
Math 5467 – Homework 2 Solutions

Instructions:

• Complete the problems below, and submit your solutions by uploading them to your shared
Google drive folder for Math 5467.

• If you use LaTeX to write up your solutions, upload them as a pdf file. Students who use
LaTeX to write up their solutions will receive bonus points on the homework assignment.

• If you choose to write your solutions and scan them, please either use a real scanner, or use
a smartphone app that allows scanning with you smartphone camera. It is not acceptable to
submit images of your solutions, as these can be hard to read.

Problems:

1. Consider the weighted PCA energy

Ew(L) =
m∑
i=1

wi‖xi − ProjLxi‖2,

where w1, w2, . . . , wm are nonnegative numbers (weights).

(i) Show that the weighted energy Ew is minimized over k-dimensional subspaces L ⊂ Rn

by setting
L = span{p1, p2, . . . , pk},

where p1, p2, . . . , pn are the orthonormal eigenvectors of the covariance matrix

Mw =

m∑
i=1

wixix
T
i ,

with corresponding eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn, given in decreasing order.

Proof by Eduardo Torres Davila. First, we claim that Ew(L) can be expressed as the
following:

Ew(L) = Trace(Mw)−
k∑

j=1

vTj Mwvj

where the vj ’s are the orthonormal basis spanning our subspace L and

Mw =

m∑
i=1

wixix
T
i .

To prove this claim we must use two facts. The first one being that

‖ProjLx‖2 =
k∑

i=1

(xT vi)
2

where L is a k-dimensional subspace and vi’s span L and the second being

‖x− ProjLx‖2 = ‖x‖2 − ‖ProjLx‖2.

Now, using these facts, we will prove the claim

Ew(L) =

m∑
i=1

wi‖xi − ProjLxi‖2

=

m∑
i=1

wi

(
‖xi‖2 − ‖ProjLxi‖2

)
(Using the second fact)

=

m∑
i=1

wi

‖xi‖2 − k∑
j=1

(xTi vj)
2

 (Using the first fact)

=
m∑
i=1

wi‖xi‖2 −
m∑
i=1

wi

k∑
j=1

(xTi vj)
2 (Splitting the sum)

=
m∑
i=1

wi‖xi‖2 −
m∑
i=1

wi

k∑
j=1

vTj xix
T
i vj (Since vTj xi = xTi vj)

=
m∑
i=1

wi‖xi‖2 −
k∑

j=1

vTj

m∑
i=1

(
wixix

T
i

)
vj

where the last term comes from the fact that the wi’s are scalars and thus commutative
with vectors and the fact that we pulled out the vj ’s from the sum over i. We can finally
prove our claim if we define

Mw =

m∑
i=1

wixix
T
i

and by using the fact that

Trace(Mw) =

m∑
i=1

Trace(wixix
T
i) =

m∑
i=1

wi‖xi‖2

showing us that

Ew(L) = Trace(Mw)−
k∑

j=1

vTj Mwvj

as desired. Now that we have our energy Ew(L) defined in this way we can utilize
Theorem (3.5) from Jeff’s notes to see that the energy Ew(L) is minimized over the
k-dimensional linear subspaces L ⊂ Rn by setting L = span{p1, p2, . . . , pk} finishing the
proof.

(ii) Show that the weighted covariance matrix can also be expressed as

Mw = XTWX,

where W is the m×m diagonal matrix with diagonal entries w1, w2, . . . , wm, and

X =
[
x1 x2 · · · xm

]T
.

2

Proof by Eduardo Torres Davila. To show this we begin with the matrix multiplication
on the right hand side and form it to look like Mw

XTWX =
[
x1 x2 · · · xm

]

w1

w2

. . .
wm

 [x1 x2 · · · xm
]T

=
[
x1 x2 · · · xm

]

w1

w2

. . .
wm



xT1
xT2
...
xTm



=
[
x1w1 x2w2 · · · xmwm

]

xT1
xT2
...
xTm


=

m∑
i=1

wixix
T
i

= Mw

where wixi = xiwi since wi are scalar values not vectors finishing the proof.

