Math 126 - Homework 2 (Due Friday Sept 11)

1. For $i=1,2$, let u^{i} be a solution of the Dirichlet problem

$$
\left.\begin{array}{rlrl}
u_{t}^{i}-k u_{x x}^{i} & =0 & & \text { for } 0<x<l \text { and } t>0, \tag{1}\\
u^{i}(x, 0) & =\varphi^{i} & & \text { for } 0 \leq x \leq l, \\
u^{i}(0, t)=g^{i}(t) & \text { and } u^{i}(l, t) & =h^{i}(t) & \\
\text { for } t>0 .
\end{array}\right\}
$$

Use the maximum principle to show that

$$
\max _{\substack{0 \leq x \leq l \\ 0 \leq t \leq T}}\left|u^{1}-u^{2}\right| \leq \max \left\{\max _{0 \leq x \leq l}\left|\varphi^{1}-\varphi^{2}\right|, \max _{0 \leq t \leq T}\left|g^{1}-g^{1}\right|, \max _{0 \leq t \leq T}\left|h^{1}-h^{2}\right|\right\} .
$$

[Hint: We briefly touched on this in class; you have to fill in the details. Start by setting $w=u^{1}-u^{2}$ and show that w satisfies a similar heat equation. Apply the maximum (and minimum) principle to w.]
2. Solve $u_{t t}=c^{2} u_{x x}$ with $u(x, 0)=x^{2}$ and $u_{t}(x, 0)=\cos (x)$.
3. Find the general solution of $u_{x x}-3 u_{x t}-4 u_{t t}=0$ with $u(x, 0)=x^{2}$ and $u_{t}(x, 0)=e^{x}$. [Hint: Factor the operator as we did for the wave equation.]
4. The hammer blow: Consider the wave equation

$$
\left.\begin{array}{rl}
u_{t t}-u_{x x}=0 & \text { for } x \in \mathbb{R} \text { and } t>0, \tag{2}\\
u=0 \text { and } u_{t}=\psi & \text { for } x \in \mathbb{R} \text { and } t=0,
\end{array}\right\}
$$

where $\psi(x)=1$ for $|x|<1$ and $\psi(x)=0$ for $|x| \geq 1$. Sketch the solution at time instants $t=1 / 2,1,3 / 2,2$ and $t=5 / 2$. What is the maximum displacement $\max _{x} u(x, t)$?
5. Solve the diffusion equation

$$
\left.\begin{array}{rl}
u_{t}-u_{x x}=0 & \text { for } x \in \mathbb{R} \text { and } t>0 \\
u=e^{a x} & \text { for } x \in \mathbb{R} \text { and } t=0, \tag{3}
\end{array}\right\}
$$

where $a \in \mathbb{R}$.
6. 'Blow-up' for the heat equation.
(a) Show that the function

$$
u(x, t)=\frac{1}{\sqrt{1-t}} \exp \left(\frac{x^{2}}{4(1-t)}\right)
$$

is a solution of the heat equation

$$
u_{t}-u_{x x}=0 \quad \text { for }-\infty<x<\infty \text { and } 0<t<1
$$

(b) Sketch the functions $t \mapsto u(0, t)$ and $x \mapsto u(x, 1 / 2)$.
(c) Can you give a physical explanation for the 'blow-up' observed at $t=1$?
7. Let u and v be functions satisfying the heat equations

$$
u_{t}-k u_{x x}=f \text { and } v_{t}-k v_{x x}=g
$$

on the rectangular strip $0 \leq x \leq l$ and $0 \leq t<\infty$ for given functions $f(x, t)$ and $g(x, t)$. Prove the following comparison principle: If $f \leq g$ on the entire rectangular strip, and $u \leq v$ on the sides $x=0, x=l$ and $t=0$, then $u \leq v$ in the entire strip $0 \leq x \leq l$ and $0 \leq t<\infty$. Can you give a physical interpretation of this comparison principle?
8. Duhamel's principle: Consider the heat equation with a source term $f(x, t)$

$$
\left.\begin{array}{rl}
u_{t}-k u_{x x}=f & \text { for } x \in \mathbb{R} \text { and } t>0 \\
u=\varphi & \text { for } x \in \mathbb{R} \text { and } t=0 \tag{4}
\end{array}\right\}
$$

In this question, you will use Duhamel's principle to construct a solution u of (4).
(a) For $s \geq 0$, let $w(x, t ; s)$ be the solution of the homogeneous heat equation

$$
\begin{align*}
& w_{t}(x, t ; s)-k w_{x x}(x, t ; s)=0 \tag{5}\\
& \\
& \text { for } x \in \mathbb{R} \text { and } t>s, \\
& w(x, s ; s)=f(x, s)
\end{align*} \text { for } x \in \mathbb{R}, \quad
$$

and define

$$
w(x, t)=\int_{0}^{t} w(x, t ; s) d s
$$

Show that w is a solution of the heat equation

$$
\left.\begin{array}{rl}
w_{t}-k w_{x x}=f & \text { for } x \in \mathbb{R} \text { and } t>0, \\
w=0 & \text { for } x \in \mathbb{R} \text { and } t=0, \tag{6}
\end{array}\right\}
$$

and find a formula for w in terms of f. [Hint: You may assume that $w(x, t ; s)$ is twice continuously differentiable in x and t for all $t \geq s$ and $x \in \mathbb{R}$. Also recall the identity

$$
\left.\frac{d}{d t} \int_{0}^{t} g(s, t) d s=g(t, t)+\int_{0}^{t} g_{t}(s, t) d s .\right]
$$

(b) Use your answer to part (a) and linearity to find a formula for the solution u of the heat equation (4).

The technique used in part (a) is called Duhamel's principle and is applicable to a wide range of problems (not just the heat equation).
9. (a) Solve the diffusion equation

$$
\left.\begin{array}{rl}
u_{t}-u_{x x} & =0 \quad \text { for } x \in \mathbb{R} \text { and } t>0, \\
u=x^{2} & \text { for } x \in \mathbb{R} \text { and } t=0, \tag{7}
\end{array}\right\}
$$

without using the fundamental solution. [Hint: Note that $u_{x x x}$ satisfies the same diffusion equation with zero initial condition. Therefore $u_{x x x}=0$ and we find that $u(x, t)=A(t) x^{2}+B(t) x+C(t)$. Solve for $A(t), B(t)$ and $C(t)$.]
(b) Use your answer to part (a) to deduce the value of

$$
\int_{-\infty}^{\infty} p^{2} e^{-p^{2}} d p
$$

[Hint: Write an expression for $u(0,1)$ using the fundamental solution and make a substitution in the integral.]

