on large-scale
systems. The goal of this work is to successfully execute
data-intensive computing applications on unpredictable but
appealing large-scale systems.

A key requirement for achieving data access predict-
ability is the ability to estimate network performance for
data transfer, so that computation tasks can take advantage
of the estimation in their deployment or data source
selection. In other words, network performance estimation
can provide a helpful guide to run data-intensive tasks in
such unpredictable infrastructures having a high degree of
variability in terms of data access.

Active probing can be an option for estimation, but is
unscalable and expensive in using back-to-back measure-
ment packets. Passive estimation is attractive for its
relatively small overhead, and thus could be desirable for
many networked applications that do not require an
extremely high degree of accuracy such as that needed by
network-level applications like network planning. For
example, a substantial number of networked applications,
such as Web server selection and peer selection for file
sharing, rely on ranking. According to a peer-to-peer
measurement study in [10], the second placed peer
performance is only 73 percent of the best peer perfor-
mance. This significant gap implies that some degree of
estimation inaccuracy would be tolerable for such ranking-
based applications. A potential problem of passive estima-
tion is that it can suffer from estimation failure due to the
unavailability of past measurements. This problem can be
mitigated by sharing measurements among nodes; thus, a
node can estimate performance even against a server it has
never contacted. In previous work [11], [12], however, the
sharing was restricted to specific underlying topologies
such as a local network, limiting scalability. In this work, we
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present a novel approach enabling nodes to utilize past
measurement information with no reliance on topological
similarities, so as to minimize blind spots in the system and
to reduce uncertainty in data access.

To realize this goal, there are two important challenges.
The first challenge is the characterization of a node in terms
of its data access capability to enable it to utilize others’
measurements for its own estimation. This characterization
is key for topology-independent utilization of secondhand
measurements. The other important challenge is how to
facilitate local measurements to be globally available to
other nodes in the system for system-wide sharing. Any
server-based techniques for storing global information are
limited by well-known problems of scalability and fault
tolerance. At the other end of the spectrum is flooding-
based dissemination, which while fully distributed, has
high network overhead. In this paper, we present Overlay
Passive Estimation of Network performance (OPEN), a scalable
framework for end-to-end network performance estimation.
OPEN provides a correlation-based secondhand estimation
with empirical node characterization (proposed in our
previous work [13]) and proactive dissemination of measure-
ments with limited overhead by diverse optimizations.

Our key contributions can be summarized as follows:

e We present the OPEN framework that performs
passive network performance estimation based on
secondhand downloading information. OPEN is
highly scalable, fully distributed, and topologically
neutral.

e To enable cost-effective information sharing, we
introduce two optimization techniques in addition
to a probabilistic approach, both of which separately
disseminate measurement information based on its
“criticality,” i.e., how important it is to share in the
system. We show that these optimization techniques
dramatically reduce dissemination overhead with-
out significant performance loss.

e We evaluate OPEN with two selection problems
common in distributed computing, resource selection
and replica selection. To emulate a large-scale system,
we collected download traces for 10 months in
PlanetLab [14]. Using data sizes contained in
GridFTP workloads [15], the results show that OPEN
consistently outperforms selection techniques based
on statistical pairwise estimations as well as random
and latency-based selections in diverse experimental
settings.

e For extensive evaluation, we present additional
experimental results for the OPEN framework with
S3 data traces from HP Lab [16] and live experi-
mental results with Montage [17], a toolkit for
astronomical research, conducted on PlanetLab.

2 DisTRIBUTED COMPUTING MODEL

We consider a large-scale infrastructure for distributed
computing. The system consists of compute nodes that
provide computational resources for executing application
jobs, and data nodes that store data objects required for
computation. In our context, data objects can be files,
database records, or any other data representations. We
assume that both compute nodes and data nodes are
connected in an overlay structure without any assumption
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Fig. 1. Distributed computing model.

of centralized entities for scalability. We do not assume any
specific type of organization for the overlay, but assume
that the overlay provides basic data access functionalities
including search, store, and retrieve. In addition, each node in
the system can be a compute node, data node, or both.

