MATH 126 — HOMEWORK 9 (DUE FRIDAY NoV 6)

This assignment requires the use of a mathematical software package like Matlab. Matlab
is available for student use in Wheeler 211, VLSB 2180, and Moffitt 1st floor. For more
information: https://ets-computing.berkeley.edu/. If you are using Matlab, use the files
‘heat equation.m’; ‘wave equation.m’, and ‘poisson_equation.m’.

There is also a free open source Matlab alternative called Octave: https://www.gnu.
org/software/octave/. The provided Matlab code runs in Octave as well, provided the in-
teractive plotting features in the code are disabled. If you are using Octave, use the files
‘heat _equation2.m’; ‘wave equation2.m’, and ‘poisson equation2.m’. After the code exe-
cutes, run ‘plot(x,u)’ to plot the result (‘surf(x,y,u)’ for Poisson’s equation).

1. Numerically solving the heat equation

(a) Consider the Dirichlet problem for the heat equation

Up = Upe HO0O<x<1,t>0
u(0,t) =u(l,t) =0 ift>0
u(z,0) =p(z) f0<z<l,

and the finite difference approximation

with = + L5 (uf o - 2u) +ufyy) fn>land1<j<J-1
ug=uy=0 forn >1

9:¢(jA:r) for1 <j<J-1,

where J = 1/Ax. Set s = At/Ax?. Compute the solution u’! of the finite difference
scheme for various choices of p(z) and s = 0.45,s = 0.49,s = 0.5, and s = 0.51.
Print out plots showing both stable and unstable solutions. Find a smooth initial
condition ¢(z) that becomes oscillatory when s = 0.5. [Hint: Use the provided
Matlab code.|

(b) Modify the provided code to work for homogeneous Neumann boundary conditions
uz(0,t) = ug(m,t) = 0 and repeat part (a).

(¢) (Optional) Modify the provided code to implement the Crank-Nicolson scheme
described in section 8.2.

2. Numerically solving the wave equation

(a) Consider the Dirichlet problem for the wave equation

U = Uy HO0<z <1, t>0
u(0,t) =u(l,t) =0 ift>0
u(z,0) =p(z) f0<z<l1
ur(x,0) =9Y(z) f0<x <1,
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and the finite difference approximation

u’?+1:2u?—un_1+8(u" —2u%+u?+1) ifn22and1§j§=]—1

J J Jj—1

uf =uj =0 for n > 2

u) = @; for1<j<J-—1
ub =5 (pjo1 + i) + (1= 8) @ + At for 1<j<J—1,

where J = 1/Axz, s = At?/Az?, p; = p(jAz) and ¥; = (jAz). Compute the
solution uy of the finite difference scheme for ¢) = 0, various choices of ¢(z), and
s = 0.99,s = 1.00, and 1.1. Print out plots showing both stable and unstable
solutions. |[Hint: Use the provided Matlab code.]

(b) Modify the provided code to work for homogeneous Neumann boundary conditions
uz(0,t) = uy(m,t) = 0 and a nonzero initial velocity ¢, and repeat part (a).

(¢) (Optional) Modify the provided code to implement a mixed boundary condition
u(1,t) = uz(1,t) = 0, and/or a Robin-type boundary condition. What do these
boundary conditions correspond to physically?

3. Numerically solving Poisson’s equation

(a) Consider the Dirichlet problem for Poisson’s equation in the box

—Au(z,y) = f(z,y) if0<z<l, and0<y<]1
u(z,y) = g(x,y) ifr=0rx=1,y=0o0ry=1]["

and the finite difference approximation

1 . ..
Uij =7 (Wi j1 + Wijm1 + ig1,; + Uim1j + A332fi,j) if1<i,j<J-1

Ui = 9ij iti=0,i=Jj=0o0rj=J

where J = 1/Az, g, ; = g(iAx,jAz) and f; ; = f(iAz, jAz). Compute the solu-
tion u; ; of the finite difference scheme using Jacobi iterations for various choices
of g and f. Print out plots of some of your solutions. How many Jacobi iterations
does it typically take to converge? How does the number of iterations depend on
the grid size J. |[Hint: Use the provided Matlab code.]

(b) (Optional) Modify the provided code to implement homogeneous Neumann bound-
ary conditions du/On = 0, and repeat part (a).

(¢) (Optional) Modify the provided code to implement Gauss-Seidel iterations and
successive overrelaxation, as described in Section 8.4 of the book. Compare the
number of iterations required with the Jacobi method.

4. Let u(x) be a smooth function and set u; = u(jAz) where Az > 0.
(a) Find real numbers a,b and ¢ so that

au; + buj_1 + cuj_o

=u/'(jA Az?).
Ay u'(jAz) + O(Ax*)




(b) Find real numbers d, e, f, g and h so that

du; + euj_1 + fuj_o + guj_3 + huj_4
Ax?

=u"(jAz) + O(Ax).

[Hint: Apply part (a) twice.]

(c) (Optional) Is the accuracy in part (b) better than O(Az)? If so, what is it? [Hint:
Use a Taylor series to write out the expression in part (a) to higher accuracy.|

5. For the diffusion equation u; = u,,, use centered differences for both u; and u,,. Write
down the scheme and show that it is unstable no matter what Az and At are.

6. Consider the Crank-Nicolson Scheme for the heat equation u; = ugy:

S

n+l _  n

S
n n n n+1 n+1 n+1
; (uj+1 — 2uj + uj_l) + = <uj+1 —2u"T 4+ ) ,

2 J J—1

where s = At/Az?. The scheme is implicit, since u"! appears on both sides of the
equation, so one has to solve a linear system to find u"*! at each iteration. Show that
the Crank-Nicolson scheme is unconditionally stable, which means it is stable for all
choices of s > 0. [Hint: Look for a solution of the form uf = AZ@”AM and show that

1 — s+ scos(Azxk)

A = .
P 1s—s cos(Axk)

Then show that |Agx| < 1 for any choice of s.]|



