
Math 126 – Homework 9 (Due Friday Nov 6)

This assignment requires the use of a mathematical software package like Matlab. Matlab
is available for student use in Wheeler 211, VLSB 2180, and Moffitt 1st floor. For more
information: https://ets-computing.berkeley.edu/. If you are using Matlab, use the files
‘heat_equation.m’, ‘wave_equation.m’, and ‘poisson_equation.m’.

There is also a free open source Matlab alternative called Octave: https://www.gnu.
org/software/octave/. The provided Matlab code runs in Octave as well, provided the in-
teractive plotting features in the code are disabled. If you are using Octave, use the files
‘heat_equation2.m’, ‘wave_equation2.m’, and ‘poisson_equation2.m’. After the code exe-
cutes, run ‘plot(x,u)’ to plot the result (‘surf(x,y,u)’ for Poisson’s equation).

1. Numerically solving the heat equation

(a) Consider the Dirichlet problem for the heat equation

ut = uxx if 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0 if t > 0

u(x, 0) = ϕ(x) if 0 < x < 1,

 .

and the finite difference approximation

un+1
j = unj + ∆t

∆x2

(
unj−1 − 2ujn + unj+1

)
if n ≥ 1 and 1 ≤ j ≤ J − 1

un0 = unJ = 0 for n ≥ 1

u0
j = ϕ(j∆x) for 1 ≤ j ≤ J − 1,

 .

where J = 1/∆x. Set s = ∆t/∆x2. Compute the solution unj of the finite difference
scheme for various choices of ϕ(x) and s = 0.45, s = 0.49, s = 0.5, and s = 0.51.
Print out plots showing both stable and unstable solutions. Find a smooth initial
condition ϕ(x) that becomes oscillatory when s = 0.5. [Hint: Use the provided
Matlab code.]

(b) Modify the provided code to work for homogeneous Neumann boundary conditions
ux(0, t) = ux(π, t) = 0 and repeat part (a).

(c) (Optional) Modify the provided code to implement the Crank-Nicolson scheme
described in section 8.2.

2. Numerically solving the wave equation

(a) Consider the Dirichlet problem for the wave equation

utt = uxx if 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0 if t > 0

u(x, 0) = ϕ(x) if 0 < x < 1

ut(x, 0) = ψ(x) if 0 < x < 1,

 .

https://ets-computing.berkeley.edu/
https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/

and the finite difference approximation

un+1
j = 2unj − un−1

j + s
(
unj−1 − 2ujn + unj+1

)
if n ≥ 2 and 1 ≤ j ≤ J − 1

un0 = unJ = 0 for n ≥ 2

u0
j = ϕj for 1 ≤ j ≤ J − 1

u1
j = s

2 (ϕj−1 + ϕj+1) + (1− s)ϕj + ψj∆t for 1 ≤ j ≤ J − 1,

 .

where J = 1/∆x, s = ∆t2/∆x2, ϕj = ϕ(j∆x) and ψj = ψ(j∆x). Compute the
solution unj of the finite difference scheme for ψ ≡ 0, various choices of ϕ(x), and
s = 0.99, s = 1.00, and 1.1. Print out plots showing both stable and unstable
solutions. [Hint: Use the provided Matlab code.]

(b) Modify the provided code to work for homogeneous Neumann boundary conditions
ux(0, t) = ux(π, t) = 0 and a nonzero initial velocity ψ, and repeat part (a).

(c) (Optional) Modify the provided code to implement a mixed boundary condition
u(1, t) = ux(1, t) = 0, and/or a Robin-type boundary condition. What do these
boundary conditions correspond to physically?

3. Numerically solving Poisson’s equation

(a) Consider the Dirichlet problem for Poisson’s equation in the box

−∆u(x, y) = f(x, y) if 0 < x < 1, and 0 < y < 1

u(x, y) = g(x, y) if x = 0, x = 1, y = 0 or y = 1

}
.

and the finite difference approximation

ui,j =
1

4

(
ui,j+1 + ui,j−1 + ui+1,j + ui−1,j + ∆x2fi,j

)
if 1 ≤ i, j ≤ J − 1

ui,j = gi,j if i = 0, i = J, j = 0 or j = J,

 .

where J = 1/∆x, gi,j = g(i∆x, j∆x) and fi,j = f(i∆x, j∆x). Compute the solu-
tion ui,j of the finite difference scheme using Jacobi iterations for various choices
of g and f . Print out plots of some of your solutions. How many Jacobi iterations
does it typically take to converge? How does the number of iterations depend on
the grid size J . [Hint: Use the provided Matlab code.]

(b) (Optional) Modify the provided code to implement homogeneous Neumann bound-
ary conditions ∂u/∂n = 0, and repeat part (a).

(c) (Optional) Modify the provided code to implement Gauss-Seidel iterations and
successive overrelaxation, as described in Section 8.4 of the book. Compare the
number of iterations required with the Jacobi method.

4. Let u(x) be a smooth function and set uj = u(j∆x) where ∆x > 0.

(a) Find real numbers a, b and c so that

auj + buj−1 + cuj−2

∆x
= u′(j∆x) +O(∆x2).

2

(b) Find real numbers d, e, f, g and h so that

duj + euj−1 + fuj−2 + guj−3 + huj−4

∆x2
= u′′(j∆x) +O(∆x).

[Hint: Apply part (a) twice.]

(c) (Optional) Is the accuracy in part (b) better than O(∆x)? If so, what is it? [Hint:
Use a Taylor series to write out the expression in part (a) to higher accuracy.]

5. For the diffusion equation ut = uxx, use centered differences for both ut and uxx. Write
down the scheme and show that it is unstable no matter what ∆x and ∆t are.

6. Consider the Crank-Nicolson Scheme for the heat equation ut = uxx:

un+1
j = unj +

s

2

(
unj+1 − 2unj + unj−1

)
+
s

2

(
un+1
j+1 − 2un+1

j + un+1
j−1

)
,

where s = ∆t/∆x2. The scheme is implicit, since un+1 appears on both sides of the
equation, so one has to solve a linear system to find un+1 at each iteration. Show that
the Crank-Nicolson scheme is unconditionally stable, which means it is stable for all
choices of s > 0. [Hint: Look for a solution of the form unj = λnke

ij∆xk and show that

λk =
1− s+ s cos(∆xk)

1 + s− s cos(∆xk)
.

Then show that |λk| ≤ 1 for any choice of s.]

3

