Math 1272: Calculus II Final exam review

Instructor: Jeff Calder
Office: 538 Vincent
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/1272S19

Final Exam Information

- May 9, 12pm-3pm
- 18 questions
- 8 multiple choice (a)-(e)

Bubble sheets

- 10 written questions
- Exam covers all sections listed on the schedule http://www-users.math.umn.edu/~jwcalder/1272S19/schedule.html except for $\mathbf{8 . 3}, \mathbf{9 . 4}, \mathbf{9 . 6}, \mathbf{1 0 . 5}$, orthogonal trajectories.
- Midterm exams with solutions are available on the course website (linked above). This can be helpful for review.

Chapter 7
Topics: Integration (by parts, substitution, partial fractions, trig substitution, trig integrals, approximate integration)

Exampe: Determine the value of

$$
\begin{gathered}
\int_{0}^{1} x^{2} \cos x d x \\
\text { IP } u=x^{2}, \quad d v=\cos x d x\left|\begin{array}{l}
u=2 x, \quad d v=\sin x d x \\
d u=2 x, \quad v=\sin x
\end{array}\right| d u=2 d x, \quad v=-\cos x \\
\int x^{2} \cos x d x=x^{2} \sin x-\int 2 x \sin x d x
\end{gathered}
$$

$$
\begin{aligned}
& =x^{2} \sin x-\left(-2 x \cos x-\int-\cos x 2 d x\right) \\
& =x^{2} \sin x+2 x \cos x-2 \int \cos x d x \\
& =x^{2} \sin x+2 x \cos x-2 \sin x+C \\
\int_{0}^{1} x^{2} \cos x d x & \left.=x^{2} \sin x+2 x \cos x-2 \sin x\right]_{0}^{1} \\
& =\sin (1)+2 \cos (1)-2 \sin (1) \\
& =2 \cos (1)-\sin (1)
\end{aligned}
$$

Chapter 8
Topics: Arclength, surface of revolution,

Example: Find the area of the surface obtained by rotating the curve

$$
y=x^{3}, \quad 0 \leq x \leq 2
$$

about the x-axis.

$$
\begin{aligned}
S & =2 \pi \int_{0}^{2} y \sqrt{1+\left[\frac{\sqrt{y}}{d x}\right)^{2}} d x \quad\binom{\text { Formula }}{\text { sheet }} . \\
& =2 \pi \int_{0}^{2} x^{3} \sqrt{1+\left(3 x^{2}\right)^{2}} d x \\
& =2 \pi \int_{0}^{2} x^{3} \sqrt{1+9 x^{4}} d x
\end{aligned}
$$

Rotate $y=f(x)$ about y-axis

$$
\begin{aligned}
& S=2 \pi \int_{a}^{b} x \underbrace{\sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d y} \\
& d S=\sqrt{d x^{2}+d y^{2}} \\
&=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \\
& S=2 \pi \int_{a}^{b} x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
\end{aligned}
$$

Chapter 9
Topics: Differential equations (Euler's method, separable and linear equatons)

Example: Find the solution of the differential equation

$$
\frac{d y}{d x}=\frac{x \sin x}{y},=f(x) S(y)
$$

satisfying $y(0)=-1$.
Separate variables $\int y d y=\int x \sin x d x$

$$
\frac{1}{2} y^{2}=\left[\begin{array}{l}
u=x \\
J v=\sin x d x \\
v=-\cos x \\
d u=d x
\end{array}\right]=-x \cos x-\int-\cos x d x
$$

$$
\begin{aligned}
\frac{1}{2} y^{2} & =-x \cos x+\sin x+C \\
\frac{1}{2}=\frac{1}{2}(y(0))^{2} & =-0 \cdot \cos (0)+\sin (0)+C \\
& \longrightarrow C=\frac{1}{2} \\
\frac{1}{2} y^{2} & =-x \cos x+\sin x+\frac{1}{2} \\
y^{2} & =-2 x \cos x+2 \sin x+1 \\
y & =-\sqrt{1-2 x \cos x+2 \sin x}
\end{aligned}
$$

$$
\begin{aligned}
y(0)=-\sqrt{1-0+0} & =-\sqrt{1} \\
& =-1
\end{aligned}
$$

Chapter 10
Topics: Parametric equations, polar coordinates, area and arclength in polar coordinates.

Example: Set up (but do not evaluate) the integral computing the arclength of one loop of the four-leaved rose

$$
\frac{d r}{J \theta}=-2 \sin (2 \theta) \quad r=\cos (2 \theta)
$$

$\theta: \cos (2 \theta)=0$

$$
\begin{aligned}
& 2 \theta=\frac{\pi}{2} \rightarrow \theta=\frac{\pi}{4} \\
& 2 \theta=-\frac{\pi}{2} \rightarrow \theta=-\frac{\pi}{4}
\end{aligned}
$$

$$
\begin{aligned}
L & =\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{r^{2}+\left(\frac{d r}{d \theta}\right)^{2}} d \theta \\
& =\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{(\cos (2 \theta))^{2}+(-2 \sin (2 \theta))^{2}} d \theta \\
& =\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sqrt{\cos ^{2}(2 \theta)+4 \sin ^{2}(2 \theta)} d \theta .
\end{aligned}
$$

Chapter 11
Topics: Sequences and series, tests for convergence, power series, Taylor and Maclaurin series

Example: Determine whether the series

Alt. Series test $b_{n}=\frac{1}{\sqrt{n}}$
(1) proaction $b_{n}>0$
(2) Decreasing $b_{n+1}<b_{n}$
(3) $\lim _{n \rightarrow \infty} b_{n}=0$
\longrightarrow Converges by Alt series test
Absolute converge

$$
\sum_{n=1}^{\infty}\left|a_{n}\right|=\sum_{n=1}^{\infty} \frac{2}{\sqrt{n}}, a_{n}=\frac{2(-1)^{n+1}}{\sqrt{n}}
$$

Dinergs by p-test sinu $p=\frac{1}{2}<1$
\rightarrow Series converger conditionally

Chapter 12
Topics: Dot and cross products, lines and planes.

Example: Find a vector orthogonal (perpendicular) to both $\mathbf{a}=\langle 1,2,3\rangle$ and $\mathbf{b}=\langle 1,0,1\rangle$.

$$
\vec{a} \times \vec{b}=
$$

$$
\begin{aligned}
& =\hat{i}(2-0)-(1-3) \hat{j}+(0-2) \hat{k} \\
& =2 \hat{i}+2 \hat{i}-2 \hat{k}=\langle 2,2,-2\rangle
\end{aligned}
$$

Example: Find an equation for the plane containing the lines

$$
x=1+t, y=1-t, z=1
$$

and

$$
x=1+2 t, y=1+3 t, z=1+t .
$$