(iii) Show that the optimal energy is given by

Ew(L) =

n∑
i=k+1

λi.

Proof by Eduardo Torres Davila. To prove this we use the fact that

Trace(Mw) =
n∑

i=1

λi

and
k∑

j=1

vTj Mwvj =

k∑
i=1

λi

and what we found in part (i) of this problem

Ew(L) = Trace(Mw)−
k∑

j=1

vTj Mwvj .

Putting all of this together we see

Ew(L) = Trace(Mw)−
k∑

j=1

vTj Mwvj =

n∑
i=1

λi −
k∑

i=1

λi =

n∑
i=k+1

λi

as desired.

3

(iv) Suppose we minimize Ew over affine spaces x0 + L, so

Ew(x0, L) =

m∑
i=1

wi‖xi − x0 − ProjL(xi − x0)‖2.

Show that an optimal choice for x0 is the weighted centroid

x0 =

∑m
i=1wixi∑m
i=1wi

.

Proof by Eduardo Torres Davila. First let’s rewrite Ew(x0, L) into a form that is easier
to work with. If we have that v1, v2, . . . , vk are orthonormal vectors that span L then we
know that ProjLx = V V Tx where V =

[
v1 · · · vk

]
thus we can rewrite Ew(x0, L) in

the following way

Ew(x0, L) =
m∑
i=1

wi‖xi − x0 − ProjL(xi − x0)‖2

=
m∑
i=1

wi‖xi − x0 − V V T (xi − x0)‖2

=
m∑
i=1

wi‖(I − V V T)(xi − x0)‖2.

Now, since we are trying to find the optimal choice for x0 we will take the gradient
∇x0Ew(x0, L) = 0 and set it to zero. To help us simplify we will use the fact that
∇‖Ax‖2 = 2A2x for a symmetric matrix A as well as (I − V V T)2 = (I − V V T). We
have the following

0 = ∇x0Ew(x0, L) =
m∑
i=1

wi∇x0‖(I − V V T)(xi − x0)‖2

=
m∑
i=1

2wi(I − V V T)2(xi − x0)

=
m∑
i=1

2wi(I − V V T)(xi − x0)

=
m∑
i=1

wi(I − V V T)(xi − x0)

= (I − V V T)
m∑
i=1

wi(xi − x0).

Now let’s set
∑m

i=1wi(xi − x0) = y where y ∈ L. Hence, we have the following

m∑
i=1

wi(xi − x0) = y ⇒
m∑
i=1

wixi −
m∑
i=1

wix0 = y

4

and now we can choose y = 0 ∈ L thus giving us the final result
m∑
i=1

wixi −
m∑
i=1

wix0 = 0 =⇒
m∑
i=1

wixi =

m∑
i=1

wix0

=⇒ x0 =

∑m
i=1wixi∑m
i=1wi

as desired.

2. The k-means clustering algorithm is sensitive to outliers, since it uses the squared Euclidean
distance. We consider the robust k-means energy

Erobust(c1, c2, . . . , ck) =

m∑
i=1

min
1≤j≤k

‖xi − cj‖. (1)

The robust k-means algorithm attempts to minimize (1). We start with some randomized
initial values for the means c0

1, c
0
2, . . . , c

0
k, and iterate the steps below until convergence.

(a) Update the clusters

Ωt
j =

{
xi : ‖xi − ctj‖ = min

1≤`≤k
‖xi − ct`‖

}
. (2)

(b) Update the cluster centers

ct+1
j ∈ arg min

y∈Rn

∑
x∈Ωt

j

‖x− y‖. (3)

Complete the following exercises.

(i) Show that the Robust k-means algorithm descends on the energy Erobust.

