
Math 5467 – Homework 4

Instructions:

• Complete the problems below, and submit them though the Google form for Homework
4.

• If you use LaTeX to write up your solutions, upload them as a pdf file. Students who use
LaTeX to write up their solutions will receive bonus points on the homework assignment.

• If you choose to write your solutions and scan them, please either use a real scanner,
or use a smartphone app that allows scanning with you smartphone camera. It is not
acceptable to submit images of your solutions, as these can be hard to read.

Problems:

1. (ResNet) The traditional neural network architecture

fk = σk(Wkfk−1 + bk), k = 1, . . . , L,

often yields worse performance for deeper networks with more layers compared to shal-
lower networks. The main issue it that training is difficult, due to vanishing gradients
or gradient blowup (where the gradients either become very small and training does
not progress, or become very large and training is unstable). This is not so surprising;
consider the case where σk(t) = t is the identity and the biases bk = 0 vanish. Then

fL(x) =WLWL−1 · · ·W2W1x.

The L-fold product is very sensitive to the spectral norms of the matrices; when the
eigenvalues are larger than one in magnitude it blows up exponentially, while when they
are less than one it decay to zero exponentially.

The Residual Neural Network (ResNet) architecture [1] is a recent development in deep
learning that solves this problem by changing the architecture to

fk = fk−1 +Wk,1σk(Wk,2fk−1 + bk), k = 1, . . . , L. (1)

The idea is to have each layer learn the residual fk − fk−1, which allows the network to
easily skip layers, by setting fk = fk−1. Thus, a deeper network with ResNet architecture
should not perform worse than a shallower network. The ResNet architecture should
remind you of the discretization of an ordinary differential equation (ODE), and many
recent works have exploited this to explain the stability of ResNet.

Each ResNet layer has two weight matrices Wk,1 and Wk,2 and a bias bk. Derive the
back propagation equations to compute ∂L

∂Wk,1
, ∂L

∂Wk,2
, and ∂L

∂bk
for ResNet. You should

closely follow Theorem 8.4.1 from the class notes, with appropriate changes for ResNet.
You can assume that all layers have the same number of hidden units so that fk and
fk−1 have the same dimensions.



2. A graph convolutional neural network layer is given by

Hk = σ(AHk−1Wk),

where A is the n × n adjacency matrix for the graph, n is the number of nodes in the
graph, Hk is an n×N matrix where each row is a feature vector attached to a node in
the graph, andWk is an N×N tunable weight matrix. The matrices Hk are the outputs
of each layer, and play the role of the vectors fk in fully connected neural networks. You
can assume the weight matrix A is symmetric, so A = AT . Derive the back-propagation
equation

∂L
∂Hk−1

= A

(
σ′(AHk−1Wk)�

∂L
∂Hk

)
W T

k .

The symbol � is the coordinatewise product of two matrices, so

(A�B)(i, j) = A(i, j)B(i, j).

Hint: Start by writing

Hk(i, j) = σ

(
N∑
`=1

n∑
m=1

A(i,m)Hk−1(m, `)Wk(`, j)

)
,

and use the chain rule

∂L
∂Hk−1(p, q)

=

n∑
i=1

N∑
j=1

∂L

∂Hk(i, j)

∂Hk(i, j)

∂Hk−1(p, q)
.
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