Math 126 Midterm

Name:

1. Determine whether the following statements are true or false. No justification is required.
[12 points]
(a) A PDE of the form $\mathcal{L}(u)=F\left(u, u_{x}, u_{y}, u_{x x}, u_{x y}, u_{y y}\right)=0$ is linear provided

$$
\mathcal{L}(a u+v)=a \mathcal{L}(u)+\mathcal{L}(v)
$$

for all real numbers a and functions $u(x, y)$ and $v(x, y)$.
(b) The Fourier series for a function f converges uniformly provided $\int_{-\pi}^{\pi} f(x)^{2} d x<\infty$.
(c) If $u(x, t)$ is a solution of the heat equation on the rectangle $0 \leq x \leq 1$ and $0 \leq t \leq 1$, then the maximum of u over the rectangle must be attained on the base $0 \leq x \leq 1$ and $t=0$ of the rectangle.
(d) Let $u(x, t)$ be the solution of the wave equation on the entire real line $-\infty<x<\infty$ with initial position $u(x, 0)=\varphi(x)$ and initial velocity $u_{t}(x, 0) \equiv 0$. If $\varphi(x)=0$ for all $|x| \geq 1$, then $\lim _{t \rightarrow \infty} u(x, t)=0$ for every x (i.e., $u \rightarrow 0$ pointwise as $t \rightarrow \infty$).
2. Find the solution of the linear PDE $y u_{x}-x u_{y}=0$ on \mathbb{R}^{2} that satisfies $u(x, x)=x^{4}$ for all $x \geq 0$. [8 points]
3. Solve the wave equation $u_{t t}-u_{x x}=0$ on the entire real line $-\infty<x<\infty$ with initial position $u(x, 0) \equiv 0$ and initial velocity $u_{t}(x, 0)=\frac{4 x}{x^{2}+1}$. Simplify your expression for u as much as possible. [10 points]
4. Solve the heat equation $u_{t}-u_{x x}=0$ on the infinite strip $0<x<\pi$ and $0<t<\infty$ with homogeneous Neumann boundary conditions $u_{x}(0, t)=u_{x}(\pi, t)=0$ for $t>0$ and initial condition $u(x, 0)=x+\cos (2 x)$. It may be useful to recall that

$$
\int_{0}^{\pi} \cos ^{2}(n x) d x=\frac{\pi}{2} \quad(n \in \mathbb{N})
$$

[10 points]