Proof by Terrance Gray. It is sufficient to show that the energy after an iteration of the
algorithm is less than or equal to the energy before that iteration. Suppose that at the
start of the tth iteration the energy takes the form

Erobust(c
t
1, c

t
2, ...c

t
k) =

m∑
i=1

min
1≤j≤k

||xi − ctj ||

Updating the clusters as per step 1, we obtain that the energy can be rewritten as

Erobust(c
t
1, c

t
2, ...c

t
k) =

k∑
i=1

∑
x∈Ωt

j

||x− ctj ||

since the cluster centers Ωt
j are defined such that they contain the minimizing x for each

cluster center ctj . If we next apply step 2, it follows from the definition of the ct+1
j as arg

mins that ∑
x∈Ωt

j

||x− ct+1
j || ≤

∑
x∈Ωt

j

||x− ctj ||

5

for each 1 ≤ j ≤ k. After all, an arg min must be a minimizer of the function in question
and so cannot be exceed by any other choice of a point in Rn. Thus we have, overall,
that

Erobust(c
t
1, c

t
2, ...c

t
k) =

k∑
i=1

∑
x∈Ωt

j

||x− ctj || ≥
k∑

i=1

∑
x∈Ωt

j

||x− ct+1
j ||

We note here that the latter expression may not be equal to the energy at the (t+ 1)th
step—since the energy is defined in terms of a minimum. However, we certainly have
that

k∑
i=1

∑
x∈Ωt

j

||x− ct+1
j || ≥

m∑
i=1

min
1≤j≤k

||xi − ct+1
j || = Erobust(c

t+1
1 , ct+1

2 , ...ct+1
k)

since the old clusters are simply some way of organizing the xi into clusters; the sum
over them must be at minimum equal to the optimal clustering for the new choices of
cluster centers. Thus, overall, we have that

Erobust(c
t
1, c

t
2, ...c

t
k) ≥ Erobust(c

t+1
1 , ct+1

2 , ...ct+1
k)

So the robust k-means algorithm indeed descends on the robust k-means energy, as we
wanted to show.

(ii) The cluster center (3) does not admit a closed form expression and is sometimes incon-
venient to work with in practice. Consider changing the Euclidean norm in (1) to the
`1-norm ‖x‖1 =

∑n
i=1 |x(i)|, and define

E`1(c1, c2, . . . , ck) =
m∑
i=1

min
1≤j≤k

‖xi − cj‖1.

Formulate both steps of the k-means algorithm so that it descends on E`1 . Show that
the cluster centers ct+1

j are the coordinatewise medians of the points x ∈ Ωt
j , which are

simple to compute.

Proof by Terrance Gray. Since the cluster centers do not admit a closed form expression
as the algorithm/energy are now, we consider changing the Euclidean norm in Erobust

to the l1-norm ||x||1 =
∑n

i=1 |x(i)| and define

El1(c1, c2, ..., ck) =

m∑
i=1

min
1≤j≤k

||xi − cj ||1

We reformulate both steps of the above algorithm so that it descends on El, and show
that the cluster centers are the coordinatewise medians of the points x ∈ Ωt

j .

We first formulate the algorithm into the following two-step algorithm:
Starting with random initial values c0

1, c
0
2, ..., c

0
k for the cluster centers, iterate the follow-

ing until convergence:

6

i. Update the clusters as

Ωt
j =

{
xi

∣∣∣∣ ||xi − ctj ||1 = min
1≤l≤k

||xi − ctl ||1
}

ii. Update the cluster centers as

ct+1
j ∈ arg min

y∈Rn

∑
x∈Ωt

j

||x− y||1

We next prove that the cluster centers are the coordinatewise medians of the points
x ∈ Ωt

j . Without loss of generality, we consider only the problem of minimizing one-
dimensional data points. This is valid because the l1 norm treats each coordinate inde-
pendently in the defining sum, so minimizing over n-dimensional data can be done by
minimizing over one coordinate at a time; changes to the absolute value of one coordi-
nate affect only the contribution of that coordinate to the norm, with no cross-terms of
any kind.
Let Ωt

j be one of the clusters of points generated by the algorithm at some step. We as-
sume without loss of generality that Ωt

j contains l > 0 one-dimensional points x1, x2, ..., xl.
Then, by definition the cluster center the algorithm should generate for this cluster is
the point ct+1

j that minimizes the function

f(y) =
∑
x∈Ωt

j

||x− y||1 =

l∑
i=1

|x− y|,

where the l1 norm has been written in 1-dimension by the assumption that we are working
with 1-dimensional data.
Let xmedian be the coordinatewise median of the xi; that is, if we assume the xi are
sorted such that x1 ≤ x2 ≤ ... ≤ xl, we have that xmedian = x(l+1)/2 if l is odd and
xmedian = 1