Fig. 1 illustrates the distributed computing model we
consider. In the worker pool, computational resources are
provided to run applications, while data nodes serve data
objects accessed by the compute nodes. Distributed applica-
tions share the computational resources by submitting their
jobs. In this model, we focus on two selection problems
common in the distributed computing domain.

e Replica selection. The data object is replicated in
multiple data nodes geographically dispersed, and
the compute node needs to select a replica to
download. The goal of this selection is to identify a
replica server having minimal data access cost from
the compute node.

e  Resource selection. For job allocation, one or more
compute nodes should be chosen from a list of
computational resources. In this context, the job
requires accessing data for task completion. The
goal of this selection is to identify a compute node
which can access the data server with minimal data
access cost.

Hence, the cost of data access is a vital factor for both
selection problems. While the computation cost is also
important for overall task performance, our focus in this
paper is on the communication cost. The question is how to
estimate the data access cost accurately and cheaply for the
selection problems described above. In the next section, we
discuss estimation techniques based on past firsthand or
secondhand measurement information and the benefits of
secondhand measurement-based estimation.

3 SECONDHAND ESTIMATION

We classify estimation techniques into several categories,
based on the degree of measurement sharing for their
estimation: pair-level, domain-level, and system-wide, in addi-
tion to non-sharing model, as summarized in Table 1.
Pair-level sharing only utilizes the direct (firsthand)
measurements made by a specific pair of nodes for their
network path estimation. Many statistical or time-series
forecasting techniques, such as exponential moving average,
belong to this class. Previous studies, such as [19], showed the
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TABLE 1
Degree of Measurement Sharing

[ Degree | Non-sharing | Pair-level | Domain-level [ System-wide |
Approach | On-demand measurement | Statistical estimation Sharing in a LAN Sharing in a system
Time-series forecast | Sharing in a domain
System/ Pathchar [18] NWS [19] SPAND [11] OPEN
Technique Packet pairs [20] HB prediction [21] Webmapper [12]
bprobe/cprobe [22]

high accuracy of these techniques, but this class requires
O(n?) measurements for estimation between all pairs.

In contrast, some estimation techniques enable nodes to
utilize indirect (secondhand) measurements provided by
other nodes for their own estimation. In domain-level
sharing, past measurements in a domain (e.g., a single
network or logical group of nodes) are shared between
nodes belonging to the same domain. In SPAND [11], nodes
in a single network share past measurements for Web
server selection. Webmapper [12] shares passive measure-
ments to select a Web server based on a logical group
clustered by IP prefixes. By sharing the measurements in a
domain, it is possible to estimate performance if any node in
the domain has communicated with the server. Again,
however, the sharing is restricted to the domain. In
addition, the underlying assumption of existing techniques
belonging to this class is that the nodes in a domain have
closely similar characteristics in network access. If this is not
the case, sharing measurements without considering node
characteristics may cause inaccuracy in estimation.

Unlike the above two classes of sharing, system-wide
sharing, we propose in this work, has no constraints on
sharing measurements across the system. In other words, if
any measurement against a server is available in the system,
any other node can utilize that information for its own
estimation to that server. Thus, it is possible to perform any-
pair estimation with O(n) measurements. Since it does not
rely on topological similarities, node characterization is
essential to utilize others’ experiences. In addition, efficient
sharing is also a key for this approach. Before discussing
how OPEN realizes those key functions, we briefly describe
the rationale for secondhand estimation in large-scale
infrastructures.

3.1 Why Secondhand Estimation?

While firsthand-based estimation is likely to be more accurate
than secondhand-based estimation, it is unlikely that all

Estimation failure rate
100 i

Y : : ‘
|
H

8% K 1
“‘J‘,L Pairwise (n=1000)

Secondhand (n=100)
Secondhand (n=1000)

Failure rate in estimation (%)

100000

Fig. 2. Hit rate of relevant measurements.

nodes will have firsthand observations to all servers (a worst
case of O(n?) total measurements in the system if all workers
are also data servers). Thus, there would be no estimates
available for node pairs that lack direct measurements.

