Math 1272: Calculus II
9.3 Separable equations

Instructor: Jeff Calder
Office: 538 Vincent
Email: jcalder@umn.edu
http://www-users.math.umn.edu/~jwcalder/1272S19
Wed office hour 12pm-1pm

Separable equations

A separable differential equation has the form

$$
\begin{aligned}
\frac{d y}{d x} & =g(x) f(y) . \\
& =\frac{g(x)}{h(y)}
\end{aligned}
$$

For example

- (Separable) $y^{\prime}=x \sin y$.
- (Non-separable) $y^{\prime}=\sqrt{x^{2}+y^{2}}$.

$$
\begin{aligned}
& h(y)=\frac{1}{f(y)} \\
& f(y)=\frac{1}{h(y)}
\end{aligned}
$$

Separable equations

To solve a separable differential equation

$$
\frac{d y}{d x}=\frac{g(x)}{h(y)}
$$

write in differential form

$$
h(y) d y=g(x) d x
$$

and integrate both sides

$$
\int h(y) d y=\int g(x) d x
$$

Solve the differential equation

$$
\frac{d y}{d x}=\frac{x^{3}}{y^{4}}
$$

and find the solution satisfying $y(0)=1$.
Separate variables $y^{4} d y=x^{3} d x$

$$
\begin{aligned}
& \int y^{4} d y=\int x^{3} d x \\
& \frac{1}{5} y^{5}=\frac{1}{4} x^{4}+C \\
& y^{5}=\frac{5}{4} x^{4}+5 C
\end{aligned}
$$

$$
y(x)=\left(\frac{5}{4} x^{4}+5 C\right)^{1 / 5}
$$

Initial condition $y(0)=1$

$$
\begin{aligned}
& 1=y(0)=(5 c)^{1 / 5} \\
& 1=5 C \\
& y(x)=\left(\frac{5}{4} x^{4}+1\right)^{1 / 5}
\end{aligned}
$$

Ex: Check $\frac{d y}{d x}=\frac{x^{3}}{y^{4}}$

Solve the differential equation

$$
\frac{d y}{d x}=y^{\prime}=\frac{12 x^{3}}{\cos (y)+\sec ^{2}(y)} .
$$

Separate variables

$$
\begin{aligned}
& \int\left(\cos (y)+\sec ^{2}(y)\right) d y=\int 12 x^{3} d x \\
& \sin (y)+\tan (y)=3 x^{4}+C
\end{aligned}
$$

Implicitly defines $y(x)$.

Solve the differential equation

$$
\frac{d y}{d x}=y^{\prime}=x y . \rightarrow \frac{y^{\prime}}{y}=x
$$

Separate variables

Exporentiate

$$
\begin{aligned}
\frac{1}{y} d y & =x d x \\
\int \frac{1}{y} d y & =\int x d x \\
\ln |y| & =\frac{1}{2} x^{2}+C
\end{aligned}
$$

$$
\begin{aligned}
& |y(x)|=e^{\frac{1}{2} x^{2}+c} \\
& y(x)= \pm e^{\frac{1}{2} x^{2}+c}
\end{aligned}
$$

Solve the equation for electric current

$$
\frac{d I}{d t}=15-3 I, \quad=f(I) g(t)
$$

satisfying $I(0)=0$.
Separate variables $d I=(15-3 I) d t$

$$
\left.\begin{array}{ll}
& \int \frac{d I}{15-3 I}=\int d t=t+C \\
u=15-3 I \\
d u=-3 d I
\end{array}\left|\int-\frac{11}{3 u} d u=-\frac{1}{3} \ln \right| u \right\rvert\,
$$

$$
\begin{aligned}
& -\frac{1}{3} \ln |15-3 I|=t+C \quad\left(=-\frac{1}{3} \ln |15-3 I|\right. \\
& \ln |15-3 I|=-3 t-3 C \\
& |15-3 I|=e^{-3 t-3 C}=e^{-3 C} e^{-3 t} \\
& =A e^{-3 t} \\
& 15-3 I(t)= \pm A e^{-3 t}, A=e^{-3 C} \\
& 15=3 I(t)+A e^{-3 t}, A \text { any numbr } A>0
\end{aligned}
$$

$$
\begin{aligned}
& S=I(t)+\frac{A}{3} e^{-3 t} \\
& I(t)=5-\frac{A}{3} e^{-3 t}=5-5 e^{-3 t}
\end{aligned}
$$

