Math 126 - Homework 10 (Due Monday Nov 16)

1. Show that performing Jacobi iterations is the same as solving the two-dimensional diffusion equation $v_{t}=v_{x x}+v_{y y}$ using centered differences for $v_{x x}$ and $v_{y y}$ and forward differences for v_{t}, with $\Delta x=\Delta y$ and $\Delta t=(\Delta x)^{2} / 4$.
2. Find all three-dimensional plane waves; that is, all solutions of the wave equation of the form $u(\mathbf{x}, t)=f(\mathbf{k} \cdot \mathbf{x}-c t)$, where \mathbf{k} is a fixed vector and f is a function of one variable.
3. Solve the wave equation in three dimensions with initial data $u(\mathbf{x}, 0) \equiv 0$ and $u_{t}(\mathbf{x}, 0)=y$ using Kirchhoff's formula. [Here $\mathbf{x}=(x, y, z)$.]
4. Where does a solution of the three dimensional wave equation have to vanish if its initial data $\varphi(\mathbf{x})=u(\mathbf{x}, 0)$ and $\psi(\mathbf{x})=u_{t}(\mathbf{x}, 0)$ vanish inside a sphere? What if they vanish outside of a sphere (but not inside)? [You can take the sphere to be the unit ball $B(\mathbf{0}, 1)=\{\mathbf{x}:|\mathbf{x}| \leq 1\}$ for simplicity $]$.
5. Solve the wave equation in three dimensions with initial data $u(\mathbf{x}, 0) \equiv 0$ and $u_{t}(\mathbf{x}, 0)=$ $|\mathbf{x}|^{2}=x^{2}+y^{2}+z^{2}$. [Hint: It may be easier to go back and solve the Euler-PoissonDarboux equation directly.]
6. Let u be a solution of the three dimensional wave equation $u_{t t}-c^{2} \Delta u=0$ that satisfies $u(\mathbf{x}, t)=0$ whenever $|\mathbf{x}| \geq c t+1$. Show that the energy

$$
E(t)=\frac{1}{2} \iiint_{\mathbb{R}^{3}} u_{t}(\mathbf{x}, t)^{2}+c^{2}|\nabla u(\mathbf{x}, t)|^{2} d \mathbf{x}
$$

is conserved, i.e., show that $t \mapsto E(t)$ is constant. [Hint: You will need to use Green's identity at some point. To handle the boundary terms, write

$$
\iiint_{\mathbb{R}^{3}} \cdots d \mathbf{x}=\iiint_{B(\mathbf{0}, c t+2)} \cdots d \mathbf{x}
$$

which holds because $u(\mathbf{x}, t)=0$ for $|x| \geq c t+1$, and use Green's identity on the second term.]
7. Consider the Klein-Gordon equation

$$
u_{t t}-c^{2} \Delta u+m^{2} u=0
$$

Find the corresponding energy for the Klein-Gordon equation and show that it is constant. [You may make the same assumptions on u as in problem 6.]

