
Mathematics of Image and Data Analysis
Math 5467

Convolutional Neural Networks and Classification

Instructor: Jeff Calder
Email: jcalder@umn.edu

http://www-users.math.umn.edu/~jwcalder/5467

 

(null)://(null)jcalder@umn.edu
http://www-users.math.umn.edu/~jwcalder/5467


Last time

• Intro to Neural Networks

Today

• Classification with neural networks.

• Convolutional neural networks.



Neural networks

Figure 1: An example of a fully connected neural network with three hidden layers.
The blue nodes are the hidden layers, the red is the input, and the green is the
output. The hidden layers have width n1 = 2, n2 = 6, and n3 = 4 and the number
of input variables is n0 = 6.



Neural network

In more compact notation, we can write a fully connected neural network with L
layers recursively as

(1) fk = �k(Wkfk�1 + bk), k = 1, . . . , L,

where

• f0 2 Rn0 is the input to the network,

• fk 2 Rnk for k = 1, . . . , L � 1 are the values of the network at the hidden
layers,

• fL is the output of the neural network,

• nk is the number of hidden nodes in the kth layer,

• The weights Wk 2 Rnk⇥nk�1 and biases bk 2 Rnk are the learnable parameters
in the neural network.



Loss

The output of the neural network fL 2 RnL is typically fed into a loss function

L : RnL ! R,

which measures the performance of the network for the given learning task.

Typically the loss has the form

(2) L(W1, b1, . . . ,WL, bL) =
mX

i=1

`(fL(xi), yi),

where (xi, yi) for i = 1, . . . ,m are the training data. Here, we write fL(x) to denote
the value of the output of the network fL given the input is f0 = x.

Neural networks are trained by minimizing the loss function L with gradient descent.



Back Propagation

For notational simplicity, we will write

(3) zk = Wkfk�1 + bk,

so that fk = �k(zk). Let @L
@zk

2 Rnk denote the gradient of L with respect to zk. We
also let Dk be the diagonal nk ⇥nk matrix with diagonal entries given by the vector
�0
k(zk). That is

Dk = diag(�0
k(zk)).

Theorem 1 (Back propagation). For k = 2, . . . , L we have

(4)
@L

@zk�1
= Dk�1W

T
k

@L
@zk

,

(5)
@L
@Wk

=
@L
@zk

fT
k�1, and

@L
@bk

=
@L
@zk

.



ResNet

The traditional neural network architecture

fk = �k(Wkfk�1 + bk), k = 1, . . . , L,

often yields worse performance for deeper networks compared to shallower ones.

The Residual Neural Network (ResNet) architecture is a recent development in deep
learning that solves this problem by changing the architecture to

(6) fk = fk�1 +Wk,1�k(Wk,2fk�1 + bk), k = 1, . . . , L.

The idea is to have each layer learn the residual fk�fk�1, which allows the network
to easily skip layers, by setting fk = fk�1. Thus, a deeper network with ResNet
architecture should not perform worse than a shallower network.



Classification with neural networks

Recall that our label vectors are given as one hot vectors e1, . . . , ek in Rk (i.e., the
standard basis vectors), where ei represents the ith class.

For a k-class classification problem, the output of the neural network fL(x) has k
components, so fL(x) 2 Rk, and the classification of x is taken to be the largest
component of fL(x).

Let z1, . . . , zm 2 Rk denote the output vectors of the neural network aplied to m
training points x1, x2, . . . , xm, so

zi = fL(xi).

These outputs are fed through the soft-max function to convert them into probability
vectors p1, . . . , pm 2 Rk given by

pi(j) :=
ezi(j)

Pk
q=1 e

zi(q)
.



Loss

The loss used for classification is normally the negative log likelihood loss. Letting
y1, . . . , ym 2 Rk denote the one hot vectors representing the classes of the training
data, the negative log likelihood loss is

(7) L(fL) = �
mX

i=1

yTi log(pi).

We claim that

L(fL) = �
mX

i=1

fL(xi)
T yi +

mX

i=1

log

0

@
kX

j=1

efL(xi)
T ej

1

A .







Toy data

Figure 2: Synthetic data on rings consisting of two classes.



Training

(a) Iteration 50 (b) Iteration 150 (c) Iteration 250

(d) Iteration 350 (e) Iteration 500 (f) Iteration 3000



MNIST

We consider classification of MNIST digits with 60000 training images and 10000
testing images.