Fig. 2 compares the potential estimation failure rates of a
pairwise firsthand estimation technique to that of a system-
wide secondhand estimation approach (OPEN),! caused by
a shortage of existing relevant measurements. This result is
obtained through a trace-driven simulation, where we
tested 100,000 estimations in two systems with sizes n =
100 and n = 1,000.2 We assume there are no measurements
at all in the beginning, and one random pairwise measure-
ment is recorded at each time instant. As can be seen from
the figure, the failure rates decrease as more measurements
are added over time. In particular, we observe that OPEN
dramatically diminishes the failure rates over time by using
secondhand measurements for estimation. In contrast, the
pairwise firsthand technique suffers from significant failure
rates; the system with n = 1,000 has over 90 percent failure,
even at the end of the simulation. This is because the
probability that a node has any measurements to a server
goes down as the system size grows. Given that a large-
scale system can consist of tens of thousands nodes, the
pairwise approach must ensure, in the worst case, that
O(n?) measurements exist, which could require active
probes to fill in the gaps due to insufficient firsthand
observations; or it may suffer from high failure rates due to
a lack of sufficient measurements. Therefore, the second-
hand approach should be beneficial in terms of both
scalability and overhead.

Again, domain-level sharing also performs secondhand
estimation, but relies on topological similarity. Our inten-
tion is to design a framework to enable secondhand
estimation without any topological constraints, as described
in the next section.

4 THE OPEN FRAMEWORK

In our previous work [13], we proposed an estimation
technique utilizing measurements observed in the neighbor
nodes in an overlay network. While working well in a small
setting, the estimation technique can suffer from a shortage
of measurements in a large-scale environment, significantly
degrading performance. In this work, we relax the
constraint on measurement sharing. The OPEN framework
we present in this paper enables system-wide sharing of
measurements without both underlying and overlay topo-
logical restrictions. OPEN provides end-to-end network

1. OPEN uses dissemination of secondhand measurements, as will be
discussed in more detail in the next section.
2. We will present details of the trace and our methodology in Section 5.1.
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performance based on shared secondhand measurements,
unlike the previous work providing the expected down-
loading time for a specific data object.

The OPEN framework consists of two core mechanisms:
secondhand estimation of end-to-end network performance
and proactive dissemination of observed measurements. Since
secondhand estimation is based on our previous work in
[13] and is not our main contribution in this paper, we omit
here but Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2010.201, briefly provides our second-
hand estimation method. In this work, we more focus on the
dissemination part.

For secondhand estimation, it is necessary that second-
hand measurements are globally visible, so that any other
nodes can make their own estimations by referring to the
shared measurements. OPEN facilitates dissemination of
measurements in a proactive manner to minimize estima-
tion failures due to shortage of relevant measures. OPEN
mainly relies on probabilistic dissemination taking advantage
of cost effectiveness and fault resilience. Many optimiza-
tions can be possible for probabilistic dissemination, as did
in [23], [24], [25], [26], [27], our intention is not to make
further optimization for dissemination protocols, but to
provide insights for application-oriented optimizations for
efficient dissemination, particularly for the OPEN frame-
work. In this section, we introduce two techniques that can
reduce dissemination overheads in our secondhand-based
estimation framework.

4.1 Selective Eager Dissemination

Intuitively, disseminating collectively based on time-out,
rather than individually at once, can reduce dissemination
overhead, and we observed that such periodic dissemina-
tion significantly reduces dissemination overhead in terms
of the number of exchanged messages. Although periodic
dissemination can make a significant enhancement for
dissemination, one shortcoming would be the propagation
delay due to its periodicity in dissemination. Some applica-
tions need to spread critical information more quickly. For
example, we may want to disseminate the secondhand
measurement if we have no information about that server in
the measurement yet, in order to reduce the potential miss
rates in estimation. To handle this, we consider selective eager
dissemination, which disseminates hot information quickly
without delay, while cold information is delivered periodi-
cally. In other words, only critical information is eagerly
propagated to the system in this technique.

Algorithm 1 illustrates the procedure of selective eager
dissemination. Function initiate is performed by a source
node when a new measurement is obtained by actual
downloading, and the source node determines if the new
measurement is worth being distributed eagerly. Based on
the decision, the measurement is either forwarded to
neighbors at once (if is_eager(m) == true) or stored in the
list for periodic dissemination (if is_eager(m) == false). A
receiving node performs a similar function: it forwards the
information immediately if it is hot; otherwise, it is moved
to the periodic forwarding list, as seen in the receive
function. Each node performs periodic dissemination when
the periodic timer expires by the time-out function. The
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internal functions can be defined on the local state, as
perceived by the initiating or receiving node.