2(xl/2 + xl/2+1) if l is even.
We use the derivative of f to show that xmedian is a minimizer of f , and hence that
the coordinatewise median in any dimension is an optimal choice for the cluster center.
Since f is not differentiable at any of the xi, due to the absolute values, we compute it
everywhere else and infer f ’s behavior at xmedian from the continuity of f (since absolute
value is continuous).
For each ith term in the sum defining f , we have that, for y > xi, the derivative is

d

dy
|xi − y| =

d

dy
(y − xi) = 1

and for y < xi, the derivative is

d

dy
|xi − y| =

d

dy
(xi − y) = −1

So the derivative of each term is 1 if y is greater than the corresponding xi and −1 if y is
less. The derivative of f overall is the sum of all l of these derivatives since differentiation
is linear. Hence we have that the derivative f ′ contains a sum of +1’s for the terms with
xi < y, and a sum of −1’s for the terms with xi > y. Essentially, this means that

f ′(y) = (number of xi less than y)− (number of xi greater than y)

7

for all y /∈ Ωt
j .

If f ′(y) is defined at xmedian (i.e., if the number of points l is even), we thus have that
f ′(xmedian) = 0 since the median by definition has an equal number of points on either
side; so xmedian is immediately seen to be a critical point in this case. Otherwise, we
consider the behavior of f around xmedian.
For all y > xmedian such that f ′(y) is defined, we have that f ′(y) ≥ 0 since there are at
least as many xi less than y by definition of the median, but there could be more. Hence
f(y) is increasing (possibly non-strictly) for all y > xmedian. On the flip side, we have
for all y < xmedian such that f ′(y) is defined that f ′(y) ≤ 0. After all, there are at least
as many xi greater than y as there are less than y by definition of the median, and there
could be more—making the sum defining f ′ either zero or negative. Therefore, f ′(y) is
decreasing for all y < xmedian.
Together, these properties imply that f(y) is minimized at y = xmedian since it increases
when y is made larger and decreases when y is made smaller—and this is a global
phenomenon, except possibly at the points where f ′(y) is undefined. But we have that
f(y) is continuous since it is a sum of continuous functions, so these properties must be
preserved even where f ′(y) is not defined. Thus f decreases to xmedian and increases
afterwards, implying that xmedian is indeed a global minimizer.
Hence we indeed have that the cluster centers can be computed as the coordinatewise
medians of the points in the respective clusters, as we wanted to show.

(iii) Can you think of any reasons why the Euclidean norm would be preferred over the `1

norm in the k-means energy?

Solution by Terrance Gray. The Euclidean norm may be preferred over the l1 norm for
a couple of reasons. It is the kind of distance we typically work with and are used to, and
it gives rise to natural structure and properties that we expect. A particularly important
example of the latter is the fact that the Euclidean norm is invariant under rotations,
but the l1 norm is not; hence using the l1 norm may be discouraged when the data
points in question do not have important absolute (only relative) coordinates. In such
a case, the l1 norm could yield different cluster centers for different (rotated) choices of
the coordinate system, while the Euclidean norm would always yield the same cluster
centers for the same initial points. This is strange since the actual clustering of the
data should not depend on its orientation, only the relative distances between points.
Thus, the Euclidean norm may be preferred over the l1 norm in cases when we want the
clustering to be resilient to transformations on the data in question, such as when the
points are on a surface we may want to view from several different directions.

3. We consider here the 2-means clustering algorithm in dimension n = 1. Let x1, x2, . . . , xm ∈ R
and recall the 2-means energy is

E(c1, c2) =

m∑
i=1

min
{

(xi − c1)2, (xi − c2)2
}
.

Throughout the question we assume that the xi are ordered so that

x1 ≤ x2 ≤ · · · ≤ xm.