Initial condition $I(0)=0$

$$
\begin{aligned}
& 0=I(0)=5-\frac{A}{3} e^{0}=5-\frac{A}{3} \\
& \Rightarrow \frac{A}{3}=5
\end{aligned}
$$

$$
\lim _{t \rightarrow \infty} I(t)=5 \quad \text { (Equillibrium solution) }
$$

Orthogonal trajectories
Family of curves

Find the orthogonal trajectories of the family of curves $x=k y^{2}$ where k is an arbitrary constant. Slope $\frac{d x}{d y}=2 k y \quad k=\frac{x}{y^{2}}$
Slopes m ant $-\frac{1}{m}$ are orthogonal.
O.thogond trajectories have slope

$$
\begin{aligned}
\frac{d x}{d y} & =-\frac{1}{2 k y} \quad \begin{array}{r}
\text { (differential } \\
\text { equation) }
\end{array} \\
\text { Eliminate } k & =-\frac{1}{2\left(\frac{x}{y^{2}}\right) y}=\frac{-1}{2\left(\frac{x}{y}\right)}=\frac{-y}{2 x}
\end{aligned}
$$

$$
\frac{d x}{d y}=\frac{-y}{2 x}
$$

Separate $\int 2 x d x=\int-y d y$

$$
\begin{aligned}
& x^{2}=-\frac{1}{2} y^{2}+C \\
& x= \pm \sqrt{C-\frac{1}{2} y^{2}}
\end{aligned}
$$

Family of orthgonal trajectaries

Mixing problems
A tank containes 20 kg of salt dissolved in 5000 L of water. Brine that contains 0.03 kg of salt per liter of water enters the tank at a rate of $25 \mathrm{~L} / \mathrm{min}$. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt remains in the tank after an hour?

$$
\begin{aligned}
S(t) & =k_{9} \text { salt at time } t \text { min } \\
S(0) & =20 \\
F l_{\text {ow in }} & =0.03 \frac{\mathrm{~kg}}{\mathrm{~L}} \times 25 \mathrm{~L} / \mathrm{min} \\
& =0.75 \frac{\mathrm{~kg}}{\text { min }}
\end{aligned}
$$

$$
\begin{aligned}
\text { Flow out } & =\frac{s(t) \mathrm{ks}}{5000 L} \times 25 \frac{L}{\mathrm{~min}} \\
& =\frac{25}{5000} s(t)=\frac{s(t)}{200} \\
\frac{d s}{d t} & =\text { Flow in }- \text { Flow out } \\
& =0.75-\frac{s(t)}{200}
\end{aligned}
$$

This is separable.

$$
\begin{aligned}
\int \frac{d s}{0.75-\frac{s}{200}} & =\int d t=t+C_{1} \\
-200 \ln \left|0.75-\frac{s}{200}\right| & =t+C_{1} \\
\ln \left|0.75-\frac{s}{200}\right| & =-\frac{t}{200}+c_{2} \\
0.75-\frac{s(t)}{200} & = \pm e^{-\frac{t}{200}}+C_{2} \\
& = \pm A_{1} e^{-\frac{t}{200}}
\end{aligned}
$$

$$
\begin{aligned}
& 0.75-\frac{S(t)}{200}=A_{2} e^{-\frac{t}{200}} \\
& \frac{S(t)}{200}=0.75-A_{2} e^{-\frac{t}{200}} \\
& S(t)=150-200 A_{2} e^{-\frac{t}{200}} \\
& S(0)=20=150-200 A_{2} \\
& 200 A_{2}=130 \\
& S(t)=150-130 e^{-\frac{t}{200}}
\end{aligned}
$$

After 1 how $(t=60)$

$$
\begin{aligned}
S(60) & =150-130 e^{-\frac{60}{200}} \\
& =150-130 e^{-\frac{3}{10}}
\end{aligned}
$$