Algorithm 1 Selective eager dissemination

: initiate(message m):

1

2: if is_eager(m) == true then
3: forward(m);

4: else

5 forwardList.append(m);

6: end if

7: receive(message m):

8: if message ¢ historyList then
9: historyList.append(m);

10: if is_eager(m) == true then
11: forward(m,);

12: else

13: forwardList.append(m);
14: end if

15: end if

16: timeout():

17: forward(forwardList);

18: forwardList < ()

19: forward(message_array m/[]):
20: N < neighbor nodes;

21: for all n € N do

22; if random() < p then

23: send m(] to n;
24: end if
25: end for

This technique allows any disseminated information to be
eventually disseminated to the entire active nodes in the
system within a finite time, if the underlying probabilistic
dissemination protocol is reliable. In our definition, a
dissemination protocol is reliable, if there exists no active
node in the system that does not receive the disseminated
information within a given time constraint. We provide the
related definition and propositions in Appendix B, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2010.201.

Hot information can be determined in several ways, such
as by using repetitive counters, timestamps, statistical
deviations, or any combination of these techniques. How-
ever, determining hot information is application specific. In
this work, we use a threshold, such that if the number of
measurements for a server is below this threshold, then the
server-specific measurement is more eagerly distributed.
For example, if a measurement is “below threshold,” then a
node would forward it without any delay; otherwise, the
measurement is regarded as cold. Thus, it is lazily
forwarded after the given periodic interval expires.

4.2 Selective Deferral and Release
Another optimization technique we introduce is selective
dissemination based on deferral and release conditions, which
define whether new information can be deferred (for
its dissemination) or released (to the system). If a “deferral”
decision is made for some new information, the source node
does not emit it into the system until the corresponding
“release” condition is met. Thus, the deferral condition tests
if new information is critical, while the release condition
retests if deferred information is critical based on the
passage of time. In this technique, any deferred information
will either be disseminated if it becomes important later or
discarded when it becomes stale. In contrast, selective eager
dissemination ultimately forwards all information.

The basic idea of this technique is to distribute a newly
collected measurement only if it offers unique information
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different from past measurements. For example, suppose
node A makes an estimation of 100 KB/s for end-to-end
throughput to node B based on past shared measurements.
Now assume node A just downloaded a data object from B
with 100 KB/s throughput. Then, node A may not want to
disseminate such redundant information to others (deferral).
However, this cold information can be changed to hot as more
measurements are collected in the system. Continuing with
the above example, suppose node A later sees its estimation
to B with newly collected information to be significantly
different from its own past measurement. For example, for a
new measurement of 10 KB/s, node A may want to tell other
nodes about the deferred experience (release).

Algorithm 2 illustrates details of the selective deferral and
release technique. As in Algorithm 1, anode performs initiate
when it obtains a new measurement, while non-source nodes
perform receive when they receive dissemination messages
from neighbors. If the measured information is hot to the
system (i.e., deferral_cond(m) == false), it is immediately
disseminated; otherwise, it is put in the deferred list, as seen
in initiate. As before, these functions can be defined on the
local node state. Any receiving node stores new information
and simply forwards it if it has not seen the information
before, as shown in the receive function. In both initiate and
receive, a release test follows after new information is
forwarded. This checks whether any prior deferred informa-
tion is now hot and can be distributed, as shown in
release_test. Although not shown explicitly in the algorithm,
deferred messages will be purged, based on their age.

Algorithm 2 Selective deferral and release

: initiate(message m):

. if deferral_cond(m) == true then
deferredList.append(m);

else
forward(m);
release_test(m);

: end if

: receive(message m):

: if message ¢ historyList then

10: historyList.append(m);

11: forward(m);

12: release_test(m);

13: end if

14: release_test(message m):
15: D < deferred messages to the same server as m from deferredList;
16: for all d € D do

0o N LRE WY

17: if release_cond(m) == true then
18: forward(d);

19: deferredList.delete(d);

20: end if

21: end for

In this work, we define a deferral condition and a release
condition based on the difference between new measure-
ment and current estimation derived from prior measure-
ments. Again, defining these conditions is application
specific. Nonetheless, our definitions here are based on the
property of estimate proportionality, provided in Appendix A,
which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/
TPDS.2010.201. According to the property, the ratio between
two estimates in a node is equal to the ratio between two
estimates in any other node if it estimated with the identical
measures. As can be seen below, the deferral and release
conditions are established based on a ratio between the
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median estimate and the new measure. Thus, it would be
possible to filter redundant information for estimation by
deferral (or to restore essential information by release).

