MATH 126 – HOMEWORK 6 (DUE FRIDAY OCT 16)

1. Consider the wave equation

(W)
$$\begin{cases} u_{tt} - u_{xx} = 0, & 0 < x < \pi, t > 0\\ u(0,t) = u(\pi,t) = 0, & t > 0\\ u(x,0) = \varphi(x), & 0 < x < \pi\\ u_t(x,0) = \psi(x), & 0 < x < \pi. \end{cases}$$

- (a) Write down the Fourier series representation of the solution u(x, t), including the formulas for the coefficients.
- (b) Explain why we cannot conclude that u(x,t) is infinitely differentiable, as we did for the heat equation in class.
- (c) Suppose that $\varphi \in C_{per}^4$ and $\psi \in C_{per}^3$. Use the results from class about Fourier series regularity to show that $x \mapsto u(x,t)$ is an element of C_{per}^2 for every t > 0 and find an expression for u_{xx} .
- (d) As we did for the heat equation in class, use the dominated convergence theorem to show that u_t and u_{tt} exist, and write down and expression for u_{tt} .
- (e) Show that your formula from (a) actually solves the wave equation (W).
- 2. Define

$$f(x) = \begin{cases} x(\pi - x), & 0 < x < \pi \\ x(\pi + x), & -\pi < x \le 0 \end{cases}$$

Let A_n and B_n denote the Fourier coefficients of f on the interval $(-\pi, \pi)$. Since f is an odd function, $A_n = 0$ for all n.

- (a) Find all integers k for which $f \in C_{per}^k$ (here you can identify f with its 2π -periodic extension).
- (b) Without computing B_n , explain how you know that there exists a constant C > 0 such that

$$|B_n| \le \frac{C}{n}.$$

- (c) Without computing B_n , explain why it is impossible that $B_n = \frac{1}{n^4}$.
- 3. Solve $u_{xx} + u_{yy} + u_{zz} = 0$ in the spherical shell 0 < a < r < b with boundary conditions u = A on r = a, and u = B on r = b, where A and B are constants and $r = \sqrt{x^2 + y^2 + z^2}$. [Hint: Look for a solution depending only on r.]
- 4. A function u is subharmonic in D if $-\Delta u \leq 0$ in D. Let u(x, y) be subharmonic in an open and bounded set $D \subseteq \mathbb{R}^2$. Modify the proof of the mean value property from class to show that

$$u(x,y) \le \frac{1}{2\pi} \int_0^{2\pi} u(x+r\cos\theta, y+r\sin\theta) \, d\theta,$$

for all r > 0 such that the ball of radius r centered at (x, y) belongs to D. Integrate the expression above in polar coordinates to show that

$$u(\mathbf{x}_0) \le \frac{1}{\pi r^2} \iint_{B(\mathbf{x}_0, r)} u(\mathbf{x}) \, d\mathbf{x},$$

whenver the ball $B(\mathbf{x}_0, r)$ is contained in D. Here, $\mathbf{x} = (x, y)$ and $\mathbf{x}_0 = (x_0, y_0)$ denote points in \mathbb{R}^2 , and $d\mathbf{x} = dxdy$.

5. Let u(x, y) be subharmonic in a bounded, open, and connected set $D \subseteq \mathbb{R}^2$. Show that if u attains its maximum value over D at a point $\mathbf{x} = (x, y) \in D$, then u is constant in D.