Math 5467 — Homework 3 Solutions

1. (Split-Radix FFT) Assume n > 4 is a power of 2 and let f € L*(Zy). Define f. € L*(Zx),
and fo1, for € L*(Zz) by
fe(k) = f(2k), for(k) = f(4k +1), and foa(k)= f(4k + 3).
(i) Show that
Dy f(€) = D fe(l) + e 2 ™D fo1 () + e 25D £, 9(0). (1)

(if)

Proof by Michael Markiewicz. By definition of the discrete Fourier transform, we
have
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as desired. n

The FFT algorithm based on the 3-way split in (1) is called the split-radix FFT
algorithm. There are a lot of redundant computations in (1), and these must be

accounted for in order to realize the improved complexity of the split-radix FFT.
Show that

nfw + 1) —ile —2“”“9% for(0) — e 2™ D £, 5(0)),
+ %) + Z(e—Qwiﬂ/nID%le(@ o 6_2m3€/n'D%f0,2(€)),

for 0 < ¢ <% — 1. This gives all the outputs of D f(£) and reduces the number of
multlphcatlons and additions required.
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Proof by Michael Markiewicz. The first of the four equations comes from what we
have shown in part (i):

Daf(E) = Dy £o(0) + (77D o1 (6) + 97Dy (1))
To show the next three equations, we first observe the following for m € Z:

— 271 mZ)/n n —2mi mi)/n n
e 2mi(t+m?)/ Dy for((t+m7)) + e Srmy)/ Dafor((t+m7))

_ 6_27Ti(6+m%)/np%f0,l(€) + e—27ri3(€+m%)/np%f072(g)
(since D%fo,lap%fog S l(Z%), i.e., n/4 periodic.)
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(since cosine is even and sine is odd).

Then for m = 1, we have
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and for m = 2, we have
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and finally for m = 3, we have
e—27ri(€+3%)/np%fo’1((€ + 3%)) + 6_2”i3(€+3%)/"27%f0,2((€ + 3%))

— |:€—27ri€/nrD%fo’1(e) - e—27ri3£/nfD%fo’2(€)} )
We also know that Dz f. € LQ(Z%) by definition, so

D%fe(e"" g) = 'D%fe(ﬁ),

3n
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since it is periodic with period 7.



Using the equalities shown above, it is a direct consequence that the three equations

hold:
ny _ n —2mi(L+2)/n n —2mi3(4+2) /n n
Daf(l+5) =Dy fell+ 5) + (DD £ (04 D) + e DIDa fa(0+ 7))
_ D%fe(@ _ (8_2m£/nD%f0’1(f) + 6_2”"3(/”D%f072(€)).

ny N n —2mi(l+2) /npy n —2mi3(0+2)/ngy, n
Duf(C+5) =Dy fult+ )+ (e DDy o104+ 5) 4 e 2 DInDy £ (04 1))
— D%fe(g + %) _ ,L-(e—27ri€/np%fo71(£) _ 6—27ri3€/nD%f072(‘€)).

Do f(L+ %”) =D fo(l + %”) + (e””“W)/"Dgfo,l(ﬁ + %”) + e 2Dy £, (0 + T))

=D fo(l+3) +i(e > D fo1(£) — e 23D £, 5(0)).
L]

(ili) Explain how the observations in Part (i) allow you to compute Dy f from Dx f,
D% fo,1 and D% fo,2 using 6n real operations. [Note, multiplications with +1 or =+
do not count, since they amount to negation of real or imaginary parts, which can
be absorbed into the next operation by changing it from addition to subtraction or
vice versal

Proof by Michael Markiewicz. Let 0 < ¢ < % — 1. First we have to compute both
6_27”[/”7.)% fon(£) and 6_2”36/”1)% fo,2(€) which takes 12 real operations (since mul-
tiplying two complex numbers takes 6 operations and we do that twice).

Next, we can find e*Q’TW”D% fonr(£) + eiZﬂige/"D% fo2(£) and 6*2”5/"1)% for(€) —
e~ 2mist/ "Dx fo,2(¢) using 2 complex additions for a total of 4 real operations (since
a complex addition is equivalent to two real operations).