• 2-Layer network with 10 hidden nodes: 93% testing accuracy

• 2-Layer network with 32 hidden nodes: 97% testing accuracy

• Even with good testing accuracy, there is overfitting:

– 1-pixel shift of testing data: 87% accuracy
– 2-pixel shift of testing data: 62% accuracy



MNIST

We consider classification of MNIST digits with 60000 training images and 10000
testing images.

• 2-Layer network with 10 hidden nodes: 93% testing accuracy

• 2-Layer network with 32 hidden nodes: 97% testing accuracy

• Even with good testing accuracy, there is overfitting:

– 1-pixel shift of testing data: 87% accuracy
– 2-pixel shift of testing data: 62% accuracy

Figure 3: The 10 hidden nodes for MNIST classification.



Overfitting with less tranining data

(a) 60000 Training images (b) 10000 Training images



Overfitting with less tranining data

(c) 1000 Training images (d) 100 Training images



Classification with Torch (.ipynb)

https://colab.research.google.com/drive/1Pbt6AGr4zZbZUNuiKajQ-AZ_e9GNJBiJ?usp=sharing


Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are one of the most powerful tools for image
processing. They are special cases of fully connected neural networks that replace
the linear function in a neuron with the convolution

(W ⇤ I)(i, j) =
NX

p,q=�N

W (N + 1 + p,N + 1 + q)I(i+ p, j + q).

Here I is a 2D image, W is a (2N + 1) ⇥ (2N + 1) matrix representing the filter,
which is trainable. N is the width of the filter, which is normally small compared
to the size of the image I.
Key points:

• Translation Invariance: The convolution applies the same filter W to all
locations in the image, finding features no matter where the are within the
image.

• Locality: The small size of filters restricts the features to be localized in the
image.



Image convolution

Convolution is one of the most basic and important operations in image processing.
It produces a new image that is filtered using a convolutional kernel. The filter below
is called a Sobel filter that looks for vertical edges.



Image convolution

Convolution is one of the most basic and important operations in image processing.
It produces a new image that is filtered using a convolutional kernel. The filter below
is called a Sobel filter that looks for vertical edges.



Image convolution

Convolution is one of the most basic and important operations in image processing.
It produces a new image that is filtered using a convolutional kernel. The filter below
is called a Sobel filter that looks for vertical edges.



Test image



Sobel vertical

Convolutional Kernel =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5



Sobel horizontal

Convolutional Kernel =

2

4
1 2 1
0 0 0
�1 �2 �1

3

5



Laplacian

Convolutional Kernel =

2

4
0 �1 0
�1 4 �1
0 �1 0

3

5



Outline

Convolutional Kernel =

2

4
�1 �1 �1
�1 8 �1
�1 �1 �1

3

5



Emboss

Convolutional Kernel =

2

4
�2 �1 0
�1 1 1
0 1 2

3

5



Sharpen

Convolutional Kernel =

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5



Original image



Typical CNN architecture

Figure 4: An example of a typical Convolutional Neural Network (CNN) architec-
ture.



Pooling

Pooling is a form of subsampling that introduces translation invariance into CNNs,
and allow future layers to pick up on larger scale features in the image, leading to a
multiscale analysis.



Example on MNIST

We ran an experiment testing a simple convolutional neural network for classification
of MNIST digits.

• 4 layer neural network

– First 2 layers are convolutional with 32 and 64 channels
– Final 2 layers are fully connected with 128 hidden nodes.

• Output of the convolutional layers is flattened into a length 9216 array of
features to feed into the fully connected layer.



MNIST Accuracy

• Accuracy is 99.04% after 14 epochs.

• 98.07% after single pixel shift

• 92.06% after two-pixel shift

• 75% after three-pixel shift

The translation invariance is better than with fully connected networks due to the
pooling and translation invariance of convolutional. To get better translation invari-
ance we can introduce more pooling into the network.



Convolutional filters

Figure 5: The 32 3⇥3 filters from the first layer of the convolutional neural network
for classifying MNIST digits.



First layer channels

Figure 6: The 32 channels of output from the first convolutional layer acting on an
image of a 2.



Second layer channels

Figure 7: The 64 channels of output from the second convolutional layer acting on an
image of a 2. Notice the channels appear to be detecting edges in various directions.



FashionMNIST



FashionMNIST accuracy

• Accuracy is 92.55% after 14 epochs.

• 89.73% after single pixel shift

• 75.94% after two-pixel shift

• 47.38% after three-pixel shift

We could choose a larger network with more channels and hidden layers to achieve
better results (around 99%) for FashionMNIST.



Convolutional Neural Networks (.ipynb)

https://colab.research.google.com/drive/1TjMlvAgZkvMZ_jJhj2U8GWgGJRsOgBoE?usp=sharing

