Math 126 - Homework 4 (Due Friday Sept 25)

1. Maximum principle: Consider the heat equation

$$
\text { (H) }\left\{\begin{aligned}
u_{t}-u_{x x} & =0, & & -\infty<x<\infty, t>0 \\
u(x, 0) & =\varphi(x), & & -\infty<x<\infty .
\end{aligned}\right.
$$

As it turns out, there are infinitely many solutions u of the above heat equation. All but one solution are "non-physical" and grow exponentially fast as $x \rightarrow \pm \infty$ (see, e.g., Fritz John, Partial Differential Equations, Chapter 7). In this question, you will show that if $\varphi \leq M$, then any bounded solution u of (H) satisfies $u \leq M$. This is a maximum principle for (H), and can be used to establish uniqueness of bounded solutions of (H).
Throughout the question let u be a bounded solution of (H); this means there exists $C>0$ such that $|u(x, t)| \leq C$ for all (x, t).
(a) Show that $w(x, t)=x^{2}+2 t$ solves the heat equation.
(b) For every $\varepsilon>0$ show that

$$
u(x, t) \leq \varepsilon w(x, t)+M \quad \text { for all } x \in \mathbb{R} \text { and } t>0,
$$

where $M>0$ is any number satisfying $\varphi(x) \leq M$ for all $x \in \mathbb{R}$. [Hint: For $N>0$ let R_{N} denote the rectangle

$$
R_{N}=[-N, N] \times[0, N] .
$$

Show that there exists $\bar{N}>0$ such that for all $N>\bar{N}, u \leq \varepsilon w+M$ on the sides and base of R_{N}. Then apply the comparison principle from HW2, problem 7.]
(c) Let $M>0$ such that $\varphi(x) \leq M$ for all $x \in \mathbb{R}$. Show that $u \leq M$.
(d) Show that there is at most one bounded solution u of (H) when φ is bounded. [Hint: Take two bounded solutions u, v and consider $w=u-v$.]

It is possible to prove a stronger result; namely that there is at most one solution u of (H) satisfying the exponential growth estimate

$$
u(x, t) \leq C e^{x^{2}}
$$

for a constant $C>0$. The proof is similar to this exercise, except that w has a different form (given in HW2 \#6). This means that the "non-physical" solutions all grow faster than $e^{x^{2}}$ as $x \rightarrow \pm \infty$.
2. (a) Use the Fourier expansion to explain why the note produced by a violin string rises by one octave when the string is clamped exactly at its midpoint. [Each increase by an octave corresponds to a doubling of the frequency.]
(b) Explain why the pitch of the note rises when the string is tightened.
3. A quantum-mechanical particle on the line with an infinite potential outside the interval $(0, l)$ ("particle in a box") is given by Schrödinger's equation

$$
u_{t}=i u_{x x} \quad \text { on }(0, l),
$$

with Dirichlet conditions at the ends. Separate variables to find its representation as a series.
4. Consider waves in a resistant medium, which satisfy the equation

$$
\text { (W) }\left\{\begin{aligned}
u_{t t}-c^{2} u_{x x}+r u_{t} & =0, & & 0<x<l, t>0 \\
u(x, 0) & =\varphi(x), & & 0<x<l \\
u_{t}(x, 0) & =\psi(x), & & 0<x<l \\
u(0, t)=u(l, t) & =0 & & t>0
\end{aligned}\right.
$$

where r is a constant, $0<r<2 \pi c / l$. Write down the series expansion of the solution.
5. Consider the equation $u_{t t}=c^{2} u_{x x}$ for $0<x<l$ with boundary conditions $u_{x}(0, t)=$ $u(l, t)=0$.
(a) Show that the eigenfunctions are $X_{n}(x)=\cos \left(\left(n+\frac{1}{2}\right) \pi x / l\right)$.
(b) Write down the series expansion for a solution $u(x, t)$.
6. Consider diffusion inside an enclosed circular tube. Let its length (circumference) be $2 l$. Let x denote the arc length parameter where $-l<x<l$. Then the concentration of the diffusion substance satisfifes

$$
\left\{\begin{aligned}
u_{t}-k u_{x x} & =0, & & -l<x<l, t>0 \\
u(-l, t) & =u(l, t) & & t>0 \\
u_{x}(-l, t) & =u_{x}(l, t) & & t>0
\end{aligned}\right.
$$

These are called periodic boundary conditions.
(a) Show that the eigenvalues are $\lambda=(n \pi / l)^{2}$ for $n=0,1,2,3, \ldots$.
(b) Show that the concentration is

$$
u(x, t)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \left(\frac{\pi n x}{l}\right)+B_{n} \sin \left(\frac{\pi n x}{l}\right)\right) \exp \left(\frac{-n^{2} \pi^{2} k t}{l^{2}}\right) .
$$

7. Let $\varphi(x)=x^{2}$ for $0 \leq x \leq 1=l$.
(a) Calculate the Fourier sine series for φ.
(b) Calculate the Fourier cosine series for φ.
8. Find the Fourier cosine series of the function $|\sin (x)|$ in the interval $(-\pi, \pi)$. Use it to find the sums

$$
\sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n^{2}-1}
$$

