Math 126 - Homework 6 (Due Friday Oct 16)

1. Consider the wave equation

$$
\text { (W) }\left\{\begin{aligned}
u_{t t}-u_{x x} & =0, & & 0<x<\pi, t>0 \\
u(0, t)=u(\pi, t) & =0, & & t>0 \\
u(x, 0) & =\varphi(x) & & 0<x<\pi \\
u_{t}(x, 0) & =\psi(x), & & 0<x<\pi .
\end{aligned}\right.
$$

(a) Write down the Fourier series representation of the solution $u(x, t)$, including the formulas for the coefficients.
(b) Explain why we cannot conclude that $u(x, t)$ is infinitely differentiable, as we did for the heat equation in class.
(c) Suppose that $\varphi \in C_{\text {per }}^{4}$ and $\psi \in C_{p e r}^{3}$. Use the results from class about Fourier series regularity to show that $x \mapsto u(x, t)$ is an element of $C_{p e r}^{2}$ for every $t>0$ and find an expression for $u_{x x}$.
(d) As we did for the heat equation in class, use the dominated convergence theorem to show that u_{t} and $u_{t t}$ exist, and write down and expression for $u_{t t}$.
(e) Show that your formula from (a) actually solves the wave equation (W).
2. Define

$$
f(x)= \begin{cases}x(\pi-x), & 0<x<\pi \\ x(\pi+x), & -\pi<x \leq 0\end{cases}
$$

Let A_{n} and B_{n} denote the Fourier coefficients of f on the interval $(-\pi, \pi)$. Since f is an odd function, $A_{n}=0$ for all n.
(a) Find all integers k for which $f \in C_{p e r}^{k}$ (here you can identify f with its 2π-periodic extension).
(b) Without computing B_{n}, explain how you know that there exists a constant $C>0$ such that

$$
\left|B_{n}\right| \leq \frac{C}{n}
$$

(c) Without computing B_{n}, explain why it is impossible that $B_{n}=\frac{1}{n^{4}}$.
3. Solve $u_{x x}+u_{y y}+u_{z z}=0$ in the spherical shell $0<a<r<b$ with boundary conditions $u=A$ on $r=a$, and $u=B$ on $r=b$, where A and B are constants and $r=\sqrt{x^{2}+y^{2}+z^{2}}$. [Hint: Look for a solution depending only on r.]
4. A function u is subharmonic in D if $-\Delta u \leq 0$ in D. Let $u(x, y)$ be subharmonic in an open and bounded set $D \subseteq \mathbb{R}^{2}$. Modify the proof of the mean value property from class to show that

$$
u(x, y) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} u(x+r \cos \theta, y+r \sin \theta) d \theta
$$

for all $r>0$ such that the ball of radius r centered at (x, y) belongs to D. Integrate the expression above in polar coordinates to show that

$$
u\left(\mathbf{x}_{0}\right) \leq \frac{1}{\pi r^{2}} \iint_{B\left(\mathbf{x}_{0}, r\right)} u(\mathbf{x}) d \mathbf{x}
$$

whenver the ball $B\left(\mathbf{x}_{0}, r\right)$ is contained in D. Here, $\mathbf{x}=(x, y)$ and $\mathbf{x}_{0}=\left(x_{0}, y_{0}\right)$ denote points in \mathbb{R}^{2}, and $d \mathbf{x}=d x d y$.
5. Let $u(x, y)$ be subharmonic in a bounded, open, and connected set $D \subseteq \mathbb{R}^{2}$. Show that if u attains its maximum value over D at a point $\mathbf{x}=(x, y) \in D$, then u is constant in D.