8

For 1 ≤ j ≤ m− 1 we define

µ−(j) =
1

j

j∑
i=1

xi, µ+(j) =
1

m− j

m∑
i=j+1

xi,

and

F (j) =

j∑
i=1

(xi − µ−(j))2 +
m∑

i=j+1

(xi − µ+(j))2.

(i) Let c1 < c2 such that x1 ≤ 1
2(c1 + c2) ≤ xm. Show that there exists 1 ≤ j ≤ m− 1 such

that
F (j) ≤ E(c1, c2).

Proof by Dingjun Bian. Let c1 < c2 be such that x1 ≤ 1
2(c1 + c2) ≤ xm. We show that

there exists 1 ≤ j ≤ m− 1 such that

F (j) ≤ E(c1, c2).

To this end, we claim that 1 ≤ j ≤ m− 1 such that xj ≤ 1
2(c1 + c2) ≤ xj+1 would result

in F (j) ≤ E(c1, c2). Before proving this, we shall first prove the following lemma:

If c1 < c2 and x ≤ 1
2(c1 + c2), then |x− c1| ≤ |x− c2|.

Suppose that x ≤ 1
2(c1 + c2). We then have 2 cases to consider. If x ≤ c1, then we have

|x− c1| = c1 − x < c2 − x = |c2 − x| = |x− c2|.

On the other hand, if c1 < x ≤ 1
2(c1 + c2), then we have

|x−c1| = x−c1 ≤
(

1

2
(c1 + c2)− x

)
+(x−c1) ≤ 1

2
(c1+c2)−x+

1

2
(c2−c1) = c2−x = |c2−x|.

Note that in either case, we must have |x − c1| ≤ |x − c2|. Therefore, we have proven
the lemma. According to this lemma, we can rewrite our 2-means clustering energy as

E(c1, c2) =
m∑
i=1

min {(xi − c1)2, (xi − c2)2}

=

j∑
i=1

(xi − c1)2 +
m∑

i=j+1

(xi − c2)2,

where j ∈ {1, · · · ,m − 1} is such that xj ≤ 1
2(c1 + c2) ≤ xm. Now by the lemma we

proved in the class before proving the k-means clutering algorithm, we know that the
first and the second term of the energy is minimized when c1 = µ−(j) and c2 = µ+(j)
respectively. Therefore, we have found the j such that

F (j) ≤ E(c1, c2),

with equality only when c1 = µ−(j) and c2 = µ+(j).

9

(ii) This suggests that minimizing F (j) over j = 1, . . . ,m− 1 is also a reasonable clustering
objective (though not exactly the same as 2-means). Explain how you can find the global
minimum of F (j) in O(m2) floating point operations.

Solution by Dingjun Bian. We note that from (i), minimizing F (j) over j = 1, · · · , n
gives us the same clutering centeroid as if we are minimizing the 2-means clutering
energy. Therefore, minimizing F (j) over j = 1, · · · ,m− 1 is also a reasonable clutering
objective. To see the complexity analysis of this algorithm, we note that to minimize
F (j), one would need to compute µ−(j), µ+(j) and F (j) for every j. Note that for
each j, a number of O(m) operation is required. Moreover, we have to repeat all of
each computations m− 1 times as we have to compute µ−(j), µ+(j) and F (j) for every
j ∈ {1, · · · ,m − 1}. Therefore, to find the global minimum of F (j), we need O(m2)
floating point operations.

(iii) We can actually minimize F in O(m logm) time. To see this, show that

µ−(j + 1) =
j

j + 1
µ−(j) +

xj+1

j + 1
,

µ+(j + 1) =
m− j

m− j − 1
µ+(j)− xj+1

m− j − 1
,

and

F (j) = jµ−(j)2 + (m− j)µ+(j)2 − 2µ−(j)

j∑
i=1

xi − 2µ+(j)
m∑

i=j+1

xi +
m∑
i=1

x2
i .

Explain how you can use the formulas above to compute F (j) for all j = 1, . . . ,m in
O(m) time, given the xi are already sorted, which takes O(m logm) time.

