MATH 126 – HOMEWORK 5 (DUE FRIDAY OCT 2)

- 1. For each of the following functions, state whether it is even, odd, or neither, and whether it is periodic. If periodic, what is the smallest period?
 - (a) $\sin(ax)$ for a > 0
 - (b) e^{ax} for a > 0
 - (c) x^m for an integer m
 - (d) $\tan(x^2)$
 - (e) $|\sin(x/b)|$ for b > 0
 - (f) $x\cos(ax)$ for a > 0
- 2. Show that $\cos(x) + \cos(ax)$ is periodic if a is a rational number. What is its period?
- 3. Recall a function f is Lipschitz if there exists L > 0 such that

$$|f(x) - f(y)| \le L|x - y|$$
 for all x, y

- (a) Show that every Lipschitz function f is continuous. [Hint: A function is continuous if $\lim_{y\to x} f(y) = f(x)$ for all x.]
- (b) Show that if f is continuously differentiable and f' is bounded, then f is Lipschitz.
- 4. Show that the Fourier sine series on (0, l) can be derived from the full Fourier series on (-l, l) by using the odd extension of the function.
- 5. Show that any function f on the real line \mathbb{R} can be written as the sum of an even and odd function, i.e. $f = \varphi + \psi$ where φ is even and ψ is odd.
- 6. Consider the geometric series $\sum_{n=0}^{\infty} (-1)^n x^{2n}$.
 - (a) Does it converge pointwise in the interval -1 < x < 1?
 - (b) Does it converge uniformly in the interval -1 < x < 1?
 - (c) Does it converge in the L^2 sense in the interval -1 < x < 1? [Hint: You can compute the partial sums explicitly.]
- 7. Prove the Cauchy-Schwarz inequality

$$|\langle f,g\rangle| \le ||f|| ||g||,$$

for any pair of functions f and g on an interval (a, b). [Hint: Consider the expression $h(t) := ||f + tg||^2$ where $t \in \mathbb{R}$, and find the value of t that minimizes h.]

8. Prove the Cauchy-Schwarz inequality for infinite series

$$\sum_{n=1}^{\infty} a_n b_n \le \left(\sum_{n=1}^{\infty} a_n^2\right)^{\frac{1}{2}} \left(\sum_{n=1}^{\infty} b_n^2\right)^{\frac{1}{2}}.$$

[Hint: Use an argument similar to that for the previous question. Prove it first for finite sums, and then pass to the limit.]

9. Show that if f is a continuously differentiable 2π -periodic function satisfying

$$\int_{-\pi}^{\pi} f(x) \, dx = 0,$$

then we have

$$\int_{-\pi}^{\pi} f(x)^2 \, dx \le \int_{-\pi}^{\pi} f'(x)^2 \, dx.$$

[Hint: Use Parseval's identity. Also use integration by parts to find a relationship between the Fourier coefficients of f and f'.]