Math 126 - Homework 8 (Due Friday Oct 30)

1. Let $G\left(\mathbf{x}, \mathbf{x}_{0}\right)$ be the Green's function for an open and bounded set D.
(a) Let u be a solution of

$$
\left\{\begin{aligned}
\Delta u=f & \text { in } D \\
u=0 & \text { on } \partial D .
\end{aligned}\right.
$$

Show that

$$
\begin{equation*}
u\left(\mathbf{x}_{0}\right)=\iiint_{D} f(\mathbf{x}) G\left(\mathbf{x}, \mathbf{x}_{0}\right) d \mathbf{x} \tag{1}
\end{equation*}
$$

[Hint: Denote the right hand side of (1) by A. Let $D_{\varepsilon}=D \backslash B\left(\mathbf{x}_{\mathbf{0}}, \varepsilon\right)$ and write

$$
A=\iiint_{D_{\varepsilon}} \Delta u(\mathbf{x}) G\left(\mathbf{x}, \mathbf{x}_{0}\right) d \mathbf{x}+\int_{B\left(\mathbf{x}_{0}, \varepsilon\right)} f(\mathbf{x}) G\left(\mathbf{x}, \mathbf{x}_{0}\right) d \mathbf{x}
$$

Show that the second term converges to zero as $\varepsilon \rightarrow 0$. Use Green's second identity to show that the first term converges to $u\left(\mathbf{x}_{0}\right)$ as $\varepsilon \rightarrow 0$.]
(b) Use part (a) and results from class to conclude that the solution u of

$$
\left\{\begin{aligned}
\Delta u=f & \text { in } D \\
u=g & \text { on } \partial D
\end{aligned}\right.
$$

is given by

$$
u\left(\mathbf{x}_{0}\right)=\iint_{\partial D} g(\mathbf{x}) \frac{\partial G}{\partial \hat{\mathbf{n}}}\left(\mathbf{x}, \mathbf{x}_{0}\right) d S(\mathbf{x})+\iiint_{D} f(\mathbf{x}) G\left(\mathbf{x}, \mathbf{x}_{0}\right) d \mathbf{x}
$$

2. Show that the Green's function is unique. [Hint: Take the difference of two of them and use the maximum principle or energy methods.]
3. Find the one-dimensional Green's function for the interval $(0, \ell)$. The three properties defining it can be restated as follows
(a) It solves $G^{\prime \prime}(x)=0$ for $x \neq x_{0}$
(b) $G(0)=G(\ell)=0$
(c) $G(x)$ is continuous at x_{0} and $G(x)+\frac{1}{2}\left|x-x_{0}\right|$ is harmonic at x_{0}.
4. Find the Green's function for the tilted half-space

$$
D=\{(x, y, z): a x+b y+c z>0\} .
$$

[Hint: Use the Green's function for the halfspace $\{z>0\}$ and a change of variables.]
5. Find the Green's function for the half ball

$$
D=\left\{(x, y, z): x^{2}+y^{2}+z^{2}<a^{2} \text { and } z>0\right\} .
$$

[Hint: Reflect the solution for the whole ball across the plane $z=0$.]
6. Consider the two dimensional disk

$$
D=\left\{(x, y): x^{2}+y^{2}<a^{2}\right\} .
$$

Show that the Green's function for the disk is

$$
G\left(\mathbf{x}, \mathbf{x}_{0}\right)=\frac{1}{2 \pi} \log \left(\left|\mathbf{x}-\mathbf{x}_{0}\right|\right)-\frac{1}{2 \pi} \log \left(\frac{\left|\mathbf{x}_{0}\right|}{a}\left|\mathbf{x}-\mathbf{x}_{0}^{*}\right|\right) .
$$

where $\mathbf{x}_{0}^{*}=\frac{a^{2} \mathbf{x}_{0}}{\left|\mathbf{x}_{0}\right|^{2}}$.
7. Use problem 6 to recover the two dimensional version of Poisson's formula for the ball that we derived in class using separation of variables.