Solution by Dingjun Bian. We first show that

µ−(j + 1) =
j

j + 1
µ−(j) +

xj+1

j + 1
,

µ+(j + 1) =
n− j

n− j − 1
µ+(j)− xj+1

j + 1
,

and

F (j) = jµ−(j)2 + (n− j)µ+(j)2 − 2µ−(j)

j∑
i=1

xi − 2µ+(j)

n∑
i=j+1

xi +

n∑
i=1

x2
i .

To see this, note that

j

j + 1
µ−(j) +

xj+1

j + 1
=

j

j + 1
(
1

j

j∑
i=1

xi) +
xj+1

j + 1

=
1

j + 1
(

j∑
i=1

xi + xj+1)

=
1

j + 1

j+1∑
i=1

xi

= µ−(j + 1)

10

Similarly, note that we have

m− j
m− j − 1

µ+(j)− xj+1

m− j − 1
=

m− j
m− j − 1

(
1

m− j

m∑
i=j+1

xi)−
xj+1

m− j − 1

=
1

m− (j + 1)
(

m∑
i=j+1

xi − xj+1)

=
1

m− (j + 1)

m∑
i=j+2

xi

= µ+(j + 1).

Moreover, we have

F (j) =

j∑
i=1

(xi − µ−(j))2 +

m∑
i=j+1

(xi − µ+(j))2

=

j∑
i=1

(x2
i − 2xiµ

−(j) + µ−(j)2) +
m∑

i=j+1

(x2
i − 2xiµ

+(j) + µ+(j)2)

=

j∑
i=1

x2
i − 2µ−(j)

j∑
i=1

xi + jµ−(j)2 +
m∑

i=j+1

x2
i − 2µ+(j)

m∑
i=j+1

xi + (m− j)µ+(j)2

= jµ−(j)2 + (m− j)µ+(j)2 − 2µ−(j)

j∑
i=1

xi − 2µ+(j)
m∑

i=j+1

xi +
m∑
i=1

x2
i .

According to these formulas above, we can significantly minimize the runtime of F in
(ii). To see how, notice that we could pre-compute

∑m
i=1 xi and

∑m
i=1 x

2
i , then store

them somewhere in the memory. Each of the computation would take O(m) runtime to
compute, but since we only need to compute it once in our algorithm, we shall only add
this complexity at the end of our analysis of the algorithm for finding the global minimum
of F (j). Moreover, note that the computation µ−(1) = x1 and µ+(1) = 1

m−1(
∑m

i=2 xi) =
1

m−1(
∑m

i=1 xi − x1). In particular, this means that we can compute for any data size,
we have the computation of µ−(1) and µ+(1) to be constant O(1). Moreover, we shall
note that as we proved above that µ−(j) and µ+(j) can be computed recursively for
j > 1, the runtime for computing the µ is constant O(1) as well with respect to the
data size. Now note that for each given j ∈ {1, · · · ,m − 1}, F (j) can be computed
in constant runtime O(1) due to the fact that we can recursively compute µ−(j) and
µ+(j) and compute the term

∑j
i=1 xi by simply adding xj to

∑j−1
i=1 xi, which would

be computed again from
∑j−2

i=1 xi and so on recursively computed from x1. Similarly,
we can compute

∑m
i=j+1 xi from

∑m
i=j xi − xj and keep on recursively computed from∑m

i=2 xi =
∑m

i=1 xi− x1, which is again pre-computed earlier and stored in the memory.
Therefore, for each j, the runtime required to compute F (j) is constant O(1) with
respect to the data size. We shall repeat such operation m − 1 times. Therefore, we
would have our algorithm complexity to be O(m) for finding the global minimum of
F (j) over all j ∈ {1, · · · ,m − 1}. Remember that we still have the pre-computation
complexity O(m) to add to the complexity analysis. However, note that this would not
change the overall complexity of O(m). Note also that this is if we assume that xi are

11

already sorted. If not, then we have to sort our data points xi before computing F (j) for
each j, which would be of complexity O(logm). This is repeated m − 1 times for each
j ∈ {1, · · · ,m − 1}. Therefore, if we include the complexity for sorting the data points
and adding on the complexity of O(m), which is less than O(m logm), we will have the
algorithm complexity to be of O(m logm).

12