To define a deferral condition, let us suppose that
observed is a newly measured throughput to a specific
server, and expected is the estimated throughput to that
server based on past measurements. The deferral condition
is then defined as follows:

|observed — expected|

Deferral condition : .

observed
If this condition is true, we defer dissemination for the
given information. Thus, 7 =0 means no information
will be deferred, whereas any arbitrary large value of
(e.g., 1 =100) may defer most of the newly collected
measurements.
The release condition is similarly defined with the
deferral condition by comparing deferred measurement
(deferred) and current estimation (expected), as follows:

_|deferred — expected|

Release condition : > 7.
deferred =

Since expected is the estimated throughput with all past
relevant measurements, it can be different from the estimated
value computed in the deferral phase. By this condition, if the
deferred measurement has distinct information from the
current estimation, it begins to be disseminated.

Defining 7-values may depend on application or system
requirements. In the evaluation section, we examine how 7-
values impact performance and dissemination overhead.

Unlike selective eager dissemination, it has no guarantee
about eventual dissemination, unless the release condition
happens for each disseminated information. In other words,
some deferred information will be omitted in dissemination
due to the dissatisfaction of the release condition. Hence,
there may be a potential possibility of information loss.
Nonetheless, we established our deferral and release
conditions based on the property of estimate proportionality
(in Appendix A, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPDS.2010.201.), and hence, we believe that
our technique in this paper could minimize the effect of
such loose synchronization.

5 EVALUATION

5.1 Experimental Setup

For evaluation, we compare our OPEN-estimation-based
selection (OPEN) with a diverse set of selection techniques,
based on trace-based simulation with our 10-month data
traces collected from PlanetLab [14].> We assume overlay
systems with random topology, in which each node has two
to eight neighbors (d = 2-8) by default. We considered two
selection applications, replica selection and resource selec-
tion, common in distributed computing. For replica selec-
tion, we use r for replication factor, and for resource
selection, we use c¢ for the number of candidate resources in
question. The selection techniques include random selection

3. The traces are accessible at http://ridge.cs.umn.edu/pltraces.html.



1370
10 T T
& RANDOM
sl &2 PROXIM 4
2 Ed PAIRWISE
S OPEN(tau=0)
= ] OPEN(tau=0.25)
£ or OPEN(tau=0.5) 7
< = -
g i S
s L5 :
& 4 ; 1
s | 3
& = <3
S S = S %
- H - 3 £ 4
§ £ g 5
vl Vol
8 2 8 g

Replica(S)

Replica(M) Replica(L) Resource(S) Resource(M) Resource(L)

Fig. 3. Performance comparison.

(RANDOM) that randomly selects a node, and latency-based
selection (PROXIM) that finds a client-server pair with the
smallest RTT. In addition, we consider selection based on
several pairwise estimation techniques that use only firsthand
measurements. These techniques include statistical mean,
median, exponential smoothing, and last value; we choose
the best one of this group and call it PAIRWISE. For example,
if selection by median yielded the best result at a round, we
take that result (by median) as PAIRWISE for that round.

Unlike RANDOM and PROXIM, the other selection
techniques can suffer from estimation failures due to
shortage of relevant measurements.* To avoid meaningless
estimation values from impacting the selection algorithm,
we use the PAIRWISE and OPEN estimation techniques only
if at least half of the measurements required for estimation
are available, based on our observation that performance
gets degraded if we perform selection with less than half;
otherwise, we assume that the selection using these
techniques falls back on latency-based selection (fallback).
Thus, fallback ratio refers to the fraction of fallback out of the
entire selections.