Finally, we can compute D, f(£), Dpf({ + %), Dpf(£+ 2), and Dy, f(£ + ) only
using one more complex additions each by utilizing the equations we showed in
part (ii). Thus, this takes an additional 8 real operations (since a complex addition
is equivalent to two real operations).

Therefore, for this particular ¢, we used 24 real operations. Since we have to do
this for 7 different values of /, then in total we used 24 - 7 = 6n real operations.

By doing this procedure for every 0 < I < % — 1, we compute D, f(¢) from

Dx fe(0), Du fon(£), and Du fo2(f) for all 0 < ¢ <n —1 in only 6n operations. [

(iv) Show that part (iii) implies that the number of real operations taken by the split-
radix FFT, denoted again as A, satisfies the recursion

A, = A% +2A% + 6n.



Explain why A; = 0 and Ay = 4. Use this to show that A, < 4nlog,n. [Hint:
Define B,, = A,, — 4nlogy n and show that B,, satisfies

B, = Bn +2Bn
2 1

with By = 0 and By = —4. Use this to argue that B,, < 0 for all power-of-two n.]
[Note: If one is more careful about redundant computations (there are additional
multiplications with £1 or +i that can be skipped), then the complexity of the
split-radix FFT algorithm is actually 4nlogs n — 6n + 8 real operations].

Proof by Michael Markiewicz. We define
A, = Number of real operations taken by the split-radix FFT on L? (Zy,).

We first note that A; = 0 since D; is the identity. We also note that Ay = 4 since
we need to calculate

Daf(0) = flk)w ™ = £(0) + f(Dw™"

1
k=0

for ¢ = 0,1. For ¢ = 0, we only need 1 complex addition to do f(0) + f(1). For
¢ =1, we only need 1 complex addition to do

FO) + fF(Lw™ = f(0) + f(1)e™™ = £(0) — f(1).

So in total, we only need 2 complex additions for calculating Ds f which equates
to 4 real operations.

Thus, at step m > 2, we must first compute D% fe, D% fo,1, and Dg fo,2 which take
Ag, A%, and A% steps respectively (this is by the definition of A,). After we
calculate those discrete Fourier transforms, we have to compute Dy, f(¢), D, f (£ +
), Dpf(+ %), and Dy, f(£+ 22) for all 0 < £ < 2 — 1 which we have shown takes
6n steps.

In total, to calculate the Fourier transform at step m using the Split-Radix FFT,
it takes
An +An +An +6n = An +2An +6n
2 4 4 2 4

steps.
Now we define
B, = A, — 4nlogy n.

Then
B1 = A1 - 4(1) 10g2(1) = A1 =0

and
B2 = A2 — 4(2) 10g2(2) = A2 — 8 =—4.



We can further show the following about B,,:

B, = A, —4nlogyn
:A% —|—2A% + 6n — 4nlogyn
= An +2An 4 (2n + 4n) — 4nlogy n

]

= An + 242 + (2nlogy(2) + 2nlogy(4)) — 4nlogy n

= Az +2An — (2nlogy n — 2nlogy(2)) — (2nlogy n — 2nlogy(4))
n n
= A% + QA% — 2nlog2(§) - 2n10g2(1)

= (A% —2n logz(g)> +2 (A% - nlogg(%))

n

= (43— a(Dtogy(D) +2 (A5 4P 10ma(})
— B% —1—23%.

We show by strong mathematical induction that B,, < 0 for all powers of 2. We
have already shown the base cases of By = 0 and By = —4 so we move to the
inductive step. Assume B,, < 0 for all powers of 2 less k where k is some power of
2. Then for B}, we have

Since we assumed that all powers of 2 less than k& were nonpositive, then Bx < 0
2
and Bx < 0 and the sum of nonpositive numbers is also nonpositive. Therefore,
2
By <0.

