Math 126 Sample Final Exam

Information

- The final exam is on December 14, 7pm-10pm in 3106 Etcheverry.
- The exam is cumulative and can potentially cover any topic from class. Please see the course schedule on the Math 126 website for a list of topics covered https://math.berkeley.edu/~jcalder/126F15/schedule.html. Please also see the supplemental lecture notes available here: https://math.berkeley.edu/~jcalder/126F15/homework.html.
- The exam will have 10 questions, ranging from easy to hard. It is a good idea to look through the exam and attempt the questions you are most comfortable with first. The questions will be in no particular order.
- The exam is closed book. Books, notes, calculators, cell phones, pagers, or other similar devices are not allowed. I will provide you with scratch paper and the exam will have sufficient space to work out all the questions.

Sample problems

- 1. Find u(x, y) satisfying $u_x + x^2 u_y = 0$ and $u(1, y) = e^y$.
- 2. Find u(x, y) satisfying $yu_x + u_y = 0$ and $u(x, 0) = x \cos(x)$.
- 3. Solve the heat equation $u_t = k u_{xx}$ with initial condition $u(x, 0) = e^x$.
- 4. Solve the heat equation $u_t = u_{xx}$ on the half-line x > 0 with Neumann boundary condition $u_x(0,t) = 0$ for t > 0 and initial condition $u(x,0) = x^2$ for x > 0. [You do not need to evaluate the integral.]
- 5. Solve the wave equation $u_{tt} = u_{xx}$ with initial position $u(x,0) = \sin^2(x)$ and initial velocity $u_t(x,0) = 2\sin(x)\cos(x)$. Simplify your solution as much as possible.
- 6. Solve the wave equation $u_{tt} = u_{xx}$ on the half-line x > 0 with Dirichlet boundary condition u(0,t) = 1 for t > 0, initial position $u(x,0) = \cos(x)$ for x > 0 and initial velocity $u_t(x,0) = e^{-x}$ for x > 0.
- 7. Solve the heat equation $u_t = k u_{xx}$ on the bounded domain $0 < x < \pi$ with mixed boundary conditions $u(0,t) = u_x(\pi,t) = 0$ and initial condition u(x,0) = x for $0 < x < \pi$.
- 8. Solve the wave equation $u_{tt} = c^2 u_{xx}$ on the bounded domain 0 < x < 1 with boundary conditions u(0,t) = 1 and $u_x(1,t) = 0$, initial position u(x,0) = x and initial velocity $u_t(x,0) = 1$ for 0 < x < 1.
- 9. Let $f(x) = \exp(\sin(x))\sin(x)$. Explain how you can deduce, without any computations, that $A_n = 1/n^2$ and $B_n = 1/n^4$ cannot be the coefficients of the Fourier series for f

$$f(x) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n \cos(nx) + B_n \sin(nx).$$

10. Compute the integral

$$\iint_B \log(x^2 + y^2) \, dx dy,$$

where B is the ball of radius 1 centered at (2,0). [Hint: Use the mean value property.]

11. Suppose that

 $\Delta u = 1$

throughout the unit ball B = B(0,1) in \mathbb{R}^3 , and u(x,y,z) = h(x,y,z) on the boundary ∂B . Show that

$$u(x, y, z) \le \frac{1}{6}(x^2 + y^2 + z^2 - 1) + \max_{\partial B} h.$$

[Hint: Show that $v(x, y, z) = u(x, y, z) - \frac{1}{6}(x^2 + y^2 + z^2 - 1)$ is harmonic and use the maximum principle.]

12. Consider the finite difference scheme

$$\frac{u_j^{n+1} - u_j^n}{\Delta t} = \frac{u_{j+1}^n - u_{j-1}^n}{2\Delta x},$$

for the transport equation $u_t = u_x$, and let $s = \frac{\Delta t}{2\Delta x}$. Show that the scheme is unstable for any choice of s.

13. Use energy methods to prove uniqueness for the boundary value problem

$$\begin{cases} -\Delta u + u = f & \text{in } D\\ u = g & \text{on } \partial D, \end{cases}$$

where $D \subseteq \mathbb{R}^3$ is bounded and open. [Hint: Let u and v be two solutions of the PDE. Define w = u - v and find a PDE that w satisfies. Multiply both sides of the PDE by w, integrate over D, and apply Green's identities.]

- 14. Use Fourier transforms to solve the ODE $-u_{xx} + a^2 u = f(x)$. [Hint: Use the convolution property.]
- 15. If p(x) is a polynomial and $\varphi(x)$ is a test function, show that the convolution $p * \varphi$ is a polynomial. [Hint: By linearity of the convolution, it is sufficient to consider the case where $p(x) = x^k$ for $k \ge 1$. Recall the binomial theorem

$$p(x-y) = (x-y)^k = \sum_{n=0}^k \binom{k}{n} x^n (-y)^{k-n}.$$
]

16. The convolution of a function ψ with a distribution f is defined by

$$(\psi * f, \varphi) := (f, \psi * \varphi),$$

where $\tilde{\psi}(x) := \psi(-x)$. Let δ be the Delta function and let ψ be any function. Show that $\delta * \psi = \psi$ in the distributional sense.

17. Find the entropy solution of Burger's equation

$$u_t + uu_x = 0, \quad t > 0$$

satisfying u(x,0) = a for x < 0 and u(x,0) = b for x > 0, where a > b.

18. Find the entropy solution of Burger's equation

$$u_t + uu_x = 0, \quad 0 < t < 1$$

satisfying u(x,0) = -x. Sketch the characteristics.