To compare the different selection algorithms, we mainly
use the metric Optimality Ratio (OR) [10], where optimal is
an oracle-based algorithm that chooses the best from a
given set of trace data for each selection with a priori
knowledge. Thus, OR = 1 means that the selection techni-
que chooses optimal. Since we used mixed data sets in
simulation as mentioned, relative comparison is also more
meaningful than providing absolute download times. We
also examine overhead of dissemination. For this, we
evaluate number of messages generated for dissemination of
measurements to share in the system. The normalized
number of messages refers to the average number of
messages per round at each node.

5.2 Experimental Results

In this section, we report our core results. Additional
results are available in Appendix C, which can be found
on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPDS.2010.201.
Fig. 3 shows the results for both replica selection (r = 8)
and resource selections (c=8) for small (S;n = 250),
medium (M;n =~ 1,000), and large (L;n =~ 10,000) systems.
As expected, PROXIM works better than random choices.
However, PAIRWISE does not work much better than
PROXIM, except for the small system. This is because, as
discussed in Section 3.1, there is a high probability that the

4. PROXIM does not fail since the trace data include latency information.
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pairwise techniques fail to see relevant measurements in
their estimations, and hence will fall back to PROXIM. In
replica selection, the fallback ratio to PROXIM is 15 percent
in the small system, but it increases to 95 percent in the
medium system. In the large system, PAIRWISE fallback
ratio reaches almost 100 percent, indicating that no
pairwise estimation was made due to lack of pair-level
measurements. In contrast, OPEN falls back to PROXIM
0.5 percent in the small system, 2 percent in the medium
system, and 18 percent in the large system. This result
emphasizes again why secondhand estimation is attractive for
large-scale systems. Fallback ratios for PAIRWISE are slightly
greater in resource selection, while OPEN shows similar
fallback ratios in both replica and resource selections. In
the large system, OPEN requires more rounds to collect
measurements for each server. This slightly affects
performance in the large system.

In the figure, we can see that OPEN outperforms all the
other selection techniques in both replica and resource
selections. We set up three configurations for OPEN:
OPEN(7 = 0) which disables selective deferral and release,
OPEN(7 = 0.25) and OPEN(7 = 0.5) which enable selective
deferral and release. In this experiment, we use 7 =7 =7
to make deferral and release decisions. Smaller 7 would
make deferral decision less likely, whereas greater 7 tends
to aggressively defer dissemination of new measurements.
Even with deferring dissemination, we can see little
performance loss in the figure. Although not shown in the
figure, we observed that a substantial number of measure-
ments were deferred with the selective deferral and release.
For example, in replica selection, 28 percent of measure-
ments were in the deferred list for 7 = 0.25 at the end of the
simulation, while it was 56 percent for 7 = 0.5.

Next, we present some experimental results for selective
eager dissemination with diverse dissemination probabil-
ities. For evaluation, we examine Eager with periodic
interval 1,000 and eager threshold 2, and Flooding for
comparison. With Eager, any new measurements will be
eagerly forwarded if the node has seen fewer than two
measurements for the corresponding server, while others
will be periodically disseminated with the interval. In
addition, we gave different dissemination probability for
each Eager; for example, Eager(0.5) stands for selective eager
dissemination with a probability of 0.5. Fig. 4 shows the
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results. We can see that Eager(0.3) yields fairly comparable
results to flooding. In this case, the overhead is only
5 percent of Flooding. Even in the case of Eager(1.0), it
reduces the number of messages to 15 percent of the
Flooding without performance loss.

5.3 Discussion

An important question is whether the overheads of dis-
semination might swamp the gains. Although random
selection yielded poor and unstable results, it did not create
any additional cost for the purpose of estimation. However,
any selection based on estimations would incur extra load
and traffic which may affect user data access. For example, for
selective deferral and release with gossip probability p = 0.3
and selective deferral and release parameters 7 = 7 = 0.25,
we observed thateachnode created 1.15 MB additional traffic
on average to share 50,000 measurements representing 50,000
distinct downloads over time.” In the same setting, Spruce
[28] requires around 3 GB traffic per node for all-pair “single”
measurements in a 10,000-node system (based on 300 KB per
measurement that is the traffic requirement on average in
Spruce). Given the rich availability of peer-to-peer band-
width, and the time frame for sharing 50,000 distinct
downloads, the OPEN overhead is likely to have minor
impact on the results. In addition, dissemination messages
canbe piggybacked over other system messages to reduce the
number of extra messages, e.g., periodic neighbor heartbeats
needed for system health.