This completes our proof by mathematical induction that B,, < 0 for all powers of 2.
This also implies that A,, —4nlogan <0 = A,, < 4nlog, n by definition of B,,.
Thus, the complexity of the split-radix FFT is at most 4n log, n real operations. [

2. Discrete derivatives (difference quotients) can be interpreted as convolutions. Complete
the following exercises.

(i) For f € L*(Zy,) define the backward difference

V7f(k) = f(k) = f(k=1).

Find g € L?(Z,) so that V- f = g f and use the DFT convolution property
D(g* f) = DgDf to show that D(V~f)(k) = (1 —w *)Df(k), where w = >/,

Proof by Dingjun Bian. We define g € L?(Z,) to be

1, when x = 0
g(x) =49 -1, whenx =1
0, otherwise.



(i)

Then we must have

Therefore, we have

D(V™f)(k) =D(g * f(k))
= Dg(k)Df (k)

i ikl
- (ngeT )Df(k)

=0
2nik

= (L —e" " )Df(k)
= (1 —w™")Df(k),

where w = en". Therefore, we have proven the desired result. O

For f € L?(Z,) define the forward difference
VIf(k) = f(k+1) = f(k).

Find g € L?*(Z,) so that VT f = g * f use this to show that D(VTf)(k) = (w* —
1)Df (k).

Proof by Dingjun Bian. We define g € L?(Z,,) such that

—1, whenx =20
g(x)=41, whenx=n-1
0, otherwise.

Then we must have

n—1

gx f(k) =) 9()f(k—17)

[e=]

e

=9(0)f(k) +g(n—1)f(k—n+1)
=—f(k)+ f(k+1-n)
=f(k+1) = f(k)

=V f(k)



Therefore, we have

D(V*f)(k) = D(g * f(k))
= Dg(k)Df(k)

ol ikl
= (Z ge=n )Df(k)
=0

_ 27mik(n—1)
= 1+ (k)
27mik

=(en —1)Df(k)
= (W~ 1)Df(k),

where w = e Therefore, we have proven the desired result.
(iii) For f € L?(Z,) define the centered difference by
1. __ 1
V() = 5(VFKR) + VFHR) = S (FE+1) — f(k— 1))
Use parts (i) and (ii) to show that

D(VF)(k) = %(wk —w MDf(k) = isin(27k/n)Df (k).

Proof by Dingjun Bian. We note that

D(V)(k) = D(3 (V™ () + V¥ F(K)))

i
L

SN {URS AT IO
llo n—1 n—1

_ 5 ( v—f(l)wkl + Z V+f(l)wkl>
=0 =0

= 2 (D(V*F)(K) + DV~ F)(K))

= 2 (@ = DDFH) + (1w hDs(R))

_ %(wk — W YDE(R)

_ %(ef’f — e END (k)

= % (coszzk —i—z’sinzZ—k — cos? +2‘sin2zk> Df(k)
2k

=isin —Df (k).
n
Therefore, we have proven the desired result.
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(iv) For f € L%*(Zy,), define the discrete Laplacian as
Af(k) =VTVf(k) = f(k+1) = 2f (k) + f(k = 1).
Use parts (i) and (ii) to show that

D(AS)(k) = (WF +w™* — 2)Df(k) = 2(cos(2rk/n) — 1)Df (k).

Proof by Dingjun Bian. We note that

D(Af)(k) =D(VIV f)(k)

E 1DV f)(k)

Fo 1)1 —w DS (k)
WP — R 1+ wTFYDF(E)
WP+ w P —2)Df (k)

~—~

21k 21k 2rk 21k
:<cos7r—|—z'sin7r+cos7r—isin7r—2>Df(k)
n n n n

=2 (cos2zk - 1) Df(k).

Therefore, we have proven the desired result. ]

3. Consider the Poisson equation

Au=f on Z,. (2)
The source term f € L?(Z,) is given, and u € L?(Z,) is the unknown we wish to solve
for. The discrete Laplacian A is defined in Problem 2. Use the DFT and the results from
Problem 2 to derive a solution formula for u using one forward transform D and one
inverse transform D~!. Is there a condition you need to place on Df for your solution
formula to make sense? |[Hint: Take the DFT of both sides of (2), solve for Du, and then
apply the inverse DFT D~!. Be careful not to divide by zero when you solve for Du.]

