Math 126 Midterm Information

- The midterm will take place on Friday, October 9, during class.
- The exam will cover everything up to and including the lecture on Friday Sept 25.
- The exam is closed book. No textbooks, notes, or calculators are allowed.
- The exam will have 4 questions. The first 2 will be short, and the last 2 will be longer and slightly more involved. Below are a collection of sample midterm questions for you to practice.

Sample questions

1. For each of the following equations state whether it is nonlinear, linear homogeneous, or linear inhomogeneous.
(a) $u_{t t t}+u^{2}-e^{u}=x^{3}$
(b) $\left(u_{t}-1\right)^{2}-u_{t}^{2}+u_{x}=2 x$
(c) $u_{x}+u_{y}=1$
(d) $2 u+3 u_{x t}+4 u_{x x y}=3 x^{2}+y$
(e) $u+u_{t}+u_{x}=u^{2}$
(f) $\log \left(u_{x}\right)=\log \left(u_{y}\right)+1$
2. Find the solution of $u_{x}+y u_{y}=0$ on \mathbb{R}^{2} that satisfies $u(0, y)=y^{2}$.
3. Find the solution of $u_{x}+x u_{y}=0$ on \mathbb{R}^{2} that satisfies $u(0, y)=e^{y}$.
4. Find the general solution of $2 u_{x}+3 u_{y}=1$ on \mathbb{R}^{2}.
5. Let $u(x, t)=t x(1-x) \exp \left(\cos \left(x^{2} t\right) \sin (t x) t e^{x}\right)$. Explain why u cannot be a solution of the heat equation on the rectangular strip $0 \leq x \leq 1$ and $0<t<1$.
6. Solve $u_{x x}+u_{x t}-6 u_{t t}=0$ with $u(x, 0)=x$ and $u_{t}(x, 0)=0$ by factoring the PDE into two transport equations.
7. Solve $u_{x x}-u_{x t}-12 u_{t t}=0$ with $u(x, 0)=0$ and $u_{t}(x, 0)=x$ by factoring the PDE into two transport equations.
8. Solve the wave equation $u_{t t}-u_{x x}=0$ on the entire real line with initial data $u(x, 0)=$ $\sin (x)$ and $u_{t}(x, 0)=\cos (x)$.
9. Solve the wave equation $u_{t t}-u_{x x}=0$ on the entire real line with initial data $u(x, 0)=x^{2}$ and $u_{t}(x, 0)=x$.
10. Find a formula for the solution of the heat equation $u_{t}-u_{x x}=0$ on the half line $0<x<\infty$ with initial condition $u(x, 0)=x^{2}+1$ and boundary condition $u(0, t)=1$ for all $t>0$.
11. Solve the heat equation $u_{t}-u_{x x}=0$ on the entire real line with initial condition $u(x, 0)=$ x. Use your solution to find the value of the integral

$$
\int_{-\infty}^{\infty} x e^{-(x-a)^{2}} d x \quad \text { for } a \in \mathbb{R}
$$

12. Solve the heat equation $u_{t}-u_{x x}=0$ on the infinite strip $0<x<\pi$ and $t>0$ with initial condition $u(x, 0)=\varphi(x)=1$ and Dirichlet boundary conditions $u(0, t)=u(\pi, t)=0$ for $t>0$.
13. Solve the heat equation $u_{t}-u_{x x}=0$ on the infinite strip $0<x<\pi$ and $t>0$ with initial condition $u(x, 0)=\varphi(x)=x$ and Dirichlet boundary conditions $u(0, t)=u(\pi, t)=0$ for $t>0$.
14. Let

$$
u(x, t)= \begin{cases}\left(1-t^{2}\right) \cos \left(\exp \left(\sin \left(t x^{2}-4 x\right) t^{2}\right)\right) e^{-x^{2}}, & \text { if } 0 \leq t \leq 1 \\ 0, & \text { if } t \geq 1\end{cases}
$$

Explain why u cannot be a solution of the wave equation on the entire real line.
15. Use separation of variables to find a family of solutions of $u_{t x}-u_{x x}=0$ on the halfline $x>0$ and $t>0$ satisfying the boundary condition $u(0, t)=0$ for $t>0$.
16. Show that the sequence of functions $f_{n}(x)=x^{n}$ on the interval $(0,1)$ converges to zero in the L^{2} sense. Does it converge to zero uniformly? Why or why not?