Another issue would be “information inequality” due to
different joining times or imperfect probabilistic dissemina-
tion. This may result in different decisions even for the
same event at each node. In the selective eager dissemina-
tion technique, each node makes its own eager or periodic
forwarding decision. Similarly, in the selective deferral and
release technique, the source node makes a decision
whether new information is distributed immediately or
not. Those decisions rely on local information, and thus can
be biased. For example, source node S is long lived and can
make a deferral decision because it has redundant informa-
tion, but any recently joined node may suffer from
estimation failure due to lack of relevant information which
should have been available if S released it. This information
inequality can be mitigated by downloading shared
measurements from parent nodes at joining times.

6 RELATED WORK

A system with similar goals to ours is NWS [19], [29]. NWS
maintains network sensors measuring network perfor-
mance by periodic probing and statistical predictions based
on probing results. Thus, it requires O(n?) communications
for all-pair probing, where n is the number of sensors. To
reduce the probing overhead, the sensors are organized in a
hierarchical structure by configuring logical clusters called
cliques, and end-to-end network performance between two
nodes lying different clusters is determined by measured
network performance between the sensors in those clusters.
While accurate for sensor nodes, other nodes estimation

5. We calculated with 40 bytes for one dissemination message (including
TCP header) with a message identifier (4 bytes), client and server identifiers
(8 bytes), a distance to server (2 bytes), a throughput (2 bytes), a download
power (2 bytes), and a timestamp (4 bytes).
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may be inaccurate in non-clustered distributed environ-
ments. In addition, all-pair probing is still expensive even
with a hierarchical design, particularly in large-scale
systems this paper considers. OPEN enables scalable, low-
cost estimation by sharing secondhand measurements, i.e.,
without relying on all-pair probing.

iPlane [30] is an infrastructure-based service which
provides prediction of end-to-end network performance in
the Internet. For the prediction service, iPlane measures
segment paths chosen based on the Internet topology, and
the end-to-end path property is inferred from the collected
measurements. While providing fairly accurate estimation,
it requires explicit probing between additionally deployed
probing sensors. Its offspring iPlane Nano [31] improves
scalability by compacting the network topology informa-
tion, but limits the prediction capability to latency and
loss rate estimation and relies on distributed sensors for
explicit probing.

Gossip-based dissemination is scalable and resilient to
failure, so it is used in many areas, such as wireless ad hoc
networks [26], [27] and large-scale networks [23], [24], [25],
[32], [33], for diverse purposes like routing, data dissemina-
tion, membership management, and so forth. Haas et al.
[26] proposed a set of gossip protocols with several
parameters, including forwarding probability, number of
hops, and neighbor size, to improve ad hoc routing
protocols, many of which are based on flooding. Although
gossip techniques can significantly reduce the dissemina-
tion overhead with negligible information loss, we consider
application-level semantics with respect to information
criticality for further reduction of dissemination overhead
in this paper.

7 CONCLUSION

Large-scale distributed systems are attractive for many
distributed computing applications by providing a scalable,
cost-effective infrastructure. However, a primary challenge
is the unpredictability of data access which can lead to
significant performance bottlenecks. Providing predictabil-
ity in data access is needed to accommodate the large set of
data-intensive computing applications. To this end, we
have designed a framework called OPEN which offers end-
to-end network performance estimation based on second-
hand measurements observed other nodes in the system. To
share secondhand measurements, OPEN proactively dis-
tributes newly collected measurements by a probabilistic
dissemination technique. We presented our extensive
experimental results that show resource and replica selec-
tions with OPEN consistently outperform selection techni-
ques based on statistical pairwise estimations as well as
latency-based selection. We also show that OPEN can
dramatically reduce dissemination overhead to share
secondhand measurements without significant perfor-
mance loss by proposed optimization techniques such as
selective deferral and release.

We envision that the OPEN framework can collaborate
with other services for distributed computing. For instance,
our framework can work with perfSONAR [34], currently
based on direct measurements for network performance
estimation (for replica selection), to enable cost-effective
services in large-scale grid systems.
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