Proof. Using the results in Part 2(iv) we take the DFT on both sides of the equation to
obtain
2(cos(2mk/n) — 1)Du(k) = Df (k). (3)
When k = 0, the left hand size vanishes, so Df(0) = 0 is a necessary condition for the
existence of a solution. This means that
n—1
0=Df(0) =) f()-

J=0

Thus, the function f must have mean value zero. Assuming this is the case, we can solve

for Du(k) in (3) for k > 1, yielding

Df(k)

Du(k) = 2(cos(2mk/n) — 1)

8



To write an expression that holds for all £ > 0, we define

Gk = | Tz TR 21,
0, if k =0.

Then we have Du(k) = G(k)Df(k) for all k, and hence by the convolution theorem we
have

u=gxf
solves the Poisson equation (2), where ¢ = D~'G. This solution satisfies Du(0) = 0,

but noting (3), the value of Du(0) does not enter into the equation, so we may set it

arbitrarily. Since
n—1

Du(0) =} ulj),
§=0
this amounts to setting the mean value of u arbitrarily. Thus, the most general form for
the solution of (2) is
u=C+Hg=x*f,

where C' € R is an arbitrary constant. In this case Du(0) = Cn. O

. Let n > 1 be odd. Show that for ¢ ¢ Z we have
n—1

1 22: o2kt _ SiTlC(nt)'

n T sinc(t)

2

sin(7t)
mt

What happens when ¢ € Z7 Here, sinc is the normalized sinc function sinc(t) =

Proof by Eduardo Torres Davilla. Let’s begin by showing for any t ¢ Z we have

n—1
1 22: Q2mikt _ sinc(nt)
n e sinc(t)

2

sin(7rt)
wt

where sinc(t) = First let’s try to rewrite the summation on the left hand side so

that it’s easier to work with. Let’s define m = "Tfl and r = e>™ which gives us
n—1
m
1< : 1
- e27rzkt - § : Tk.
n n
k:_"T—l k=—m

Now let S,,, = Y7 rF and we notice that the following holds

reSm— Sm=1" i rk— i rk

k=—m k=—m



thus showing us that

7Sy — Sy = Mt —pmm

= Su(r—1)=pymt _pm
rm—i—l _pm
<— S =
r—1
P12\ pmt(1/2) _ pmm—(1/2)
Annd Sm = 172 P12 _ 12 :
Now let’s continue by substituting back r = 2™ m = ”Tfl, and use the identity of

e — 7 = 2jsin(f) which gives us the following

; 1
2mikt _ © k
2 = )
k:_"T—l k=—m
1 (712 pmt(1/2) _ p—m—(1/2)
o\ 12 /2 _ p—1/2
1 [ e2mit(m+(1/2)) _ p—2mit(m+(1/2))
~n omit _ o—mit
_ 1 (2isin(2mt(m + (1/2)))
n 2isin(7t)
_ 1 (sin@7t((n —1)/2 4 (1/2)))
n sin(7t)
_ sin(nmt)
B n51n(7rt)
_sin(nmt) mt
~ nmt sin(7rt)
sin(nmt)
— nmt
sin(7t)
Tt
_ sinc(nmt)
~ sinc(nt)

giving us the desired equality.

Now, we continue to show what happens when t € Z. If t € Z we have the following on

10



the left hand side of the equality

n—1 n—1
2

Z cos(2mkt) + isin(2mkt)

—_n—1
k= 2

N ‘

: 1
627rzkt i
n

S

k=

|
‘:
N
-

n—1

1 2

=— Y 1+i-0
n n—1
k=—"=

n—1
1 2
Ly
n n—1
k=—"5~
=1

since cos(2n¢) = 1 for any £ € Z and sin(27¢) = 0 for any ¢ € Z. Now, moving on to the
right hand side, we have the following

. sin(nmt
sinc(nmt) r(m )

sinc(mt) %;”5)
K

sin(nmt) mt
nmwt sin(7rt)

sin(nrt)
nsin(mt)

which is undefined thus the equality does not work if ¢t € Z. Ol
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