Math 126 - Homework 3 (Due Monday Sept 21)

1. Show that the wave equation does not, in general, satisfy a maximum principle.
2. For a solution $u(x, t)$ of the wave equation

$$
u_{t t}-u_{x x}=0,
$$

the energy density is defined as $e=\left(u_{t}^{2}+u_{x}^{2}\right) / 2$ and the momentum density is $p=u_{t} u_{x}$.
(a) Show that $e_{t}=p_{x}$ and $p_{t}=e_{x}$.
(b) Show that both e and p also satisfy the wave equation.
3. Consider a traveling wave $u(x, t)=f(x-a t)$, where f is a given function of one variable.
(a) Show that if u is a solution of the wave equation $u_{t t}-c^{2} u_{x x}=0$, then $a= \pm c$ (unless f is a linear function).
(b) Show that if u is a solution of the diffusion equation $u_{t}-k u_{x x}=0$ then

$$
u(x, t)=C_{1} \exp \left(-\frac{a}{k}(x-a t)\right)+C_{2},
$$

where C_{1} and C_{2} are arbitrary constants, and $a \in \mathbb{R}$ is arbitrary.
This exercise shows that the speed of propagation of travelling wave solutions of the wave equation is c, while for the heat equation, any arbitrary speed $a \in \mathbb{R}$ will do (i.e., we have infinite speed of propagation).
4. Here, we find a direct relationship between the heat and wave equations. Let $u(x, t)$ solve the wave equation on the whole line, and suppose the second derivatives of u are bounded. Let

$$
v(x, t)=\frac{c}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-s^{2} c^{2} / 4 k t} u(x, s) d s
$$

(a) Show that $v(x, t)$ solves the diffusion equation $u_{t}-k u_{x x}=0$.
(b) Show that $\lim _{t \rightarrow 0} v(x, t)=u(x, 0)$.
5. Find a formula for the solution of

$$
\left.\begin{array}{rl}
u_{t}-k u_{x x}=0 & \text { for } x>0 \text { and } t>0 \\
u=0 & \text { for } x>0 \text { and } t=0 \tag{1}\\
u=1 & \text { for } x=0 \text { and } t>0 .
\end{array}\right\}
$$

6. Suppose u solves the heat equation

$$
\left.\begin{array}{rl}
u_{t}-k u_{x x}=0 & \text { for } x \in \mathbb{R} \text { and } t>0 \tag{2}\\
u=\varphi & \text { for } x \in \mathbb{R} \text { and } t=0 .
\end{array}\right\}
$$

Show that if φ is odd, then for each $t>0$ the function $x \mapsto u(x, t)$ is odd. Show that the analogous result is true when φ is even.
7. Consider the diffusion equation on the half-line with Robin boundary condition:

$$
\left.\begin{array}{rl}
u_{t}-k u_{x x}=0 & \text { for } x>0 \text { and } t>0 \\
u=\varphi & \text { for } x>0 \text { and } t=0 \tag{3}\\
u_{x}-h u=0 & \text { for } x=0 \text { and } t>0 .
\end{array}\right\}
$$

(a) Motivated by the method of odd and even extensions, we might guess that the solution $u(x, t)$ is of the form

$$
\begin{equation*}
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k t} f(y) d y \tag{4}
\end{equation*}
$$

where

$$
f(y)= \begin{cases}\varphi(y), & \text { if } y>0 \tag{5}\\ g(-y), & \text { if } y \leq 0\end{cases}
$$

and g is some (yet to be determined) function satisfying $g(0)=\varphi(0)$. Recall that for the method of odd extension, $g=-\varphi$, and for the method of even extension $g=\varphi$. Show that u given by (4) is the solution of (3) provided the function $f^{\prime}-h f$ is odd.
(b) Show that $f^{\prime}-h f$ is odd if and only if

$$
g^{\prime}(y)+h g(y)=\varphi^{\prime}(y)-h \varphi(y) \text { for all } y \geq 0 .
$$

(c) Suppose that $\varphi(y)=y^{2}$. Find g by solving the ODE from part (b) with initial condition $g(0)=\varphi(0)$ assuming $h \neq 0$. What happens when $h=0$?

